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Faculty of Informatics, Masaryk University, Czechia

martin.jonas@mail.muni.cz, tony@fi.muni.cz, vojtech.kur@mail.muni.cz, macak.jan@mail.muni.cz

Abstract
Steady-state synthesis aims to construct a policy
for a given MDP D such that the long-run aver-
age frequencies of visits to the vertices of D sat-
isfy given numerical constraints. This problem is
solvable in polynomial time, and memoryless poli-
cies are sufficient for approximating an arbitrary
frequency vector achievable by a general (infinite-
memory) policy.
We study the steady-state synthesis problem for
multiagent systems, where multiple autonomous
agents jointly strive to achieve a suitable frequency
vector. We show that the problem for multiple
agents is computationally hard (PSPACE or NP
hard, depending on the variant), and memoryless
strategy profiles are insufficient for approximating
achievable frequency vectors. Furthermore, we
prove that even evaluating the frequency vector
achieved by a given memoryless profile is com-
putationally hard. This reveals a severe barrier to
constructing an efficient synthesis algorithm, even
for memoryless profiles. Nevertheless, we design
an efficient and scalable synthesis algorithm for a
subclass of full memoryless profiles, and we evalu-
ate this algorithm on a large class of randomly gen-
erated instances. The experimental results demon-
strate a significant improvement against a naive al-
gorithm based on strategy sharing.

1 Introduction
Steady-state policy synthesis is the problem of computing a
suitable decision-making policy (strategy) in a given Markov
decision process (MDP) D satisfying given constraints on the
limit frequencies of visits to the states of D. More precisely,
we say that a strategy σ in D achieves a frequency vector µ
if for almost every infinite run w in the Markov chain Dσ

induced by the strategy and every vertex v of D we have that
the limit frequency of visits to v along w is equal to µ(v).

The existing works concentrate on the steady-state synthe-
sis problem for a single agent, where the task is to construct a
strategy σ achieving a frequency vector µ where v⃗ℓ ≤ µ ≤ v⃗u
for given lower and upper bounds v⃗ℓ and v⃗u. The existence

of such a strategy is decidable in polynomial time; and if it
exists, it can be also computed in polynomial time by linear
programming (see Related work). Although some frequency
vectors are only achievable by infinite-memory strategies, the
subclass of memoryless strategies is sufficient for producing
frequency vectors arbitrarily close to each achievable fre-
quency vector. If the underlying graph of D is strongly con-
nected, then the same holds even for a special type of full
memoryless strategies assigning a positive probability to ev-
ery edge of D (one can show that for every µ achievable by
a memoryless strategy, there is a vector arbitrarily close to
µ achievable by a full memoryless strategy). These prop-
erties are illustrated in Fig.1 on a trivial MDP with three
non-deterministic states. Hence, in the single agent setting,
memoryless strategies are sufficient for practical applications.
Since we can safely assume that D is a disjoint union of
finitely many strongly connected MDPs, the same holds even
for full memoryless strategies (see Section 4 for details).

Our contribution. In this paper, we extend the scope of
steady-state policy synthesis problem to multiple autonomous
agents. More precisely, the task is to construct a strategy
profile for k≥1 agents in a given MDP D so that the fre-
quencies of visits to the vertices of D (or, more generally,
to pre-defined classes of vertices represented by colors) by
some agent are above a given threshold vector. As a sim-
ple example, consider an MDP where the vertices represent
devices requiring regular maintenance, and the threshold fre-
quency vector specifies the minimal required frequency of in-
spections for each device. The steady-state policy synthesis
for k agents then corresponds to the problem of designing ap-
propriate schedules for k independent technicians such that
the required frequency of inspections is observed.1 Our main
results are twofold.
I. Fundamental properties of the problem. We ana-
lyze the role of memory and randomization in construct-
ing (sub)optimal strategy profiles, and we also classify the
computational complexity of the steady-state policy synthesis
problem. The obtained results demonstrate that the steady-

1If two or more technicians meet at the same vertex at the same
time, only one of them does the maintenance job. Hence, optimal
strategy profiles tend to minimize the frequency of such redundant
simultaneous visits. However, this redundancy cannot be avoided
completely in general.
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state policy synthesis for multiple agents is (perhaps even
surprisingly) more complex than for a single agent. Conse-
quently, a different algorithmic approach is required. More
concretely, we prove the following:

I(a). For two or more agents, the power of full memoryless,
memoryless, finite-memory, and general strategy profiles in-
creases strictly. To explain this, we need to introduce one
extra notion. Let k ≥ 1, and let A,B be sets of strategy pro-
files for an MDP D and k agents. Furthermore, let F(A) and
F(B) be the sets of frequency vectors achievable by the pro-
files in A and B. We say that B is more powerful than A if
F(A) ⊆ F(B), and there exists µ ∈ F(B) that cannot be ap-
proximated by the vectors of F(A) (i.e., there is δ > 0 such
that the distance between µ and every ν ∈ F(A) is at least δ).

We show that for k ≥ 2, the sets of full memoryless pro-
files, memoryless profiles, finite-memory profiles, and gen-
eral profiles are increasingly more powerful even for strongly
connected graphs, i.e., MDPs without stochastic vertices.
This contrasts sharply with the single agent scenario where
full memoryless profiles approximate general profiles.

I(b) The existence of an achievable µ such that µ ≥ v⃗ℓ for
a given v⃗ℓ is a computationally hard problem. Recall that for
a single agent, the problem is solvable in polynomial time.
For two or more agents, the problem is NP-hard even if D is
a strongly connected graph and the set of profiles is restricted
to full memoryless profiles, memoryless profiles, or finite-
memory profiles with m memory states. For the “colored”
variant of the problem, we obtain even PSPACE-hardness.

I(c) Evaluating the frequency vector achieved by a given
profile is computationally hard, even for strongly connected
graphs and memoryless profiles. Intuitively, the reason is that
each strategy in the profile may induce a Markov chain with
a different period. The complexity of the evaluation proce-
dure depends on the least common multiple of these periods
whose size can be exponential in k. Note that for full mem-
oryless profiles, all of the induced Markov chains have the
same period. Consequently, full memoryless profiles can be
evaluated in polynomial time on strongly connected MDPs.
These observations have important algorithmic consequences
explained in the subsection II. Efficient synthesis algorithm.

I(d) The existence of a finite-memory profile with m mem-
ory states achieving a frequency vector µ such that µ ≥ v⃗ℓ
for a given v⃗ℓ is decidable in polynomial space for every fixed
number of agents. This holds also for the “colored” variant
of the problem. The algorithm is based on encoding the prob-
lem as a formula of first order theory of the reals and applying
the results of [Canny, 1988]. The size of the formula is expo-
nential in k, which shows that the number of agents is a key
parameter negatively influencing the computational costs.
II. Efficient synthesis algorithm. Since general (infinite-
memory) strategies are not algorithmically workable, the
scope of algorithmic synthesis is naturally limited to finite-
memory profiles. The synthesis of a finite-memory profile for
an MDP D where every strategy in the profile uses at most
m memory states is equivalent to the synthesis of a memo-
ryless profile for an MDP D′ obtained from D by augment-
ing its vertices with memory states (see Section 2 for details).
Hence, the algorithmic core of the problem is the construction
of memoryless profiles. However, here we face the obstacle

of I(c), saying that even evaluating memoryless profiles is
computationally hard. This is a severe barrier, because every
synthesis algorithm is driven by the objective involving the
frequency vector of the constructed profile. Hence, a natural
starting point is to explore the constructability of full memo-
ryless profiles that can be evaluated in polynomial time (see
I(c)). This is challenging, despite the limitations identified
in I(a). According to I(b), the associated decision problem is
NP-hard even for two agents, and the synthesis can be seen as
a non-linear optimization problem whose size increases with
the number of agents (see Section 4).

We propose an efficient algorithm for synthesizing full
memoryless profiles based on incremental agent inclusion.
The main idea is the following: Suppose that we already con-
structed a full memoryless profile for k agents, and we wish
to extend the profile to k+1 agents. Our algorithm constructs
several linear programs depending only on the threshold vec-
tor (the objective) and numerical parameters extracted from
the previously computed profile for k agents. Hence, the size
of these programs is independent of k. A full memoryless
strategy for the newly included agent is extracted from the so-
lutions of these linear programs. Thus, we prevent the blowup
in k, and the complexity of our synthesis algorithm becomes
linear in the number of agents k. Thus, we (inevitably) trade
efficiency for completeness, i.e., the algorithm does not have
to find a suitable full MR profile even if it exists. We evaluate
our algorithm experimentally on a series of randomly gen-
erated instances, and we show that it clearly outperforms a
naive algorithm based on strategy sharing (see Section 5 for
details).

Related work. All existing works about steady-state syn-
thesis apply to a single agent scenario. [Akshay et al., 2013]
solve the problem for unichain MDPs, i.e., a subclass of
MDPs where every memoryless deterministic policy induces
an ergodic Markov chain, by designing a polynomial-space
algorithm. A polynomial-time algorithm for general MDPs
is given in [Brázdil et al., 2014]. This algorithm can com-
pute infinite-memory strategies, which may be necessary for
achieving some frequency vectors (see Fig. 1), and it is ap-
plicable to a more general class of multiple mean-payoff
objectives. It has been implemented [Brázdil et al., 2015]
on top of the PRISM model checker [Kwiatkowska et al.,
2011]. In [Velasquez, 2019], the problem of constructing
a suitable memoryless policy inducing a recurrent Markov
chain consisting of all vertices of a given MDP is solved by
linear programming. A generalization of this work is pre-
sented in [Atia et al., 2020]. Recent works [Křetı́nský, 2021;
Velasquez et al., 2024] combine steady-state constraints with
LTL specifications. There are also works concentrating on
steady-state deterministic policy synthesis [Velasquez et al.,
2023].

2 The Model
We assume familiarity with basic notions of probability the-
ory and Markov chain theory. We use N and N+ to denote
the sets of all non-negative and positive integers, respectively,
and D(A) to denote the set of all probability distributions
over a finite set A. A directed graph is a pair G = (V,E)
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v1 v2 v3 v1 v2 v3

0.5−δ 2δ 0.5−δ

ε

0.5

ε

0.5

1−ε 1−ε

v1 v2 v3

1−δ1−δ2 δ1 δ2

ε

1−ε

1−ε

ε

1−ε ε

Figure 1: Left: A simple MDP with three non-deterministic vertices
v1, v2, and v3. Right: A memoryless strategy for a single agent can
achieve the frequency vector (0.5−δ, 2δ, 0.5−δ) for an arbitrarily
small δ>0 by choosing a sufficiently small ε>0. However, the fre-
quency vector (0.5, 0, 0.5) is achievable only by an infinite-memory
strategy where the ε is “progressively smaller” and approaches 0 as
the vertices v1 and v3 are revisited. Middle: A full memoryless
strategy can achieve the frequency vector (1−δ1−δ2, δ1, δ2) where
δ1+δ2 > 0 is arbitrarily small by choosing a sufficiently small ε>0.
However, the vector (1, 0, 0) is achievable only by a (non-full) strat-
egy assigning 1 to the self-loop v1→v1.

S0 S1 S2 S3 Sd−1

Figure 2: The structure of cyclic classes. For all states s, t we have
that P (s, t) > 0 only if s ∈ Si and t ∈ Si+1 mod d for some i < d.

where E ⊆ V × V . For every v ∈ V , we use In(v) and
Out(v) to denote the sets of all in-going and out-going edges
of v. We say that G is strongly connected if for all v, u ∈ V
there is a finite sequence v1, . . . , vn such that n ≥ 1, v1 = v,
vn = u, and (vi, vi+1) ∈ E for all 1 ≤ i < n.

Markov chains. A Markov chain is a triple C = (S,P, α)
where S is a finite set of states, P : S×S → [0, 1] is a stochas-
tic matrix such that

∑
s′∈S P(s, s′) = 1 for every s ∈ S, and

α ∈ D(S) is an initial distribution.
A state t is reachable from a state s if Pn(s, t) > 0 for

some n ≥ 1, where Pn denotes the n-th power of P. A bot-
tom strongly connected component (BSCC) of C is a maximal
B ⊆ S such that B is strongly connected and closed under
reachable states, i.e., for all s, t ∈ B and r ∈ S we have that t
is reachable from s, and if r is reachable from s, then r ∈ B.
A Markov chain C is irreducible if for all s, t ∈ S we have
that t is reachable from s. We use I to denote the unique in-
variant distribution of C. Note that every BSCC of C can be
seen as an irreducible Markov chain.

For every s ∈ S, let d(s) = gcd{n ∈ N+ | Pn(s, s)>0} be
the period of s. Recall that if C is irreducible, then d(s) is the
same for all s ∈ S and defines the period of C, denoted by d
(if C is not clear, we write dC instead of d). Furthermore, the
set S can be partitioned into cyclic classes S0, . . . , Sd−1 such
that for all i, j ∈ {0, . . . , d−1} and s, t ∈ S where s ∈ Si we
have that t ∈ Sj iff Pn(s, t) > 0 for some n ≡ (j−i) mod d.
The structure of cyclic classes is shown in Fig. 2. We say that
C is aperiodic or periodic depending on whether d=1 or not,
respectively.

Markov decision processes (MDPs). A Markov decision
process (MDP)2 is a triple D=(V,E, p) where V is a fi-
nite set of vertices partitioned into subsets (VN , VS) of non-
deterministic and stochastic vertices, E ⊆ V×V is a set
of edges such that every vertex has at least one outgoing
edge, and p : VS→D(V ) is a probability assignment s.t.
p(v)(v′)>0 iff (v, v′) ∈ E. A run of D is an infinite se-
quence ω = v1, v2, . . . such that (vi, vi+1) ∈ E for every
i ∈ N. The i-th vertex vi visited by ω is denoted by ω(i). We
say D is strongly connected if the underlying directed graph
(V,E) is strongly connected. D is a graph if VS = ∅.

Strategies. Outgoing edges in non-deterministic states of
an MDP D = (V,E, p) are selected by a strategy. The most
general type of strategy is a history-dependent randomized
(HR) strategy where the selection may be randomized and
depend on the whole computational history. Since HR strate-
gies require infinite memory, they are not apt for algorithmic
purposes.

A strategy is memoryless randomized (MR) if the (possi-
bly randomized) decision depends only on the current vertex.
Formally, a MR strategy is a pair σ = (v0, κ) where v0 ∈ V
is the initial vertex and κ : V → D(V ) is a function such
that κ(v)(u) > 0 implies (v, u) ∈ E, and for all v ∈ VS and
u ∈ V we have that κ(v)(u) = p(v)(u). We say that σ is full
if κ(v)(u) > 0 for all (v, u) ∈ E.

In this paper, we also consider finite-memory randomized
strategies with m ≥ 1 memory states (FRm strategies). Intu-
itively, the memory states are used to “remember” some infor-
mation about the sequence of previously visited vertices. For-
mally, let V ′ = V ×{1, . . . ,m} be the set of augmented ver-
tices. A FRm strategy is a pair ((v0, i0), η) where (v0, i0) ∈
V ′ is an initial augmented vertex and η : V ′ → D(V ′) such
that η(v, i)(u, j) > 0 implies (v, u) ∈ E. Furthermore, for
every (v, i) where v ∈ VS and every (v, u) ∈ E we require∑m

j=1 η(v, i)(u, j) = p(v)(u). Note that every FRm strat-
egy can be seen as a memoryless strategy for an MDP D′

where V ′ is the set of vertices.
Let ξ be a strategy (HR, FRm, or MR). For every finite

path v1, . . . , vn in D, the strategy ξ determines the proba-
bility Pξ(v1, . . . , vn) of executing the path. By applying the
extension theorem (see, e.g., [Rosenthal, 2006]), the function
Pξ is extended to the probability measure over all runs in D.

Strategy profiles. Let k ≥ 1. A HR, FRm, MR, or full
MR strategy profile for k agents is a tuple π = (ξ1, . . . , ξk)
where every ξi is a HR, FRm, MR, or full MR strategy. A
multi-run is a tuple ϱ = (ω1, . . . , ωk) where each ωi is a run
of D. We use Pπ to denote the product measure in the product
probability space over the set of all multi-runs.

Steady-state objectives. Let D=(V,E, p) be an MDP and
Col : V → γ a coloring, where γ ̸= ∅ is a finite set of colors.
A coloring is trivial if γ=V and Col(v)=v for all v ∈ V .

Let π = (ξ1, . . . , ξk) be a strategy profile and ϱ =
(ω1, . . . , ωk) a multi-run. For all c ∈ γ and n ≥ 1, we use
#n

c (ϱ) to denote the total number of all j ∈ {1, . . . , n} such

2The adopted MDP definition is standard in the area of graph
games. It is equivalent to the “classical” definition of [Puterman,
1994] but leads to simpler notation.
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that Col(ωi(j)) = c for some i ∈ {1, . . . , k}. Furthermore,
we define

Freqc(ϱ) = lim
n→∞

#n
c (ϱ)

n
.

If the above limit does not exist, we put Freqc(ϱ) = ⊥. We
use Freq(ϱ) : γ → [0, 1] to denote the vector of all Freqc(ϱ).

Intuitively, Freqc(ϱ) is the long-run average frequency of
visits to a c-colored vertex by some agent. We say that π
achieves a vector µ : γ → [0, 1] if Pπ[Freq=µ] = 1. That is,
for every color c, the long-run average frequency of visits to
a c-colored vertex is defined and equal to µ(c) for almost all
multi-runs.

A steady-state objective is a vector Obj : γ → [0, 1]. The
task is to construct a strategy profile π for k agents such that
π achieves a vector µ ≥ Obj.

3 Fundamental Properties of Multi-Agent
Steady-State Synthesis

In this section, we analyze the computational complexity of
multi-agent steady-state synthesis. We also investigate the
relative power of HR, FRm, MR, and full MR strategy pro-
files. Proofs of the presented theorems are non-trivial and can
be found in [Jonáš et al., 2025].

Let A and B be sets of strategy profiles for an MDP D
and k ≥ 1 agents. Furthermore, let F(A) and F(B) be the
sets of all frequency vectors achievable by the profiles of A
and B, where Col is the trivial coloring (see Section 2). We
say that A approximates B if for every µ ∈ F(B) and every
ε > 0, there is ν ∈ F(A) such that L∞(µ−ν) < ε, where
L∞(µ−ν) = maxc(|µ(c)−ν(c)|) is the standard L∞ norm.
Furthermore, we say that B is more powerful than A, written
A ≺ B, if F(A) ⊆ F(B) and A does not approximate B.

Slightly abusing our notation, we use HR(D, k),
FRm(D, k), MR(D, k), and FMR(D, k) to denote the sets
of all HR, FRm, MR, and full MR strategy profiles for an
MDP D and k ≥ 1 agents. The next theorem says that the
relative power of HR, FRm, MR, and full MR profiles strictly
decreases for k ≥ 2 agents, even if D is a strongly connected
graph. Since the proof reveals important differences from the
single agent scenario, we give a brief sketch.
Theorem 1. There exist strongly connected graphs D1, D2,
and D3 such that

• FMR(D1, 2) ≺ MR(D1, 2);
• MR(D2, 2) ≺ FR2(D2, 2);
• FRm(D3, 2) ≺ HR(D3, 2) for all m ≥ 1.
The graphs D1, D2, and D3 are shown in Fig. 3, together

with the frequency vectors achievable by the more powerful
strategy profiles that cannot be approximated by the weaker
strategy profiles (for 2 agents).

In D1, the vector (1, 1) is achievable by a MR profile where
both agents “walk around the loop” connecting v1 and v2, but
they start in different vertices. However, for every vector ν
achievable by a FMR profile we have that ν(v2) ≤ 0.75. That
is, the L∞-distance to (1, 1) is at least δ = 0.25. Intuitively,
this is because the self-loop v1→v1 has to be performed with
a fixed positive probability, and even if this probability is very
small, the two agents spend a significant proportion of time
by “walking together”, regardless of their initial positions.

v1

1

v2

1

D1

u2

1
2

u3

1
2

u1

1

D2

w1

2
3

w2

2
3

w3

2
3

w4

0

D3

Figure 3: The graphs D1, D2, and D3.

In D2, a FR2 profile achieving (1, 0.5, 0.5) consists of
strategies where both agents walk around the triangle, per-
forming the self-loop on u1 exactly once (this is where two
memory states are needed). The first agent starts in u1 by
performing the self-loop, and the other agent starts in u2.
Thus, the agents never meet, and together they produce the
frequency vector (1, 0.5, 0.5). However, for every vector ν
achievable by a MR profile we have that the L∞-distance to
(1, 0.5, 0.5) is at least 1/9. Observe that if both MR strate-
gies assign zero probability to the self-loop on u1, then the
frequency of visits to u1 achieved by the profile is at most
2/3. If at least one of the MR strategies assigns a positive
probability to the self-loop, then the two agents spend a sig-
nificant proportion of time by “walking together”, similarly
as in D1. This leads to the aforementioned gap of 1/9.

The D3 scenario requires deeper analysis. It is easy to
show that the vector (2/3, 2/3, 2/3, 0) is achievable by a HR
profile where both agents “walk around the square” perform-
ing each self-loop exactly n times in the n-th cycle. Again,
the agents are positioned so that they never meet in the same
vertex. Furthermore, we show that for every ν achievable by a
FRm profile, the L∞ distance to (2/3, 2/3, 2/3, 0) is at least
f(m) where f : N+→(0, 1] is a suitable function.

Our next result says that solving the steady-state objectives
for k ≥ 2 agents is computationally hard, even for graphs.
Theorem 2. Let D be a graph, Col a coloring, and Obj a
frequency vector. We have the following:
(a) The problem whether there exists a HR profile for a given

number of agents that achieves µ ≥ Obj is PSPACE-
hard. This holds even under the assumption that if such
a µ exists, it can be achieved by a FRm profile for a
sufficiently large m.

(b) The problem whether there exists a FMR profile for two
agents achieving µ such that µ ≥ Obj is NP-hard, even
if D is strongly connected and Col is the trivial coloring.
This holds also for MR and FRm profiles (for every m).

The following theorem reveals a severe obstacle for design-
ing efficient steady-state synthesis algorithms.
Theorem 3. Let D be a (strongly connected) graph, Col the
trivial coloring, v a vertex of D, and π a MR profile such that
π achieves some (unknown) frequency vector µ. The problem
whether µ(v) = 1 is coNP-hard.

According to Theorem 3, MR strategy profiles are not only
hard to construct, but they are also hard to evaluate.

Finally, we give upper complexity bounds on the steady-
state synthesis problem.
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Theorem 4. Let k ≥ 1 be a fixed constant. Given an MDP
D, a coloring Col, a frequency vector Obj, and m ≥ 1, the
problem whether there exists an FRm strategy profile for k
agents achieving µ ≥ Obj is in PSPACE (assuming the unary
encoding of m).

4 Steady-State Synthesis Algorithm
MDP Normal Form. We start by observing that in the con-
text of steady-state synthesis, we can safely assume that the
input MDP D takes the form

⋃m
q=1 Dq where D1, . . . , Dm

are strongly connected MDPs with pairwise disjoint sets of
vertices (we say that D is in normal form).

To see this, consider (some) MDP D. A maximal end
component (MEC) of D is a maximal strongly connected
sub-MDP of D. The set {D1, . . . , Dm} of all MECs of D
is computable efficiently [Chatterjee and Henzinger, 2014],
and D1, . . . , Dm can be seen as strongly connected MDPs
with pairwise disjoint sets of vertices. It can be shown that
for an arbitrary (HR) strategy on D, almost all runs eventu-
ally enter and stay in some MEC. Since the finite prefix of
a run executed before entering the MEC does not influence
the achieved frequency vector, we can safely assume that all
runs are initiated in some Dq and never leave it. Thus, the
steady-state synthesis problem for D can be reformulated as
the steady-state synthesis problem for

⋃m
q=1 Dq . Full details

of this argument are somewhat subtle and they are presented
in [Jonáš et al., 2025].

Suppose that π is a strategy profile for an MDP
⋃m

q=1 Dq

in normal form. To compute the frequency vector µ achieved
by π, one is tempted to compute all frequency vectors µq

achieved in Dq by the agents assigned to Dq , and then put
µ =

∑m
q=1 µq . However, this simple method works only un-

der the assumption that vertices in different MECs have dif-
ferent colors (we say that Col is well-formed). For example,
this condition is satisfied when Col is the trivial coloring or
when m = 1. If Col is not well-formed, we can still con-
clude µ ≤

∑m
q=1 µq , but the precise computation of µ may

require exponential time, even for full MR profiles. For sim-
plicity, we consider only well-formed colorings in the rest of
this section (this condition is not too restrictive and it does
not influence the hardness results of Section 3).

Let us also note that for MDPs in normal form and one
agent, full MR profiles approximate MR profiles, which ex-
plains the remark in the second paragraph of Section 1.

Evaluating Full MR Profiles. Let D = (V,E, p) be a
strongly connected MDP, Col : V → γ a coloring, and
π = (σ1, . . . , σk) a full MR profile for D. We show how to
compute the frequency vector achieved by π. Note that based
on the previous discussion, this procedure can also be used
to evaluate a full MR profile for an MDP

⋃m
q=1 Dq in nor-

mal form where the underlying coloring is well-formed (we
compute the frequency vector µq for each Dq and the agents
assigned to Dq , and then return the sum of all µq).

For every i ∈ {1, . . . , k}, let Dσi = (V, Pi, αi) be the
Markov chain induced by D and σi = (vi, κi). That is,
Pi(v, u) is either κi(v)(u) or p(v)(u) depending on whether
v ∈ VN or v ∈ VS , and αi(vi) = 1. Since D is strongly

connected and every σi is full, each Dσi is irreducible and
determines the same partition of V into d ≥ 1 cyclic classes
V0, . . . , Vd−1. We use Ii to denote the unique invariant dis-
tribution of Dσi satisfying Ii(v) =

∑
u∈V Ii(u) ·Pi(u, v) for

every v ∈ V . Furthermore, for every c ∈ γ, we use Col−1(c)
to denote the pre-image of c (i.e., Col−1(c) is the set of all
v ∈ V such that Col(v) = c).

For simplicity, let at first consider the case when d = 1.
Then, π achieves the frequency vector µ where

µ(c) = 1 −
k∏

i=1

(
1−

∑
v∈Col−1(c)

Ii(v)
)

(1)

for every c ∈ γ. This follows directly from basic results
about aperiodic irreducible Markov chains (see, e.g., [Chung,
1967]). More concretely, for every u ∈ V , we have that
limn→∞ Pn

i (vi, u) = Ii(u). Hence,
∑

v∈Col−1(c) Ii(v) is the
limit probability that agent i visits a c-colored vertex after
n steps as n→∞. Since the agents are independent, the prod-
uct on the right-hand side of (1) is the limit probability that
none of the k agents visits a c-colored vertex. Consequently,
the right-hand side of (1) is the limit probability (and hence
also the frequency) that at least one agent visits a c-colored
vertex. Note that (1) is independent of the initial vertices of
the strategies σ1, . . . , σk.

If d > 1, then the frequency vector µ depends on the initial
positioning of the agents into the cyclic classes, and the above
reasoning must be applied to the d-step matrices P d

i . For
every i ∈ {1, . . . , k} and j ∈ {0, . . . , d−1}, let V (i, j) be
the cyclic class visited by agent i after traversing precisely j
edges from the initial vertex vi (in particular, V (i, 0) is the
cyclic class containing the initial vertex vi). Furthermore, for
every c ∈ γ, let V c(i, j) = V (i, j) ∩ Col−1(c). Equation (1)
is generalized into the following:

µ(c) =
1

d

d−1∑
j=0

(
1−

k∏
i=1

(
1− d ·

∑
v∈V c(i,j)

Ii(v)
))

. (2)

Note that (2) is computable in polynomial time.

The Algorithm. For a given MDP D =
⋃m

q=1 Dq in normal
form, a well-formed coloring Col, k ≥ 1, and a frequency
vector Obj, we wish to compute a full MR profile π for k
agents achieving a frequency vector µ such that Dist(µ,Obj)
is minimized, where

Dist(µ,Obj) =
∑
c∈γ

max{0,Obj(c)− µ(c)}. (3)

A natural idea is to construct a mathematical program min-
imizing Dist(µ,Obj). Each full MR strategy σi in the desired
profile π can be encoded by variables representing the edge
probabilities, and the invariant distribution Ii can then be en-
coded by simple linear constraints. However, computing the
frequency vector µ involves the non-linear right-hand side
of (2), which makes the resulting program non-linear.

To overcome this difficulty, Algorithm 1 constructs the pro-
file π incrementally by adding the agents one-by-one. Sup-
pose that we already constructed a profile for ℓ agents, and
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Algorithm 1 Incremental Steady-State Synthesis Algorithm
Inputs:

MDP D =
⋃m

q=1 Dq in normal form
Well-formed coloring Col : V → γ
Objective Obj : γ → [0, 1]
Number of agents k ≥ 1

Outputs:
A full MR strategy profile π for D and k agents

Initialize:
π ← ∅

for all i ∈ {1, . . . , k} do
BestDistance←∞
for all q ∈ {1, . . . ,m} do

for all cyclic classes C ∈ {C0, . . . , Cdq−1} of Dq do
σ ← STRATEGYOFLP(Obj, π, C,Dq)
ν ← EVALUATE(π+σ,D)
if Dist(ν,Obj) < BestDistance then

BestDistance← Dist(ν,Obj)
BestStrategy← σ

π ← π +BestStrategy

return π

we wish to compute a suitable full MR strategy σℓ+1 =
(vℓ+1, κℓ+1) for another agent. The algorithm examines all
possible allocations for vℓ+1, i.e., all cyclic classes C in all
Dq . For given C and Dq , the procedure STRATEGYOFLP
constructs the linear program of Fig. 4 and returns the full
MR strategy σ = (v0, κ), where v0 ∈ C and κ(u)(v) is
the normalized value of xu,v attained by solving the pro-
gram. Note that the xu,v variable in the LP represents the
frequency of the edge (u, v) ∈ Eq , not the probability of
the edge. The key observation is that since the strategies
σ1, . . . , σℓ are fixed, the right-hand side of (2) becomes lin-
ear. In Fig. 4, we use X c

j to denote the constant value of the
product

∏ℓ
i=1(1 − dc ·

∑
v∈V c(i,j) Ii(v)), where dc denotes

the period of the MEC containing the vertices of color c (if
there is no such vertex, we put dc = 1), V c(C, j) denotes the
set of all c-colored vertices in the cyclic class of Dq visited
after traversing precisely j edges from a vertex of C.

After computing the strategy σ, Algorithm 1 proceeds by
evaluating the profile π + σ obtained by appending σ to π.
If the frequency vector achieved by this profile is better than
the frequency vectors achieved for all σ’s computed so far,
the current σ is set as a new candidate for σℓ+1. Algorithm 1
terminates after constructing a profile for all k agents.

5 Experimental Evaluation
The main goal of our experiments is to evaluate the quality of
the strategy profiles constructed by Algorithm 1. We also as-
sess the efficiency of Algorithm 1. Additional analyses of the
results and some additional plots are in [Jonáš et al., 2025].
The reproduction package for the evaluation is available from
Zenodo [Jonáš et al., 2025].

Benchmarks. For simplicity, we perform our experiments
on graphs. This does not affect efficiency since stochastic
vertices do not add any extra computational costs. Moreover,
it does not affect the quality comparison between the baseline
and the incremental synthesis procedure of Algorithm 1.

min Dist(µ,Obj)

subject to
xu,v ∈ (0, 1], (u, v) ∈ Eq ,∑

(u,v)∈Eq

xu,v = 1,

∑
(v,u)∈Out(v)

xv,u =
∑

(u,v)∈In(v)

xu,v , v ∈ V q ,

xv,w = pq(v)(w) ·
∑

(u,v)∈In(v)

xu,v , v ∈ V q
S , (v, w) ∈ Out(v),

µ(c) =
1

dc
·
dc−1∑
j=0

(
1−X c

j ·
(
1− dc·

∑
v∈V c(C,j)

∑
(u,v)∈In(v)

xu,v

))

Figure 4: The linear program for Obj, π, C,Dq = (V q, Eq, pq).

To avoid any systematic bias, we randomly generated
two families of strongly connected input graphs: aperiodic
and periodic. For aperiodic graphs, we randomly generated
graphs with up to 400 vertices and an edge between each pair
of vertices with probability 0.01. For periodic graphs, we ran-
domly generated structures of Fig. 2 with d ∈ {5, 10, 15, 20}
cyclic classes, at most 20 vertices in each cyclic class, and
an edge between each two vertices from neighboring cyclic
classes with probability 0.6. We considered only graphs that
are strongly connected. For each graph, we randomly gen-
erated 5 objectives with at most 30 colors and target values
Obj(c) from {0, 0.1, 0.2, . . . , 0.9} and randomly assigned a
color to each vertex. In this way, we obtained 2000 aperiodic
and 1600 periodic benchmarks (i.e., combinations of a graph
and an objective) with at most 400 vertices.

Baseline. Since the steady-state synthesis problem for k≥2
agents is computationally hard (see Section 3), we cannot
compare the quality of profiles constructed by Algorithm 1
against the optimal solutions as there is no feasible way to
determine them. However, we can still compare Algorithm 1
with a straightforward synthesis procedure based on sharing
the strategy computed for one agent. In some cases, this sim-
ple method even leads to optimal solutions. For example, if
k agents move along a directed ring consisting of n ≥ k ver-
tices, they can achieve the frequency vector (k/n, . . . , k/n)
by sharing the same strategy (“walk along the ring”) so that
each agent starts in a different vertex.

The baseline synthesis procedure works as follows. We
start by computing a full MR strategy σ for a single agent,
optimizing a suitably defined value. Then, k agents that use
the strategy σ are allocated to the cyclic classes C0, . . . , Cd−1

by Round Robin assignment. More specifically, the strat-
egy σ is constructed by a LP maximizing AltDist(Obj, ν)
where AltDist(Obj, ν) = minc∈Col

ν(c)
Obj(c) and ν(c) =∑

v∈Col−1(c) I(v). Intuitively, the goal is to cover all the col-
ors in proportion to their target values. We maximize AltDist
instead of minimizing Dist because in our preliminary ex-
periments, the performance of the algorithm based on mini-
mizing Dist was significantly worse. More concretely, when
using Dist , the strategy σ tended to focus on a subset of col-
ors, which also caused the resulting strategy profile to focus
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Figure 5: Numbers of agents sufficient to satisfy the objective using
each of the algorithms (lower is better). Each point (x, y) is a bench-
mark for which the objective is satisfied by x agents by the baseline
algorithm, and y agents by Algorithm 1. Divided by the type of the
graph (aperiodic/periodic).

only on some colors.

Implementation and experimental setup. We imple-
mented both algorithms in a simple open source Python tool
that uses Gurobi [Gurobi Optimization, LLC, 2024] to solve
the linear programming problems. The tool is available from
GitLab3. We executed both algorithms on each benchmark
with timeout 120 seconds of wall time on a Linux computer
with AMD Ryzen 7 PRO 5750G CPU and 32 GB of RAM.

Quality of strategies. For each benchmark, we compared
the two algorithms with respect to the number of agents that
is necessary to satisfy the objective. The results are presented
in Fig. 5. Algorithm 1 often requires significantly fewer
agents to satisfy the objective. Numerically, Algorithm 1 re-
quired fewer agents on 3163 of the benchmarks and more on
85 benchmarks. It also required only 10.40 agents on aver-
age, compared to 16.65 agents needed by the baseline. The
improvement occurs both for periodic and aperiodic input
graphs, which shows that the main benefit is not due to the
smarter initial assignment of agents to cyclic classes but be-
cause of the core approach of incremental addition of agents.

We also investigated the distances achieved by the strategy
profiles for fewer agents than necessary to satisfy the objec-
tive. This is presented in Fig. 6 on a randomly selected subset
of benchmarks. The plot again shows that Algorithm 1 sat-
isfies the objective with significantly fewer agents. More im-
portantly, it shows that for most benchmarks, the profiles syn-
thesized by Algorithm 1 are better for all numbers of agents
smaller than the ones needed by any of the algorithms.

The experiments show that Algorithm 1 can satisfy ob-
jectives with significantly fewer agents, if enough agents are
available. Additionally, when the number of available agents
is insufficient, Algorithm 1 in most cases achieves a smaller
distance to satisfying the objectives than the baseline.

Efficiency. We also measured the runtime for both algo-
rithms. The measured wall times are summarized in Table 1.
The table shows that the mean wall time of the baseline al-
gorithm is significantly better than the one of Algorithm 1.

3https://gitlab.fi.muni.cz/formela/
multi-agent-steady-state-synthesis

Dist(baseline) > Dist(incremental)

Dist(baseline) < Dist(incremental)

Dist(baseline) > Dist(incremental)
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Figure 6: Comparison of distances achieved by the two algorithms
on a randomly selected subset of 150 benchmarks. Each line repre-
sents a benchmark. The y-axis shows the difference of the normal-
ized distances Dist(πbaseline,Obj)

|γ| − Dist(πincremental,Obj)
|γ| between the ob-

tained profiles πbaseline and πincremental for k agents. The x-axis shows
the number k of agents between 0 and the number sufficient for both
of the algorithms, normalized between [0, 1]. The line is colored
blue if any of the algorithms has already satisfied the objective. Di-
vided by the type of the graph (aperiodic/periodic).

Wall time (s)

Benchmarks Algorithm mean median max

Aperiodic Baseline 0.10 0.09 0.25
Incremental 0.97 0.71 5.08

Periodic Baseline 0.03 0.03 0.11
Incremental 3.57 1.88 28.87

Table 1: Wall times of both algorithms, divided by the type of the
graph (aperiodic/periodic).

This is not surprising as the main bottleneck of both algo-
rithms is LP solving and the baseline algorithm requires only
one call of the LP solver per benchmark, whereas the incre-
mental algorithm requires k ·d calls, where k is the number of
agents and d is the period of the input graph. Nevertheless, all
executions of our algorithm finished within 5.08 seconds on
aperiodic benchmarks and within 28.88 seconds on periodic
benchmarks, which is not prohibitive in practice.
Discussion. Even though Algorithm 1 is less efficient than
the naive baseline algorithm, the performance is not pro-
hibitive in practice and it achieves the objectives with sig-
nificantly fewer agents. In our view, this is more important
metric; few additional seconds to synthesize the strategy pro-
file is cheap, whereas each extra agent can be far more costly.

Conclusions
We have extended steady-state synthesis to multiagent set-
ting and presented an efficient synthesis algorithm. The main
challenges for future work include tackling the synthesis of
(non-full) MR profiles and extending the whole approach to
more general classes of infinite-horizon objectives.
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