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Abstract
Graph Neural Networks (GNNs) have excelled in
diverse applications due to their outstanding predic-
tive performance, yet they often overlook fairness
considerations, prompting numerous recent efforts
to address this societal concern. However, most
fair GNNs assume complete demographics by de-
sign, which is impractical in most real-world so-
cially sensitive applications due to privacy, legal, or
regulatory restrictions. For example, the Consumer
Financial Protection Bureau (CFPB) mandates that
creditors ensure fairness without requesting or col-
lecting information about an applicant’s race, reli-
gion, nationality, sex, or other demographics. To
this end, this paper proposes fairGNN-WOD, a
first-of-its-kind framework that considers mitigat-
ing unfairness in graph learning without using de-
mographic information. In addition, this paper pro-
vides a theoretical perspective on analyzing bias in
node representations and establishes the relation-
ship between utility and fairness objectives. Ex-
periments on three real-world graph datasets illus-
trate that fairGNN-WOD outperforms state-of-the-
art baselines in achieving fairness but also main-
tains comparable prediction performance.

1 Introduction
Graph Neural Networks (GNNs) have emerged as a power-
ful approach for learning from graph-structured data, finding
applications in areas such as social network analysis [Peng et
al., 2016], financial markets [Wang et al., 2023b], and item
recommendations [Wu et al., 2021]. Despite their signifi-
cant success, GNNs, like many ML algorithms, have been
observed to potentially discriminate against certain popu-
lations as identified by the demographics (e.g., gender or
race) [Zhang et al., 2025]. To this end, many efforts have
been taken towards fair graph learning [Dai and Wang, 2021;
Wang et al., 2024c; Wang et al., 2024a; Wang et al., 2025a;
Ling et al., 2023] that aim to ensure similar outcome statis-
tics for the algorithmic decisions (e.g., prediction accuracy

∗Corresponding author.

and true positive rate) across certain demographic subgroups,
assuming complete availability of demographics.

However, this assumption is unrealistic in many real-world
scenarios where collecting or using demographics (i.e., pro-
tected features) is infeasible due to privacy, legal, regulatory
restrictions [Lahoti et al., 2020] or out of fear of discrimina-
tion and social desirability [Wang et al., 2025b]. This dis-
crepancy highlights the gap between the design of a “fair”
model in research environments and their real-world scenar-
ios. In this paper, we explore such a fair graph learning prob-
lem, where the assumption of guaranteed demographics does
not hold, but models are still required to treat different demo-
graphic groups fairly and equally. Below is an illustration of
such a real-life fair graph problem.

Example 1: A tech company employs a fair GNN to enhance
its hiring processes by integrating applicants’ social net-
work data (e.g., potential team fit) [Liu et al., 2024] to
identify top candidates efficiently while ensuring equitable
treatment across all demographic groups and preventing bi-
ases in distributing key social benefits such as employment
opportunities. However, the availability of demographics
is not guaranteed due to: i) Individuals may choose to
withhold their demographic information when applying for
jobs if they feel underrepresented or could be potentially
discriminated against. For instance, women applying for
software engineering roles, which have historically been
dominated by men, may choose not to disclose their gen-
der on job boards (e.g., Linkedin) [Friedmann and Efrat-
Treister, 2023]. ii) Legal constraints can lead to the com-
plete absence of certain demographics. For example, fi-
nancial institutions, including those collaborating with tech
firms for automated hiring solutions, are bound by regu-
lations like those from the Consumer Financial Protection
Bureau (CFPB). These regulations mandate that fairness be
achieved without collecting or using specific demographic
details such as an applicant’s race, color, religion, nation-
ality, or gender [Chai et al., 2022].
In the aforementioned scenarios where demographic infor-

mation is missing, existing fair graph methods that rely on
complete demographics become inapplicable. This limita-
tion highlights the urgent need for developing new fair graph
approaches that can function effectively even when the as-
sumption of complete demographics does not hold. Indeed,
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studies [Yan et al., 2020; Grari et al., ; Wang et al., 2025c;
Lahoti et al., 2020] have begun to explore achieving fair-
ness without demographics. However, these methods are pri-
marily designed for non-graph data and face significant chal-
lenges when adapted to graph data. Furthermore, the core
idea behind most mitigation bias approaches is removing the
demographic-relevant information (i.e., features from which
demographics can be inferred, such as the mustache for gen-
der), thereby enforcing GNNs to make decisions independent
of the demographic information. While this strategy can en-
hance fairness, it may degrade performance by eliminating
information related to tasks and demographics.

Despite the importance of achieving graph fairness with-
out demographics, this remains a highly open research area
with several complex and unique challenges: i) Difficulties
of Preventing Label Information Leakage During Demo-
graphics Inference: Inferring missing demographics from
observed data should avoid interference from label informa-
tion to prevent ethical issues, such as inferring an applicant’s
race based on their bank’s loan decision outcomes. However,
label information cannot be easily excluded from the infer-
ence process, as it is embedded within label-related features
and transformed hidden representations within the model.
ii) Avoiding optimization exploitation in fairness-aware
learning: When reducing model bias without demographics,
the model might exploit the subgroup identification step to ar-
tificially improve fairness metrics. This could happen by de-
liberately misclassifying demographic information or altering
the assignment of samples from the worst-treated groups. For
instance, the model could minimize group disparities by in-
correctly assigning samples to different demographic groups
instead of achieving true fairness. iii) Precise imposition of
fairness constraints: Most existing fair-GNN designs en-
force fairness constraints across the entire node represen-
tation, which can inadvertently remove task-related demo-
graphic information, leading to performance losses. An opti-
mal balance between GNN performance and fairness requires
targeted constraints that mitigate demographic bias while pre-
serving essential task-related information.

To tackle the aforementioned challenges, we introduce a
novel two-stage conditioning framework, Fair Graph Neu-
ral Network Without Demographics (fairGNN-WOD), which
leverages Bayesian variational autoencoders (VAEs) coupled
with causal modeling to infer missing demographic informa-
tion from observed graph data. The inferred demographic
is then used as additional information to help downstream
GNNs learn fair representations while retaining task-related
demographic information. To our knowledge, this is the
first work to enable fair graph learning without complete
demographics, while also achieving demographic-dependent
fairness-aware learning. Specifically, our approach begins
with a comprehensive bias analysis that examines how demo-
graphic information can propagate through node representa-
tions and potentially lead to disparate outcomes across dif-
ferent subgroups. Building on these insights, fairGNN-WOD
generates accurate demographic proxies by filtering out non-
causal and superfluous relations from the observed graph.
These proxies serve as a basis for identifying demographic-
relevant information. Subsequently, fairGNN-WOD imple-

ments fairness constraints specifically designed to achieve de-
identification of demographics within these representations.
This method not only enhances fairness but also ensures
that critical task-related demographic information is retained,
thereby maintaining the predictive power of the model. The
key contributions of this work can be summarized as follows:
i) We present a novel perspective on how demographic in-
formation propagates through graph structures to cause dis-
parate treatment, offering theoretical insights into how de-
mographic information can disproportionately affect node
embeddings and ultimately lead to unfair classification out-
comes. ii) Building on this bias analysis, we introduce a two-
stage framework, fairGNN-WOD, that achieves graph fair-
ness without demographics while preserving task-related in-
formation for improved node classification performance. iii)
Extensive experiments on benchmark datasets to demonstrate
the effectiveness of fairGNN-WOD in mitigating unfairness
and maintaining comparable performance.

2 Related Work
Graph Neural Networks. GNNs have demonstrated
widespread utility across various tasks involving graph-
structured data [Kipf and Welling, 2016; Zhao et al., 2022b;
Wu et al., 2020]. Their remarkable success has propelled
GNNs to the forefront of both research and practical appli-
cations, extending their reach into high-risk decision-making
systems [Zhang and Weiss, 2022; Zhang et al., 2023; Wang
and Zhang, 2024]. For example, GNNs can assist financial
institutions in critical functions like evaluating credit card ap-
plications or making loan approval decisions [Wang et al.,
2024b]. The applications in these areas require GNNs to be
not only effective but also fair [Zhang et al., 2025]. There-
fore, there is a demand to design fair GNNs to mitigate biases
and ensure fair outcomes in graph-based tasks [Zhang, 2024].
Fairness in Graph Learning. In the context of fairness
in graph learning, most existing studies aim to ensure sim-
ilar outcome statistics across demographic groups to pre-
vent disparities in favorable outcomes [Guo et al., 2023;
Wang et al., 2023c; Wang et al., 2023a; Wang and Zhang,
2025]. Despite these methods achieving some success, they
presume the presence of demographics to quantify and mit-
igate bias. However, this assumption is unrealistic in many
real-world applications due to the practicality and regulatory
limitations [Grari et al., 2021]. To this end, FairGNN [Dai
and Wang, 2021] is proposed to learn fair GNNs with limited
demographics using a demographic estimator to predict the
demographic information while improving fairness via adver-
sarial learning. However, FairGNN still assumes the avail-
ability of partial demographic information. Group-Free [Liu
et al., 2023] aims to use homophily in social networks to re-
duce inequality in outcome prediction solely based on the
similarities of individuals without defining groups. How-
ever, there is no guarantee that the uncovered groups are con-
sistent with the real demographics of interest. In addition,
several approaches [Chen et al., 2019; Kallus et al., 2022;
Lahoti et al., 2020; Wang et al., 2025c] have explored fair-
ness without demographic information in non-graph data, but
these methods cannot be easily extended to graph data.
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To this end, our work addresses a new fair graph learn-
ing problem where the assumption of complete demographic
information does not hold. Furthermore, we explore a
demographic-dependent fair graph learning paradigm that re-
laxes the requirement of demographic independence to en-
hance its predictive power while preserving fairness.

3 Notations
Let G = (V, E ,X) denote an undirected attributed graph, com-
prised of a set of |V| = n nodes and a set of |E| = m
edges. X ∈ Rn×d is node feature matrix whose i-th row
represents a d-dimensional feature vector of the i-th node vi.
A ∈ {0, 1}n×n is the adjacency matrix where Ai,j = 1 indi-
cates that there exists edge ei,j ∈ E between node vi and vj ,
and Ai,j = 0 otherwise. In this paper, we assume that both
ground-truth labels and demographics are binary variables for
convenience. We let S ∈ {0, 1}n×1 denote the binary demo-
graphic, where si is the demographic value of vi. We use
Sd = {∀ vi ∈ V|si = 0} denotes the deprived group (e.g.,
female) and Sf = {∀ vi ∈ V|si = 1} denotes the favored
group (e.g., male). For node classification, each node is also
associated with a one-hot ground-truth node label yi where ŷi
is the label of vi. We also assume yi = 1 denotes the granted
label and yi = 0 denotes the rejected label.

4 Methodology
4.1 Root Bias in Graph Learning
This section examines two sources of bias inherent in
fair graph learning without demographics, establishing the
groundwork for corresponding bias mitigation strategies.
Bias in demographic identification. We begin by examin-
ing the factors that cause biased inferences of missing de-
mographic information. Existing methods, primarily in non-
graph domains, reconstruct missing demographics using ob-
served data and prior knowledge (i.e., X → S) [Grari et al.,
2021], while in graphs, the reconstruction incorporates both
data and structures (i.e., {X,A} → S), but they can unin-
tentionally embed implicit biases. Specifically, if the distri-
bution of nodes receiving favorable outcomes overlaps dis-
proportionately with features indicative of the “male” group,
the posterior for S can end up assigning a high “male” likeli-
hood to those nodes, thereby propagating biased associations.
To address this issue, we need to minimize the correlation be-
tween the label and the latent space, ensuring that the inferred
demographics remain independent of outcomes.
Bias in node classification. We further analyze how bias
emerges in GNN predictions through node representations.
When GNNs learn node representations, they inevitably cap-
ture and potentially amplify the effect of demographic in-
formation from both node features and graph structure. As
shown in Figure 1, the node representation can be divided into
demographic-relevant representation hS and demographic-
irrelevant representation hS . Although both of them contain
task-related information for predictions (e.g., loan decision),
hS introduces bias into the decision-making process because
it is influenced by demographic-relevant features X (e.g.,
height) and graph structure information A (e.g., neighbor de-
mographic information (gray dashed line)). In addition, while

Figure 1: A causal relationship between node demographics
and their predictions arises in node representations.

removing hS and only using hS for prediction would prevent
demographic bias, this approach leads to suboptimal perfor-
mance as it also eliminates valuable task-related information
contained in hS . Therefore, achieving fair node classification
requires disentangling the demographic information embed-
ded in hS while preserving its task-relevant components to
maintain both fairness and model utility.

4.2 The Proposed Framework - fairGNN-WOD
Based on the above bias analysis, we propose a novel frame-
work called fairGNN-WOD that addresses bias both in de-
mographic identification and node classification. Our frame-
work combines latent representation learning and graph struc-
tural modeling to leverage their complementary strengths:
the former excels at inferring missing information through
learning underlying data distributions but cannot effectively
process graph-structured data, while the latter is powerful
at capturing graph structural patterns and ensure fairness si-
multaneously but lacks the capability to infer the necessary
missing information. Specifically, as illustrated in Figure 2,
fairGNN-WOD employs a two-stage framework. In the first
stage, it leverages observed prior knowledge to infer miss-
ing demographic information while ensuring fairness by ex-
cluding node label information. In the second stage, it uses
the inferred sensitive attributes as proxies to mitigate bias
in graph learning. With some simplifying design choices,
our framework uses a VAE to infer missing demographic in-
formation in the first stage, followed by disentangling node
representations into demographic-relevant and demographic-
independent components in the second stage. This disentan-
glement allows us to maintain task-relevant information that
is relevant to the demographic information while mitigating
bias in predictions. The following subsections detail each
stage of our framework.

4.3 Missing Demographic Identification
We begin by introducing how fairGNN-WOD infers miss-
ing demographic information. The core idea is that the esti-
mates of the latent variable representing the true demographic
information are consistent with the underlying data gener-
ation process. By learning this process, we can derive a
latent representation Z that encapsulates as much informa-
tion about the true demographic information S as possible.
We achieve this through Bayesian inference approximation,

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Figure 2: The overview of proposed fairGNN-WOD.

using observed graph data (i.e., graph structure information
A and node features X) and prior structural assumptions.
Specifically, if we can accurately recover the joint distribu-
tion P (Z, S,A,X), we can effectively recover the missing
demographic information [Louizos et al., 2017]. Hence, we
factorize P (Z, S,X,A) as follows:

P (Z, S,X,A) = P (Z)P (S | Z)P (A | S)P (X | S,A) (1)
where P (Z) denotes the prior over Z, typically modeled as a
standard Gaussian distribution N (0, I), where I denotes the
identity matrix. Moreover, P (A|S) and P (X|A,S) represent
the decoders of the structural information and node features.

To approximate the intractable joint distribution
P (Z, S,X,A), we employ variational inference with neural
parameterizations. Specifically, we introduce a variational
distribution Q(Z | A,X) to approximate P (Z | A,X), and
maximize the Evidence Lower Bound (ELBO) [Kingma and
Welling, 2013] of the marginal data likelihood:

logP (X,A) ≥
Eqϕ,ψ(Z,S|X,A)[logP (X|Z, S,A) + logP (A|Z, S)
= Eqϕ(Z|X,A)[Eqψ(S|Z)[logP (X|S,A) + logP (A|S) (2)

+logP (S|Z)]+logP (Z)−log qψ(S|Z)]−log qϕ(Z|X,A)]
where qϕ and qψ denote the encoders parameterized by ϕ
and qψ that formulate the variational distributions of Z given
(X,A) and S given Z, respectively. In addition, the max-
imization can be performed using stochastic gradient ascent
and the reparameterization trick [Kingma and Welling, 2013].

On the other side, a fair inference of S would be based on
independence between S (or Z) and Y . To impose this con-
straint, we add a penalty term onto the ELBO in Equation (2)
that penalizes high dependency between Z and Y . Specifi-
cally, we extend the Hirschfeld-Gebelein-Rényi (HGR) max-
imal correlation [Gebelein, 1941] to quantify the dependency,
which can be linear or non-linear, as defined in Definition 4.1.

Definition 4.1 (ZY-correlation). Given latent space Z and
outcome Y , HGR maximal correlation is defined as:

HGR(Z, Y ) = sup
pZ ,pY

E(pZ(Z)pY (Y ))√
E(pZ2(Z))E(pY 2(Y ))

(3)

where ρ denotes the Pearson correlation coefficient, pZ and
pY are measurable probability density functions with posi-
tive and finite variance. We apply normalization E(pZ(Z)) =
E(pY (Y )) = 0 and E(pZ2(Z)) = E(pY 2(Y )) = 1 before the
calculation of the HGR maximal corelation before Y and Z,
which equals 0 if Z and Y are independent, and 1 otherwise.

With the HGR correlation, the objective function in Equa-
tion (2) can be reformulated as:

Eqϕ(Z|X,A)[Eqψ(S|Z)[logP (X|S,A)+logP (A|S)+logP (S|Z)]
+ logP (Z)−log qψ(S|Z)]−log qϕ(Z|X,A)]− λ · HGR(Z, Y )

(4)
where λ is the hyperparameter that balances the maximization
of the ELBO and the minimization of the penalty term.

To maximize the updated objective function, a dual-
phase maximum optimization strategy is employed. Specif-
ically, in the max phase, we use gradient ascent to esti-
mate HGR(Z, Y ), where pZ and pY in Equation (3) are ap-
proximated via two interconnected neural networks that are
optimized via, say stochastic gradient ascent. In the max
phase, we maximize the updated objective function, where
the penalty term would promote independence between Y
and Z. This alternate optimization scheme allows us to cap-
ture and refine the estimated HGR between Z and Y with
each iteration, enhancing the stability and accuracy of the
learning process.

4.4 Demographic Disentangled Fair Graph
Learning

The first stage yields the complete demographic informa-
tion, which is then utilized in the second stage for fair
prediction. Specifically, the second stage aims to remove
the demographic-relevant information hS , enabling GNNs to
produce predictions that do not depend on demographic infor-
mation. Following existing fairness approaches [Zhang et al.,
2025], a straightforward solution is to remove hS completely
and use only hS for prediction, as this ensures decisions are
made independently of demographic information. However,
while this approach used by prior work can enhance fairness,
it often leads to unnecessary performance degradation by re-
moving task-relevant information that correlates with demo-
graphics, such as the school shown in Figure 1. To maintain
the model’s effectiveness, we thus keep task-related informa-
tion in hS while removing its connection to demographic in-
formation. This method allows us to use more predictive in-
formation while keeping the model fair. To implement this
idea, we need to: i) find demographic-relevant information in
node representations, and ii) remove demographic informa-
tion while keeping task-related information for demographic-
relevant node representations.

In the first task, we aim to find demographic-relevant node
representations from the whole node representations. In-
spired by disentangled representation learning [Ma et al.,
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2019], we decompose the node representation into multi-
ple (Nc > 1) independent components (represented by
green, purple, and red circles in Figure 2) and identify the
demographic-relevant components among them. Each com-
ponent represents a subspace and focuses on a specific la-
tent factor (e.g., shared interests) in the node representation.
When the separation is complete, only one component con-
tains the demographic information.

To this end, we introduce an adaptive assigner, imple-
mented via a multilayer perceptron that assigns different
weights to the neighbors N (vi) of a node vi in a graph with
respect to each latent factor of node vi in the disentangled
node aggregation. This mechanism allows learning separate
representations for distinct latent factors underlying the graph
structure. Specifically, suppose vj ∈ N (vi), their node fea-
tures xi and xj are inputs to the adaptive assigner Fψ: ψvi,vj
= Fψ ([xi;xj ]), where [xi;xj ] denotes the concatenation of
features xi and xj , and ψvi,vj ∈ RNc is a vector represent-
ing the importance scores of node vj in the latent factors
c = 1, . . . , Nc associated with node vi. To ensure disentan-
glement among the entries in ψvi,vj , we add a regularization
term to encourage independence among the learned compo-
nents (e.g., minimizing the mutual information between dif-
ferent subspaces). We then apply a softmax function over
the latent factors ψvi,vj to obtain the normalized weights:
ωvi,vj = softmax

(
ψvi,vj

)
. The elements ωcvi,vj ∈ ωvi,vj for

c = 1, . . . , Nc represents the probability that the connection
between i and j is influenced by latent factor c.

Next, we employ multiple disentangled layers for graph
convolution, where each layer consists of multiple channels
(i.e., Nc latent factors) that share the same network archi-
tecture. Each channel is tailored to amplify a specific la-
tent factor, enhancing the representation’s relevance to that
factor. Given node representation hvi of dimension dr of
node vi, we apply a linear transformation F cR(·) to obtain
the initial representations. This step is applied independently
to each channel, producing Nc node representations corre-
sponding to the Nc latent factors. This dimensionality re-
duction is applied independently for each channel, produc-
ing a series of reduced node attributes corresponding to the
various latent factors. In addition, the node representation at
the lth layer for node vi in channel c is denoted as h(l)c,i. We
concatenate the outputs from all channels to obtain the full
node representation at layer lth: h(l)i = [h

(l)
1,i, h

(l)
2,i, . . . , h

(l)
Nc,i

].
To update each node’s representation, we utilize the edge
weights predicted by the adaptive assigner. The basic op-
eration between the lth and (l + 1)th layers within the cth

channel is h(l+1)
c,i = σ

(∑
vj∈N (i) ω

c
i,j · h

(l)
c,j ·Wc,(l)

)
, where

N (i) denotes the neighbors of node vi, ωci,vj is the weight
for channel c from node vi to node vj , Wc,(l) is the learn-
able weight matrix for layer l in channel c, and σ(·) is an
activation function. Building on this, we can assemble the
matrix of disentangled representations for all nodes, i.e., K
=
[
k1, k2, . . . , kNc

]
, where kc corresponds to the channel-c

representations gathered across all nodes. For example, k1 =[
h1,1, h2,1, . . . , hi,1

]
, indicating the embeddings for chan-

nel 1 across all the nodes.

Although the above process can disentangle the node rep-
resentation in different channels, it may neglect the indepen-
dence among different latent factors, such as c1 = “gender”
and c2 = “girls’ school”. To promote orthogonality and dis-
entanglement among the channels in the node representations
in the last layer, we formulate an Independence Constraint us-
ing the Maximum Mean Discrepancy (MMD) [Gretton et al.,
2006]. Specifically, let kc1 and kc2 denote the embeddings
across all n nodes in channels c1 and c2, respectively. We
define the MMD between these two embedding sets as:

MMD2
(
kc1 , kc2

)
=

1

n2

n∑
i=1

n∑
j=1

f
(
kc1,i, kc1,j

)
(5)

+
1

n2

n∑
i=1

n∑
j=1

f
(
kc2,i, kc2,j

)
− 2

n2

n∑
i=1

n∑
j=1

f
(
kc1,i, kc2,j

)
where f(·, ·) is a kernel function (e.g., a Gaussian RBF ker-
nel). To ensure all channel pairs are mutually independent,
we sum over every distinct pair (c1, c2) with c1 < c2 and
formulate an Independence Constraint as:

LI = −
Nc∑
c1=1

Nc∑
c2=c1+1

MMD2
(
kc1 , kc2

)
(6)

Minimizing LI drives the empirical distributions of any
two channels, c1 and c2, to be dissimilar, thus promoting in-
dependence in their learned representations. With fully dis-
entangled channels, we need to identify which channels cap-
ture demographic information. To achieve this, we utilize
a discriminator that predicts the demographic label from the
channel-specific embeddings. For each channel c, we feed the
corresponding embeddings kc into the classifier to produce a
predicted probability ŷsi,c. We then define the classification
loss as follows:

LD = − 1

|VL|
∑
vi∈VL

Nc∑
c=1

[
ysi log

(
ŷsi,c

)
+

(
1− ysi

)
log

(
1− ŷsi,c

)]
(7)

where ysi is the obtained demographic information from
stage 1 for node vi, and ŷsi,c is the predicted demographics.

In the second task, we focus on processing the identified
demographic-relevant representations to further enhance pre-
dictive fairness. Specifically, we employ a learnable masking
mechanism on the identified demographic-relevant represen-
tation hS . Through this procedure, we obtain a de-identified
version, denoted by ✚✚hS = hS ⊙ m, where m is a masking
vector designed to obscure explicit demographic information.
The masked representation ✚✚hS (represented by a gray circle
in Figure 2) is then used for downstream prediction tasks. To
ensure that the mask effectively eliminates demographic cues
from hS , we penalize the covariance between the obfuscated
demographic attribute and the label prediction. Formally, we
minimize the absolute covariance:

LF = |Cov(S, ŷ)| = |E[(S − E(S))(ŷ − E(ŷ))]| (8)
where | · | indicates the absolute value.

We also include a performance loss LP for utility maxi-
mization, as in Equation 9:
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Dataset Metrics
Methods GCN GIN FairKD KSMOTE FairRF Reckoner fairGNN-WOD

Credit

Accuracy (↑) 0.781 ± 0.016 0.787 ± 0.018 0.711 ± 0.012 0.736 ± 0.009 0.735 ± 0.007 0.736 ± 0.021 0.754 ± 0.052
F1-Score (↑) 0.868 ± 0.023 0.877 ± 0.018 0.796 ± 0.023 0.817 ± 0.012 0.809± 0.022 0.817 ± 0.015 0.861 ± 0.018

SPD(↓) 0.117 ± 0.013 0.106 ± 0.011 0.094 ± 0.036 0.071 ± 0.003 0.067 ± 0.017 0.068 ± 0.017 0.036 ± 0.015
EOD(↓) 0.096 ± 0.017 0.088 ± 0.013 0.075 ± 0.042 0.055 ± 0.013 0.057 ± 0.018 0.055 ± 0.014 0.027 ± 0.013

Pokec-z

AUC (↑) 0.699 ± 0.024 0.691 ± 0.015 0.673 ± 0.021 0.697±0.024 0.690 ± 0.014 0.692 ± 0.020 0.703 ± 0.041
F1-Score (↑) 0.622 ± 0.012 0.613 ± 0.007 0.592 ± 0.013 0.611 ± 0.018 0.617 ± 0.019 0.603 ± 0.021 0.621 ± 0.032

SPD(↓) 0.075 ± 0.025 0.061 ± 0.014 0.045 ± 0.014 0.037± 0.017 0.032 ± 0.012 0.036 ± 0.018 0.028 ± 0.013
EOD(↓) 0.062 ± 0.013 0.057± 0.007 0.048 ± 0.009 0.039 ± 0.010 0.034 ± 0.012 0.033 ± 0.010 0.029 ± 0.015

Pokec-n

AUC (↑) 0.689 ± 0.015 0.685 ± 0.018 0.663 ± 0.016 0.669 ± 0.013 0.673 ± 0.013 0.675 ± 0.028 0.691 ± 0.024
F1-Score (↑) 0.631 ± 0.022 0.629 ± 0.008 0.603 ± 0.023 0.611 ± 0.018 0.616 ± 0.032 0.619 ± 0.032 0.626 ± 0.029

SPD(↓) 0.084 ± 0.013 0.078 ± 0.017 0.067 ± 0.015 0.061 ± 0.005 0.056 ± 0.027 0.042 ± 0.008 0.028 ± 0.013
EOD(↓) 0.078 ± 0.019 0.071± 0.027 0.064 ± 0.013 0.066 ± 0.013 0.061 ± 0.016 0.052 ± 0.011 0.038 ± 0.014

Table 1: Comparison results of fairGNN-WOD with baseline methods across real-world datasets. In each row, the best result is
indicated in bold, while the runner-up result is marked with an underline.

LP = 1
|VL|

∑
vi∈VL −

[
yi log

(
ŷi
)
+ (1− yi) log

(
1− ŷi

)]
(9)

The final objective function of demographic-dependent fair
graph learning, as presented in Equation 10, brings together
the above loss functions.

min LGNN = LP + αLI + αLD + βLF (10)
where α and β are tunable hyperparameters controlling
the weights of the various elements: i) LP aims to min-
imize the prediction loss, ii) LI encourages the decompo-
sition of learned representations into different independent
channels and distinguishes between demographics relevant
and irrelevant representations, and iii) LF aims to miti-
gate demographics-related information in node representa-
tion thereby improving the fairness of the model. Note that
fairGNN-WOD is trained in a sequential two-stage manner,
i.e., first optimizing VAE and then optimizing for fair GNN
in the second stage while freezing the VAE model.

5 Experiment
5.1 Experimental Setup
Datasets. Our experiments are conducted on three widely
used datasets: the Credit dataset [Yeh and Lien, 2009], Pokec-
z and Pokec-n datasets [Takac and Zabovsky, 2012]. The
Credit dataset contains default payment records for credit
card holders, where nodes are connected based on similari-
ties in their purchase and payment patterns. The age of the
individuals serves as the demographics. The Pokec-z and
Pokec-n datasets are derived from a popular social network
in Slovakia, representing user networks from two different
provinces. In these social networks, nodes represent users
with features including gender, age, and interests, while edges
represent friendships between users. The demographics for
both datasets are the region. To simulate cases of missing
demographics, we mask all demographic information in the
training and validation sets.
Baselines. We compare our fairGNN-WOD method with
the following baseline methods, categorized into two groups:
i) Vanilla graph model: GCN [Kipf and Welling, 2016],
GIN [Xu et al., 2018]. ii) Extend Fairness Method:

FairKD [Chai et al., 2022]: Enhances fairness with-
out demographics through partial knowledge distillation.
KSMOTE [Yan et al., 2020]: Creates pseudo-groups through
clustering and enforces fairness through prediction regular-
ization. FairRF [Zhao et al., 2022a]: Minimizes correlation
between predictions and demographic-related features. Reck-
oner [Ni et al., 2024]: Achieves group fairness through learn-
able noise and knowledge-sharing in a dual-model architec-
ture. For the methods not originally designed for graph data,
we adapt them to work with our GNN backbone using the
authors’ original implementations.
Metrics: We use Accuracy and F1-score to evaluate the util-
ity performance. To evaluate fairness, we use two com-
monly used fairness metrics, i.e., Statistical Parity Differ-
ences (SPD) [Dwork et al., 2012] and Equal Opportunity Dif-
ferences (EOD) [Hardt et al., 2016], with values close to zero
indicating better fairness.

5.2 Experiment Result
Performance Comparison. Table 1 presents a compari-
son between fairGNN-WOD and baseline methods, demon-
strating that fairGNN-WOD consistently outperforms all six
baselines across various metrics in both predictive perfor-
mance and fairness. Specifically, i) fairGNN-WOD shows a
significant improvement in fairness over the vanilla method
(no fairness considerations). This improvement is due to
the ability of fairGNN-WOD to effectively infer a demo-
graphic information proxy that highly correlates with true de-
mographics, providing a foundation for the subsequent un-
fairness mitigation. ii) fairGNN-WOD demonstrates better
fairness performance than methods adapted from non-graph
domains. This superior performance is attributed to fairGNN-
WOD’s ability to identify and segregate demographic-related
information in the node representations so that it can ap-
ply fairness constraints in a more precise and targeted man-
ner, thereby reducing the impact of biases in the predic-
tions. iii) fairGNN-WOD surpasses the other methods in util-
ity performance in most cases and fairness performance in
all cases. Overall, the experimental results demonstrate the
effectiveness of fairGNN-WOD in improving fairness while
achieving comparable performance. Unlike the existing fair-
ness methods that might apply fairness constraints indiscrimi-
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Figure 3: Ablation study results for fairGNN-WOD, fairGNN-WOD-NY, fairGNN-WOD-NI and fairGNN-WOD-NF.

nately, fairGNN-WOD disentangles node representations and
applies a more targeted fairness correction. This approach
prevents the loss of task-relevant demographic information,
ensuring that the model remains both fair and useful.
Ablation Studies. We conducted ablation studies to un-
derstand the contributions of individual components in the
fairGNN-WOD model. Specifically, we first explored the
impact of the downstream GNN by excluding labeled in-
formation interference during demographic inference (i.e.,
fairGNN-WOD-NY variant). The results on the three datasets
are illustrated in Figure 3. We observed a decrease in fairness
for the fairGNN-WOD-NY variant. This reduction in fairness
is attributed to the model’s failure to exclude demographic-
irrelevant information during demographic inference, which
compromised the quality of the demographic proxy and ad-
versely affected downstream bias mitigation. Further, we ex-
amined the effects of removing disentanglement by introduc-
ing the fairGNN-WOD-NI variant that imposes the fairness
constraint on the entire node representation by settingNc = 1
and excluding both LI and LD. The results showed a decline
in prediction performance, indicating that the direct applica-
tion of fairness constraints across the entire node representa-
tion space without disentanglement, inevitably removes some
task-related information. The impact on fairness is not ob-
vious. Lastly, to evaluate the effectiveness of our fairness
constraints, we tested the fairGNN-WOD-NF variant, which
drops the LF penalty (i.e., setting β = 0) in the objective func-
tion. The comparative analysis with the original fairGNN-
WOD setup revealed a significant drop in fairness, under-
scoring the essential role that the fairness constraint plays.
There is minimal impact on the prediction performance. In
summary, the ablation studies affirm the importance of each
component in the fairGNN-WOD.
Parameters Sensitivity Analysis. We examine the sensitiv-
ity of fairGNN-WOD by adjusting the parameters α and β
across the values {1e−3, 1e−2, 1e−1, 1e0, 1e1, 1e2, 1e3}. The
results on the Credit dataset are presented in Figure 4. An
increase in α and β tends to improve model fairness but may
lead to a reduction in predictive performance. This can be at-
tributed to the increase in these parameters, which strengthens
the model’s ability to disentangle node representation accu-
rately and mitigate their correlation with demographic infor-

Figure 4: Exploring hyperparameters study results.

mation. Hence, this diminishes the influence of demographics
on node representation, thereby advancing model fairness.

6 Conclusion
Given the observed gap between the prevailing real-world
applications and the assumption of demographic informa-
tion availability of existing AI fairness methods, this paper
made an initial investigation into achieving graph fairness
without complete demographic information. In addition, this
work also took a step further to explore how to improve
fairness while also preserving task-related information from
demographics-related information. The proposed algorithms
can achieve graph fairness across scenarios with both com-
plete and incomplete demographic information and are read-
ily extensible to existing fair GNN frameworks. Experiments
on three real-world datasets demonstrate that fairGNN-WOD
outperforms all baseline methods in terms of both fairness
and utility performance.
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