
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Privacy Preserving Solution of DCOPs by Local Search

Shmuel Goldklang1 , Tal Grinshpoun2 , Tamir Tassa1

1Department of Mathematics and Computer Science, The Open University of Israel
2Department of Industrial Engineering and Management, Ariel University

shmuel.goldklang@gmail.com, talgr@ariel.ac.il, tamirta@openu.ac.il

Abstract
One of the main reasons for solving constraint
optimization problems in a distributed manner is
maintaining agents’ privacy. Several studies in
the past decade devised privacy-preserving ver-
sions of Distributed Constraint Optimization Prob-
lem (DCOP) algorithms. Some of those algorithms
were complete, i.e., finding an optimal solution,
while others were incomplete. The main advan-
tage of the incomplete approach is in its scalabil-
ity to large problems. One of the important in-
complete paradigms for solving DCOPs is local
search. Yet, so far no privacy-preserving algorithm
for solving DCOPs by means of local search was
devised. We present P-DSA, a privacy-preserving
implementation of the classical local-search algo-
rithm DSA that preserves topology, constraint, and
assignment/decision privacy. Comparing its per-
formance to that of P-Max-Sum, which is another
privacy-preserving implementation of an incom-
plete DCOP algorithm, shows that P-DSA is signif-
icantly more scalable and issues much better solu-
tions than P-Max-Sum. Therefore, P-DSA emerges
as a suitable solution for practitioners addressing
large-scale DCOPs with privacy considerations.

1 Introduction
The Distributed Constraint Optimization Problem (DCOP) is
a general model for solving distributed combinatorial prob-
lems that has a wide range of applications in artificial intelli-
gence. Complete algorithms for DCOP-solving [Modi et al.,
2005; Petcu and Faltings, 2005; Gershman et al., 2009] are
guaranteed to find the optimal solution, but because DCOPs
are NP-hard, these algorithms’ worst-case runtime is expo-
nential. Thus, there is a growing interest in incomplete algo-
rithms, which may find sub-optimal solutions but run quickly
enough to be applied on large-scale problems or real-time
applications [Maheswaran et al., 2004; Zhang et al., 2005;
Teacy et al., 2008; Zivan et al., 2014].

Approaches of incomplete DCOP algorithms include
inference (Max-Sum [Farinelli et al., 2008]), sampling
(DUCT [Ottens et al., 2017], D-Gibbs [Nguyen et al.,
2019]), region optimal (KOPT [Katagishi and Pearce,

2007], DALO [Kiekintveld et al., 2010]), and local search
(DSA [Zhang et al., 2005], MGM [Maheswaran et al., 2004],
and DBA [Hirayama and Yokoo, 2005]). The latter approach
is extremely popular due to its simplicity and runtime effi-
ciency.

Privacy is one of the main motivations for solving con-
straint problems in a distributed manner. Preserving privacy
is most important in distributed scenarios in which agents rep-
resent people who would not like their personal preferences
and actions to be revealed, e.g., meeting scheduling [Gersh-
man et al., 2008], and smart environments (such as smart
homes) [Rust et al., 2016; Fioretto et al., 2017]. The term
privacy is quite broad, a fact that gave rise to several catego-
rizations of the different types of privacy [Léauté and Falt-
ings, 2013; Greenstadt et al., 2007; Grinshpoun, 2012]. In
this paper, we relate to the categorization of Léauté and Falt-
ings [2013] that distinguishes between agent privacy, topol-
ogy privacy, constraint privacy, and decision privacy.

Most studies that evaluated distributed constraint algo-
rithms in terms of privacy considered complete algorithms
[Silaghi and Mitra, 2004; Maheswaran et al., 2006; Green-
stadt et al., 2006; Doshi et al., 2008; Léauté and Faltings,
2013; Grinshpoun and Tassa, 2016]. Some work has fo-
cused on measuring the extent of constraint privacy loss
[Maheswaran et al., 2006; Greenstadt et al., 2006]. Doshi
et al. [2008] proposed to inject privacy loss as a criterion
to the problem-solving process. Some previous work was
also directed towards reducing constraint privacy loss. Most
efforts in the development of privacy-preserving search al-
gorithms focused on DCSP, which is the satisfaction vari-
ant of DCOP. Examples include [Nissim and Zivan, 2005;
Silaghi and Mitra, 2004; Yokoo et al., 2005]. The work of
Silaghi and Mitra [2004] addressed both satisfaction and opti-
mization problems. However, the proposed solution is strictly
limited to small-scale problems since it depends on an ex-
haustive search of all possible assignments. Several privacy-
preserving versions of the DPOP algorithm [Petcu and Falt-
ings, 2005] were proposed in the past [Greenstadt et al., 2007;
Silaghi et al., 2006], including a more recent study by Léauté
and Faltings [2013] that proposed several versions of DPOP
that provide strong privacy guarantees. While these versions
have been designed for DCSPs, some of them may also be
applicable to DCOPs. Explicitly for DCOPs, Grinshpoun
and Tassa [2016] and Tassa et al. [2021] devised variants of

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

SyncBB [Hirayama and Yokoo, 1997], which preserve topol-
ogy, constraint, and decision privacy.

While the problem sizes for which complete DCOP al-
gorithms are applicable are limited, the problem worsens
when privacy-preserving algorithms are considered, due to
the substantial runtime overhead that privacy preservation
incurs. Consequently, several studies focused on privacy-
preserving incomplete algorithms. Tassa et al. [2017] and
Kogan et al. [2023] proposed variations of an incomplete in-
ference algorithm, Max-Sum [Farinelli et al., 2008], which
preserve topology, constraint, and decision privacy. Addition-
ally, Grinshpoun et al. [2019] devised an incomplete region-
optimal algorithm that preserves constraint privacy and par-
tial decision privacy. However, though incomplete, the above
algorithms are very elaborate and are inapplicable to large-
scale problems. Specifically, the runtime of the Max-Sum-
based algorithms is exponential in the arity of the constraints,
which makes them unsuitable for problems with global con-
straints, e.g., satellite scheduling [Krigman et al., 2024] and
course allocation [Khakhiashvili et al., 2021].

Recently, Vion et al. [2022] proposed a local search algo-
rithm that controls the loss of domain privacy [Grinshpoun,
2012] by following the Utilitarian DCOP model [Doshi et al.,
2008; Savaux et al., 2020], in which privacy loss is traded
off with solution quality. However, their approach is only
relevant in the Open Constraints Programming model [Falt-
ings and Macho-Gonzalez, 2005], where the domains are not
known in advance and grow as the solving process advances.

Our contributions. We present here P-DSA, a privacy-
preserving implementation of the classical local-search al-
gorithm DSA. We show that it offers topology privacy, con-
straint privacy, and assignment/decision privacy. We compare
its performance to that of P-Max-Sum [Tassa et al., 2017], a
privacy-preserving implementation of the incomplete DCOP
algorithm Max-Sum [Farinelli et al., 2008] which also pro-
tects topology, constraint and assignment/decision informa-
tion. We show that P-DSA is significantly more scalable and
issues much better solutions than P-Max-Sum. In fact, while
P-DSA was able to solve in short time (3 minutes) problems
involving as high as 100 agents, prior studies on privacy-
preserving DCOP algorithms report experiments with at most
24 agents and runtimes that are significantly higher.1 There-
fore, P-DSA emerges as a suitable choice for solving large-
scale DCOPs in a privacy-preserving manner.

2 DCOP background
A Distributed Constraint Optimization Problem (DCOP, [Hi-
rayama and Yokoo, 1997]) is a tuple ⟨A,X ,D,R⟩ where
A = {A1, . . . , An} is a set of agents, X = {X1, . . . , Xn}
is a set of variables, D = {D1, . . . , Dn} is a set of finite do-
mains, andR is a set of relations (constraints). Each variable

1To the best of our knowledge, the only exception is the work of
Damle et al. [2024] that presented P-Gibbs, which is a differentially
private implementation of SD-Gibbs [Nguyen et al., 2019]. How-
ever, differential privacy is a paradigm that is based on injecting ran-
dom noise; hence it is not directly comparable to the cryptographic
paradigm that does not alter the outputs of the underlying algorithm.

Xi takes values in the domain Di, and it is held by the agent
Ai. Each constraint C ∈ R defines for a given pair of vari-
ables some non-negative cost; formally, a constraint takes the
form Ci,j : Di×Dj → [0, q], for some 1 ≤ i ≤ j ≤ n, where
q is a publicly known maximal constraint cost q. (Note that
if i = j then the constraint is unary.) The goal in constraint
optimization problems is to find an assignment of values to
all n variables,

(X1, . . . , Xn)← x := (x1, . . . , xn) ∈ D := D1×· · ·×Dn ,

such that the overall incurred cost
∑

Ci,j∈R Ci,j(xi, xj) is
minimal.

Our framework can also include the case of hard con-
straints, i.e., combinations of assignments that are strictly for-
bidden, see [Kumar et al., 2008]. Our framework is the one
that is studied in most prior art. Some studies consider exten-
sions to this framework by (a) assuming that each agent may
hold more than one variable [Yokoo and Hirayama, 2000;
Burke and Brown, 2006; Grinshpoun, 2015; Fioretto et al.,
2016], (b) including constraints of arity greater than two [Kim
and Lesser, 2013], and (c) assuming asymmetric constraints
that incur different costs to each of the involved agents [Grin-
shpoun et al., 2013]. However, here we focus on the frame-
work as defined above, which already introduces the main
challenges of DCOPs.

Léauté and Faltings [2013] distinguished between four no-
tions of privacy: agent privacy (who are the agents in the
problem setting), topology privacy (hiding information on the
constraint graph), constraint privacy (hiding information on
the costs in the constraints), and assignment/decision privacy
(protecting the intermediate/final assignments).

2.1 The Distributed Stochastic Algorithm
Here we describe the classic local search DCOP algorithm
that was presented by Zhang et al. [2005] – the Distributed
Stochastic Algorithm (DSA). We start by introducing a key
notion in local search algorithms:

Definition 1 (Neighborhood). The neighborhood of agent Ai

is the set of all agents that are constrained with Ai, i.e.,
N(Ai) := {Aj ∈ A : ∃Ci,j ∈ R}. The complete neigh-
borhood of Ai is N+(Ai) := N(Ai) ∪ {Ai}.

Algorithm 1: The DSA algorithm
1 forall i ∈ [n] do
2 Ai selects at random xi ∈ Di

3 forall ℓ = 1, . . . , L do
4 forall i ∈ [n] do
5 Ai sends xi to all Aj ∈ N(Ai)
6 forall i ∈ [n] do
7 Ai samples uniformly at random a real

x ∈ [0, 1]
8 if x ≤ p then
9 Ai chooses yi ∈ Di that minimizes∑

Aj∈N(Ai)
Ci,j(yi, xj)

10 Ai updates xi ← yi

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Algorithm 1 describes DSA. The algorithm starts by gener-
ating an initial random assignment a ∈ D (Lines 1-2).2 It then
keeps updating that assignment by performing a preset num-
ber of iterations L (Lines 3-10). The assignment in the final
iteration is the algorithm’s output. Each iteration starts with
each agent updating its neighbors on its current assignment
(Lines 4-5). Then, each agent is allowed, with probability
p, to change its local assignment to the best possible value
(Lines 6-10).

The utilization of the stochastic factor p enables DSA to
escape local minima and avoid infinite loops. However, it
renders DSA non-monotone in the sense that the cost of the
solution in one iteration is not necessarily smaller than the
cost of the solution in the previous iteration. It is possible to
enhance DSA with a so-called anytime mechanism [Zivan et
al., 2014]. Such a mechanism finds the best solution visited
throughout the run of the algorithm. In general, in order to re-
port the best solution visited, the algorithm needs to compute
the overall cost after each iteration, and if that overall cost is
the minimum so far, record that cost and the corresponding
assignment.

3 Cryptographic background
Here, we briefly describe the cryptographic machinery we use
in our protocols. In Section 3.1 we discuss threshold secret
sharing, and then, in Section 3.2, we describe secure compu-
tations over secret-shared values.

3.1 Shamir’s secret sharing
Secret sharing schemes [Shamir, 1979] are protocols that en-
able distributing a secret scalar s among a set of agents,
A1, . . . , An. Each agent, Ah, h ∈ [n], gets a random value
[[s]]h, called a share, so that some subsets of those shares en-
able the reconstruction of s, while each of the other subsets
of shares reveals no information on s. In its most basic form,
called Threshold Secret Sharing, there is a threshold value
t ≤ n, and then a subset of shares enables the reconstruction
of s iff its size is at least t.

Shamir’s t-out-of-n threshold secret sharing scheme
[Shamir, 1979] operates over a finite field Zq , where q > n is
a prime sufficiently large so that all possible secrets may be
represented in Zq . It has two procedures: Share and Recon-
struct:
• Sharet,n(s). The procedure samples a uniformly random

polynomial f(·) over Zq , of degree at most t − 1, where the
free coefficient is the secret s. That is, f(x) = s + a1x +
a2x

2+ . . .+at−1x
t−1, where aj , 1 ≤ j ≤ t−1, are selected

independently and uniformly at random from Zq . The proce-
dure outputs n values, [[s]]h = f(h), h ∈ [n], where [[s]]h
is the share given to Ah. The entire set of sheares, denoted
[[s]] := {[[s]]h : h ∈ [n]}, is called a (t, n)-sharing of s.
• Reconstructt([[s]]). The procedure is given any selection

of t shares out of the (t, n)-sharing of s. It then interpolates a
polynomial f(·) of degree at most t−1 using the given points
and outputs s = f(0). Any selection of t shares will yield the
secret s, as t points determine a unique polynomial of degree

2Throughout this paper, for any integer n, [n] := {1, . . . , n}.

at most t−1. On the other hand, any selection of t−1 shares
or less reveals nothing about the secret s.

Hereinafter, we set the secret sharing threshold to be

t := ⌊(n+ 1)/2⌋ . (1)

Namely, to reconstruct the secret, at least half of the agents
must collaborate. Hence, if the set of n agents has an honest
majority (in the sense that more than n/2 agents would not
try to combine their shares in order to recover secret values),
all shared values will remain fully protected.

In what follows, we shall use the following terminology
and notations. Let s be a secret known to some agent Ai,
i ∈ [n]. Then if Ai performs the procedure Sharet,n(s), we
will simply say that Ai distributes a (t, n)-sharing of s.

If the agents have a (t, n)-sharing [[s]] in some secret s and
they wish to let one of them, say Ai, reconstruct the secret
s, then at least t − 1 agents would send their shares to Ai

who will proceed to apply the Reconstruct procedure on the
t shares it has. We will describe this procedure shortly by
writing s← Reconstruct([[s]];Ai).

If s = (s1, . . . , sm) ∈ Zm
q is a vector of secrets held by

Ai, then by saying that Ai distributes a (t, n)-sharing of s we
mean that Ai distributes a (t, n)-sharing of each of the entries
of s, independently.

Let a ∈ Zq be any value that is publicly known to
all agents. Then by [[a]] we mean the set of (t, n)-shares
{[[a]]h = a : h ∈ [n]}. It is easy to see that this set of
shares indeed defines a unique polynomial of degree at most
t − 1, which is the constant polynomial f(·) ≡ a, and there-
fore it is a proper (t, n)-sharing of the value a. Such a sharing
does not require any communication between the agents nor
any polynomial computations, since a is publicly known.

Let a, b, c ∈ Zq be three values publicly known to all, and
let s and s′ be two secrets in which the agents already hold
(t, n)-sharings, denoted [[s]] and [[s′]]. Then

a+ b[[s]] + c[[s′]] := {a+ b[[s]]h + c[[s′]]h : h ∈ [n]} (2)

is a proper (t, n)-sharing of ŝ := a+ bs+ cs′, and its compu-
tation needs no interaction between the agents, thanks to the
affinity of secret sharing. By writing

[[ŝ]]← a+ b[[s]] + c[[s′]]

we mean that each agent Ah, h ∈ [n], sets [[ŝ]]h ← a +
b[[s]]h + c[[s′]]h, so that now the agents hold a (t, n)-sharing
of ŝ = a + bs + cs′ without needing to interact or perform
any further polynomial computations.

3.2 Secure computations over secret sharings
Let a and b be two secret values in the field Zq , and assume
that A1, . . . , An hold (t, n)-sharings in them, denoted [[a]] =
{[[a]]h : h ∈ [n]} and [[b]] = {[[b]]h : h ∈ [n]}. A secure
multiplication protocol is a protocol of the form

[[c]]← SecureMult([[a]], [[b]]) , (3)

that takes the (t, n)-sharings of a and b and computes from
them a (t, n)-sharing of c = a · b in a secure manner, namely,
without revealing to the agents any information on a, b, or
c = ab. Damgård and Nielsen [2007] designed such a secure

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

multiplication protocol. In our experiments, we used that pro-
tocol with the performance improvements that were proposed
by Chida et al. [2018].

Another computation on secret shares that we will need is
secure comparison. Under the same assumptions as above, a
secure comparison protocol is a protocol of the form

[[c]]← SecureCompare([[a]], [[b]]) , (4)

that takes the (t, n)-sharings of a and b and computes from
them a (t, n)-sharing of c = 1a<b, where hereinafter if P is
a predicate then 1P is a bit that equals 1 if the predicate P
holds and equals 0 otherwise. As before, such a protocol is
secure in the sense that it does not reveal to the agents any
information on a, b, or c = 1a<b. Nishide and Ohta [2007]
proposed such a secure comparison protocol.

4 Private DSA
In this section, we describe Private DSA (P-DSA), an im-
plementation of DSA that preserves topology, constraint, and
decision privacy. In order to achieve those privacy goals, P-
DSA employs the following principles:

(1) To achieve topology privacy, every pair of agents that
are not constrained creates a zero constraint matrix between
themselves, and, subsequently, the algorithm acts on a com-
plete constraint graph. None of the other agents is able to dis-
tinguish between fake constraint matrices (i.e., zero matrices)
and genuine ones due to the next principle in P-DSA’s design,
which distinguishes its operation from that of the basic DSA.

(2) To achieve constraint privacy, all constraint matrices
are secret-shared among all agents, and all computations that
rely on those matrices use the shares rather than the actual
constraint matrices.

(3) To achieve decision privacy, in each iteration of the al-
gorithm whenever an agent selects an assignment to its vari-
able, it does not send that assignment to its neighbors; instead,
it secret shares information on the costs that such an assign-
ment incurs vis-a-vis each of the other agents.

The latter principle raises a considerable computational
challenge: how can each of the agents perform the compu-
tations that DSA mandates when it does not know the current
assignments of its neighboring agents? We tackle that chal-
lenge by designing multi-party sub-protocols to be run jointly
by all agents. In those collaborative sub-protocols, all agents
use the secret shares they hold in order to enable each agent
to compute the next assignment from its domain. In doing so,
none of the agents get any wiser about that assignment or any
other private information.

We assume hereinafter that all agents know the sizes of all
domains, namely, mi := |Di| for all i ∈ [n]. Moreover, each
agent Ai, i ∈ [n], generates an ordering of the values in its
domain, Di = {ai1, . . . , aimi

}, and publishes that ordering to
each of its neighbors, Aj ∈ N(Ai). Therefore, each con-
straint Ci,j can be described as a matrix of mi rows and mj

columns, where Ci,j(r, s) equals the value of the constraint
when Xi = air and Xj = ajs. In what follows, we will think
of Ci,j as a matrix rather than a function over Di ×Dj .

Protocol 2 describes P-DSA — a private implementation of
DSA. First, each agent Ai selects a random assignment to its

variable. Ai does that by selecting a random index ri ∈ [mi],
and then the corresponding assignment to Xi is airi , i ∈ [n]
(Lines 1-2).

The main loop takes place in Lines 3-15. First, each agent
Ai, i ∈ [n], secretly shares its current assignment, airi , with
all agents. To do that, Ai distributes to all agents (t, n)-shares
in the ri-th row in each of the constraint matrices that it has
vis-a-vis each of the other n − 1 agents (namely, also with
agents outside its neighborhood). Let wi,j denote the ri-th
row in the constraint matrix Ci,j , for some j ∈ [n] \ {i}, i.e.,

wi,j = (wi,j(u) : u ∈ [mj]) ,

where wi,j(u) = Ci,j(ri, u) , u ∈ [mj] .
(5)

Ai distributes (t, n)-shares in each of the mj entries of that
vector, where the sharing of wi,j(u) is denoted [[wi,j(u)]] =
{[[wi,j(u)]]h : h ∈ [n]}, while the sharing of the entire vec-
tor is denoted [[wi,j]]. The overall number of scalars that Ai

shares at this stage (Lines 4-6) is
∑

j∈[n]\{i} mj .
We would like to clarify that the secret sharing done in

Lines 4-6 is excessive. Indeed, if a ̸= b ∈ [n] then the scalar
Ca,b(ra, rb) is shared when i = a and j = b, as it is in the ra-
th row of the matrix Ca,b, but also when i = b and j = a, as
it is in the rb-th row of the matrix Cb,a which is the transpose
of Ca,b. However, this excessive secret sharing will pay off
later on in the computation.

Before moving on, let us fix i ∈ [n] and j ∈ [n] \ {i}.
Then for any u ∈ [mi], wj,i(u) is the cost that Ai would pay
if it sets Xi = aiu, given the current assignment of Aj to its
variable, Xj = ajrj . Therefore, if we define

wi(u) :=
∑

j∈[n]\{i}

wj,i(u) , u ∈ [mi] , (6)

we have by Eq. (5) and the symmetry of the constraints (in
the sense that Ci,j = CT

j,i),

wi(u) =
∑

j∈[n]\{i}

Cj,i(rj , u) =
∑

j∈[n]\{i}

Ci,j(u, rj) , u ∈ [mi] . (7)

Hence, wi(u) is the overall cost for Ai if it sets Xi = aiu,
given the current assignments that all other agents have for
their variables. In Lines 7-9 all agents compute (t, n)-shares
in wi(u) for all i ∈ [n] and for all u ∈ [mi]. Note that
it is a local computation that does not require the agents to
communicate.

Next, the main task of each agent Ai is to find the best
assignment to its variable given the current assignments of
all neighboring variables (as encoded in the secret shares that
all agents have distributed in Lines 4-6) and storing the in-
dex of that assignment in ri. However, we recall that such
a computation takes place only in probability p, while oth-
erwise, in probability 1 − p, Ai retains its current assign-
ment. Hence, Ai starts by generating a uniformly random
real number x ∈ [0, 1] (Line 11), and only if x ≤ p it pro-
ceeds to the computational task of finding the best assignment
for its variable, given the current assignments of its neigh-
boring agents. That computation is carried out in the sub-
protocol FindBestAssignment (Line 13). In that sub-protocol,
the agents jointly and securely compute a (t, n)-sharing of the

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

index ki ∈ [mi] of the currently best assignment to Xi from
Di. After its completion, all agents send to Ai their shares in
ki, and Ai proceeds to recover ki (Line 14) and store it in ri
(Line 15).

After performing L such iterations (Lines 3-15), each of
the agents stores the last assignment to its variable (Lines 16-
17).

Protocol 2: P-DSA – Private DSA
1 forall i ∈ [n] do
2 Ai selects at random ri ∈ [mi]
3 forall ℓ = 1, . . . , L do
4 forall i ∈ [n] do
5 forall j ∈ [n] \ {i} do
6 Ai distributes a (t, n)-sharing of [[wi,j]]
7 forall i ∈ [n] do
8 forall u ∈ [mi] do
9 [[wi(u)]]←

∑
j∈[n]\{i}[[wj,i(u)]]

10 forall i ∈ [n] do
11 Ai samples uniformly at random x ∈ [0, 1]
12 if x ≤ p then
13 FindBestAssignment(i; [[ki]])
14 ki ← Reconstruct([[ki]];Ai)
15 Ai sets ri ← ki
16 forall i ∈ [n] do
17 Ai sets Xi ← airi

4.1 The sub-protocol FindBestAssignment
Here, we describe Sub-protocol 3, called FindBestAssign-
ment. The sub-protocol, which is executed by all agents,
scans the values in Xi’s domain, Di = {aiu : u ∈ [mi]},
and computes a (t, n)-sharing [[ki]] in the index ki ∈ [mi]
that issues the currently minimal aggregated cost for Ai.

Before describing the computations in the sub-protocol, we
make the following observations. Let ci and cj be two in-
dexed scalars, where i < j. Then

min(ci, cj) = ci + 1cj<ci · (cj − ci) (8)
and

argmin(ci, cj) = i+ 1cj<ci · (j − i) (9)
(by argmin we mean the smallest index in which the min-
imum is attained). Hence, if the agents hold (t, n)-shares
in ci and in cj , they can jointly compute (t, n)-shares in
min(ci, cj) and in argmin(ci, cj), without learning any in-
formation on ci and cj , by invoking the secure comparison
and multiplication protocols from Section 3.2. Specifically,
they will first run

[[β]]← SecureCompare([[cj]], [[ci]])
(see Eq. (4)) so that they will hold (t, n)-shares in the bit
β := 1cj<ci . Then they will run the secure multiplication
protocol (see Eq. (3)),

[[γ]]← SecureMult([[β]], [[cj]]− [[ci]])

to get (t, n)-shares in γ := 1cj<ci · (cj − ci). Finally, each
agent Ah, h ∈ [n], will compute

[[w]]h ← [[ci]]h + [[γ]]h .

In view of Eq. (8), the set [[w]] = {[[w]]h : h ∈ [n]} is a
(t, n)-sharing of w := min(ci, cj). In the process of com-
puting those shares, the agents remain completely oblivious
to the values of ci, cj , and w. A similar course of action can
issue to the agents a (t, n)-sharing of argmin(ci, cj), using
Eq. (9).

We now turn to Sub-protocol 3. Its input is the index i
of the agent who looks for the currently best assignment to
its variable. Recall that FindBestAssignment is invoked from
Protocol 2 in Line 13. At that stage in Protocol 2, all agents
hold (t, n)-shares in wi(u) for all i ∈ [n] and all u ∈ [mi],
being the aggregated cost for Ai if it sets Xi ← aiu, given the
current assignments to the variables held by its neighbors.

The sub-protocol scans Ai’s domain, Di, and updates two
values: ki that will hold the index of the currently best assign-
ment and wi that will hold the corresponding cost. Those two
values will not be computed explicitly; instead, the agents
will hold secret shares in them.

Initially (Lines 1-2), the agents set ki = 1 and wi = wi(1).
Since the agents already hold a secret sharing of the latter
value, they simply set [[wi]]h = [[wi(1)]]h, h ∈ [n]. As for
ki = 1, since it is a publicly known value, then, in view of our
discussion in Section 3.1, each agent sets [[ki]]h = 1, h ∈ [n].

Next, the agents scan the remaining values in Di (Lines
3-8). First, they compute shares in β := 1wi(u)<wi

, using
SecureCompare (see Eq. (4)), in order to compare wi, the
minimum found so far, to the cost of the next assignment,
wi(u) (Line 4). Then, they use SecureMult (see Eq. (3)) to
compute shares in γ := β·(wi(u)−wi) and in δ := β·(u−ki)
(Lines 5-6). (Recall that since u is a publicly known value,
each agent Ah, h ∈ [n], sets locally [[u]]h = u.) Finally,
they update the shares in wi and ki using Eqs. (8) and (9),
respectively (Lines 7-8). At the end of the loop, ki equals the
index of the best assignment, and wi equals the associated
cost. Since P-DSA needs only [[ki]], the sub-protocol issues
that sharing as its output.

Comment. The computation of wi (Lines 5+7) is needed
for the computation of β (Line 4) in the subsequent iteration,
a value that is used in updating ki (Lines 6+8). Hence, since
wi is not a desired output of the sub-protocol, it is possible to
skip Lines 5+7 in the last iteration (u = mi).

Sub-protocol 3: FindBestAssignment – Computing a
(t, n)-sharing of the index ki of the currently best as-
signment for Xi.

Input: i – the index of agent Ai

1 forall h ∈ [n] do
2 Ah sets [[ki]]h ← 1 and [[wi]]h ← [[wi(1)]]h
3 forall u = 2, . . . ,mi do
4 [[β]]← SecureCompare([[wi(u)]], [[wi]])
5 [[γ]]← SecureMult([[β]], [[wi(u)]]− [[wi]])
6 [[δ]]← SecureMult([[β]], [[u]]− [[ki]])
7 [[wi]]← [[wi]] + [[γ]]
8 [[ki]]← [[ki]] + [[δ]]

Output: A (t, n)-sharing of [[ki]]

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

4.2 Privacy
Protocol 2 preserves topology, constraint, and assign-
ment/decision privacy, owing to the cryptographic machinery
that we use – see Theorem 1. It does not respect agent privacy
since it requires all n agents to have a full communication net-
work between them.
Theorem 1. Under the assumption of honest majority, Proto-
col 2 preserves topology, constraint, and assignment/decision
privacy.

Proof. The honest majority assumption means that if there
exist agents that will try combining their shares in attempt
to recover some of the secret-shared values, their number
will be smaller than the threshold t = ⌊(n + 1)/2⌋, see Eq.
(1). Shamir’s secret sharing scheme is perfect, in the sense
that any number of shares smaller than the threshold exposes
zero information on the shared secret [Shamir, 1979]. There-
fore, the secret shares in each of the private values that are
secret-shared during P-DSA reveal no information on the un-
derlying private value. Apart from secret sharing, the agents
engage also in multi-party protocols for performing secure
multiplication and secure comparison, see Eqs. (3) and (4).
The protocols that we use are information-theoretic secure,
see [Damgård and Nielsen, 2007; Nishide and Ohta, 2007].
Given all of the above, it follows the P-DSA fully preserves
all constraint information under the honest majority assump-
tion; hence, it offers constraint privacy.

P-DSA operates over a complete constraint graph, in which
every pair of agents has a constraint matrix between them.
Since all matrices are secret-shared using the threshold t in
Eq. (1), which guarantees perfect privacy under the assump-
tion of honest majority, zero matrices are indistinguishable
from matrices that represent actual constraints. Therefore, P-
DSA offers also topology privacy.

As also all indices of all assignments are encoded through
secret shares, we infer that all assignment information, as
well as the final decisions, remain fully protected. Hence,
P-DSA offers also assignment/decision privacy.

Note that while Protocol 2 hides from each agent the se-
quence of assignments of other agents, it does reveal to each
agent its own sequence of assignments. Protocol 2 can be
further enhanced to also hide from each agent the sequence
of value assignments to its own variable, including the initial
random value assignment. Due to space limitations, we omit
the details of this enhancement.

5 Experiments
We implemented P-DSA and compared its performance to P-
Max-Sum [Tassa et al., 2017], which is a privacy-preserving
implementation of an incomplete DCOP algorithm (Max-
Sum [Farinelli et al., 2008]).

Experiments were conducted on a machine equipped
with an Intel i5-10400 CPU @ 2.90GHz, 2904 Mhz,
6 Core(s), 12 Logical Processor(s), 16GB DDR4 RAM.
The system ran Microsoft Windows 10 Pro, and the
code was written in Java 1.8.0 using the SinAlgo sim-
ulation framework. The source code is available on
https://github.com/dcop2025/dcop-sim/tree/main.

P-DSA was implemented over Zq with q = 231 − 1. P-
Max-Sum was implemented with 512-bit homomorphic en-
cryption.

In our experiments, we compared the quality of the solu-
tions issued by each of those two algorithms within a given
time frame. We used the following settings of the main pa-
rameters that affect the algorithms’ runtimes:

• Number of agents n ∈ {10, 20,30, 40, . . . , 100}.
• Domains’ size m ∈ {5,10, 15, 20, 25}. For simplicity,

we assumed that all domains have the same size m.

• Constraint density, d ∈ {0.2,0.4, 0.6, 0.8, 1.0} — the
fraction of constrained pairs of variables out of all

(
n
2

)
pairs.

To test the effect of each of those three parameters, we set the
other two to the value that is underlined in their respective set
of tested values and varied the value of the tested parameter.
For example, in testing the effect of the number of agents, we
set all domain sizes to be m = 10 and used constraint density
of d = 0.4 and then ran experiments with n ∈ {10, . . . , 100}.

We refer to each triple ⟨n,m, d⟩ as a configuration. In each
tested configuration, we evaluated both algorithms in the fol-
lowing manner: We selected a new random problem (where
a problem consists of the constraint graph as well as the con-
straint matrices), ran both algorithms on the same problem,
and evaluated the cost of their output after T = 1, 2, 3 min-
utes of execution. We repeated that experiment 20 times, and
we report the average of the costs obtained by each of the two
algorithms within each of the prescribed time frames.

In one set of experiments we used random constraint
graphs, where each graph is a random graph of n nodes in
which each pair of nodes is connected by an edge in probabil-
ity d. In another set of experiments we generated scale-free
random graphs [Barabási and Albert, 1999] with an initial
clique of size 5, and 4 backward edges for each additional
node. In all experiments, each constraint matrix was a ran-
dom m ×m matrix with entries that distribute uniformly on
the interval [0, 10].

Number of agents in random graphs. We compared the
average cost of solutions issued by each of the two algorithms
within each of the three prescribed time frames for a varying
number of agents n (where in all problems, the domain size
was m = 10 and the network density was d = 0.4). Ta-
ble 1 shows the average costs issued by the two algorithms
(rounded to the nearest integer). The symbol ⊥ indicates that
the algorithm did not manage to complete even one iteration
within the time frame.

We see the overwhelming advantages of P-DSA over P-
Max-Sum in terms of scalability and quality of solutions. In-
deed, while P-Max-Sum could not produce a solution within
1 minute already for n = 40 and could not produce a solu-
tion within 3 minutes for n ≥ 60, P-DSA was able to pro-
duce solutions within 1 minute for all n ≤ 60 and managed
to produce a solution within 3 minutes for all tested values
of n. Furthermore, the solutions produced by P-DSA were
better than those issued by P-Max-Sum by more than 50%
for n = 10 and by 20% for the largest problem in which P-
Max-Sum issued a solution. In addition, we see that P-DSA

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

T n = 10 20 30 40 50 60 70 80 90 100
1 27|66 207|330 591|783 1280|⊥ 2197|⊥ 3127|⊥ ⊥|⊥ ⊥|⊥ ⊥|⊥ ⊥|⊥
2 27|63 186|333 526|733 1121|1433 1944|⊥ 3023|⊥ 4361|⊥ 5796|⊥ ⊥|⊥ ⊥|⊥
3 27|59 178|318 494|763 1058|1362 1822|2299 2902|⊥ 4112|⊥ 5752|⊥ 7354|⊥ 9087|⊥

Table 1: Average costs obtained by P-DSA (left in each table cell) and P-Max-Sum (right) for problems in random graphs over a varying
number n of agents, within time frames of T = 1, 2, 3 minutes. The symbol ⊥ indicates that the algorithm did not manage to complete even
a single iteration within the time frame.

T n = 10 20 30 40 50 60 70 80 90 100
1 55|101 503|661 1496|⊥ 3083|⊥ 5211|⊥ 7732|⊥ ⊥|⊥ ⊥|⊥ ⊥|⊥ ⊥|⊥
2 53|118 467|683 1386|1671 2836|⊥ 4897|⊥ 7482|⊥ 10717|⊥ 14100|⊥ ⊥|⊥ ⊥|⊥
3 53|106 463|677 1325|1671 2740|⊥ 4652|⊥ 7260|⊥ 10321|⊥ 14069|⊥ 18095|⊥ ⊥|⊥

Table 2: Similar to Table 1 but with scale-free graphs.

always improves the quality of its output when allowed to run
for more time, while P-Max-Sum sometimes fluctuates (see,
e.g., its outputs when n = 30). That is why it is sometimes
executed with the anytime mechanism [Zivan et al., 2014]
that outputs the best solution visited throughout the run of
the algorithm. Such a mechanism has its overhead, and in
P-DSA, it appears that there is less need to apply it. (It is im-
portant to stress that P-DSA and P-Max-Sum issue the very
same intermediate and final assignments as DSA and Max-
Sum, respectively. Namely, the cryptographic layer protects
the underlying private information but does not alter it.)

T m = 5 10 15 20 25
1 560|714 591|783 669|⊥ 662|⊥ 715|⊥
2 550|722 526|733 570|830 587|⊥ 619|⊥
3 550|689 494|763 516|830 527|834 550|⊥

Table 3: Average costs obtained by P-DSA (left in each table cell)
and P-Max-Sum (right) for problems in random graphs over a vary-
ing domain size m, within time frames of T = 1, 2, 3 minutes.

T d = 0.2 0.4 0.6 0.8 1.0
1 254|316 591|783 980|⊥ 1353|⊥ 1784|⊥
2 198|317 526|733 889|1212 1244|1641 1645|2053
3 174|327 494|763 843|1179 1197|1588 1575|2023

Table 4: Average costs obtained by P-DSA (left in each table cell)
and P-Max-Sum (right) for problems in random graphs over a vary-
ing constraint density d, within time frames of T = 1, 2, 3 minutes.

Number of agents in scale-free graphs. We repeated the
previous experiment, but this time with scale-free graphs.
The results are given in Table 2. Here, too, we see that P-
DSA is more scalable and issues better solutions.
Domain size in random graphs. Here we fixed n = 30
and d = 0.4 and varied the domain size m. The results are
given in Table 3. As already demonstrated, P-DSA is more
scalable than P-Max-Sum and managed to issue outputs to
problems in which P-Max-Sum failed to complete even one
iteration within the same time frame. Moreover, when both
algorithms issued outputs, those of P-DSA had costs lower
than those of P-Max-Sum, with improvements ranging from
22% to 38%.

Constraint density in random graphs. Here we fixed n =
30 and m = 10 and varied the constraint density d. The
results are given in Table 4. As before, P-DSA issues so-
lutions with costs that are significantly lower than P-Max-
Sum’s (where in one configuration, the improvement was as
high as 47%). As for scalability, P-DSA’s runtime does not
depend on the network density since it operates on the com-
plete graph, where non-constrained pairs of agents are con-
nected by an edge with a zero constraint matrix. P-Max-Sum,
on the other hand, works on the original constraint graph,
and therefore, its runtime does depend on the network den-
sity. Hence, it failed to issue an output on dense networks for
which P-DSA did issue an output.

Due to lack of space we omit description of experiments
that compare the runtimes of P-DSA and the basic DSA, in
order to illustrate the price of privacy. We intend to include
such experiments in the full version of this study.

6 Conclusion
We presented here P-DSA – the first privacy-preserving im-
plementation of a DCOP algorithm that is based on lo-
cal search. It offers topology, constraint, and assign-
ment/decision privacy. The algorithm is much more scal-
able than P-Max-Sum, a privacy-preserving implementation
of another incomplete DCOP algorithm. It also offers so-
lutions with much better costs than those issued by P-Max-
Sum. Since P-DSA was able to solve in short time (3 min-
utes) problems involving as high as 100 agents, while all prior
studies on privacy-preserving DCOP algorithms report exper-
iments of much smaller scale and runtimes that are signifi-
cantly higher, P-DSA emerges as a suitable choice for solving
large-scale DCOPs in a privacy-preserving manner.

Our approach can also be extended to develop a privacy-
preserving version of MGM [Maheswaran et al., 2004], an-
other local search algorithm for DCOPs. Even though the
“basic plot” in MGM is similar to DSA’s, it is more involved
as the decision to update local assignments is taken based on a
competition among agents and not by a coin-toss. Implement-
ing the more intricate logic of MGM in a privacy-preserving
manner is a challenge that we intend to undertake in a future
research.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This work was partially supported by the Ministry of Innova-
tion, Science and Technology, Israel.

References
[Barabási and Albert, 1999] A.L. Barabási and R. Albert.

Emergence of scaling in random networks. Science,
286:509–512, 1999.

[Burke and Brown, 2006] D. Burke and K. Brown. A com-
parison of approaches to handling complex local problems
in DCOP. In Distributed Constraint Satisfaction Work-
shop, pages 27–33, 2006.

[Chida et al., 2018] K. Chida, D. Genkin, K. Hamada,
D. Ikarashi, R. Kikuchi, Y. Lindell, and A. Nof. Fast large-
scale honest-majority MPC for malicious adversaries. In
CRYPTO, pages 34–64, 2018.

[Damgård and Nielsen, 2007] I. Damgård and J.B. Nielsen.
Scalable and unconditionally secure multiparty computa-
tion. In CRYPTO, pages 572–590, 2007.

[Damle et al., 2024] S. Damle, A. Triastcyn, B. Faltings, and
S. Gujar. Differentially private multi-agent constraint op-
timization. Autonomous Agents and Multi-Agent Systems,
38, 2024.

[Doshi et al., 2008] P. Doshi, T. Matsui, M.C. Silaghi,
M. Yokoo, and M. Zanker. Distributed private constraint
optimization. In WI-IAT, pages 277–281, 2008.

[Faltings and Macho-Gonzalez, 2005] B. Faltings and
S. Macho-Gonzalez. Open constraint programming.
Artificial Intelligence, 161:1-2:181–208, 2005.

[Farinelli et al., 2008] A. Farinelli, A. Rogers, A. Petcu, and
N.R. Jennings. Decentralised coordination of low-power
embedded devices using the max-sum algorithm. In AA-
MAS, pages 639–646, 2008.

[Fioretto et al., 2016] F. Fioretto, W. Yeoh, and E. Pontelli.
Multi-variable agents decomposition for dcops. In AAAI,
volume 30, 2016.

[Fioretto et al., 2017] F. Fioretto, W. Yeoh, and E. Pontelli.
A multiagent system approach to scheduling devices in
smart homes. In AAAI workshops, 2017.

[Gershman et al., 2008] A. Gershman, A. Grubshtein,
A. Meisels, L. Rokach, and Roie Zivan. Scheduling
meetings by agents. In PATAT, 2008.

[Gershman et al., 2009] A. Gershman, A. Meisels, and
R. Zivan. Asynchronous forward bounding for distributed
COPs. Journal of Artificial Intelligence Research, 34:61–
88, 2009.

[Greenstadt et al., 2006] R. Greenstadt, J. Pearce, and
M. Tambe. Analysis of privacy loss in distributed con-
straint optimization. In AAAI, pages 647–653, 2006.

[Greenstadt et al., 2007] R. Greenstadt, B. Grosz, and M.D.
Smith. SSDPOP: improving the privacy of DCOP with
secret sharing. In AAMAS, pages 171:1–171:3, 2007.

[Grinshpoun and Tassa, 2016] T. Grinshpoun and T. Tassa.
P-SyncBB: A privacy preserving branch and bound DCOP
algorithm. Journal of Artificial Intelligence Research,
57:621–660, 2016.

[Grinshpoun et al., 2013] T. Grinshpoun, A. Grubshtein,
R. Zivan, A. Netzer, and A. Meisels. Asymmetric dis-
tributed constraint optimization problems. Journal of Ar-
tificial Intelligence Research, 47:613–647, 2013.

[Grinshpoun et al., 2019] T. Grinshpoun, T. Tassa, V. Levit,
and R. Zivan. Privacy preserving region optimal algo-
rithms for symmetric and asymmetric DCOPs. Artificial
Intelligence, 266:27–50, 2019.

[Grinshpoun, 2012] T. Grinshpoun. When you say (DCOP)
privacy, what do you mean? - categorization of DCOP
privacy and insights on internal constraint privacy. In
ICAART, pages 380–386, 2012.

[Grinshpoun, 2015] T. Grinshpoun. Clustering variables by
their agents. In WI-IAT, pages 250–256, 2015.

[Hirayama and Yokoo, 1997] K. Hirayama and M. Yokoo.
Distributed partial constraint satisfaction problem. In CP,
pages 222–236, 1997.

[Hirayama and Yokoo, 2005] K. Hirayama and M. Yokoo.
The distributed breakout algorithms. Artificial Intelli-
gence, 161:89–115, 2005.

[Katagishi and Pearce, 2007] H. Katagishi and J.P. Pearce.
KOPT: Distributed DCOP algorithm for arbitrary k-
optima with monotonically increasing utility. In DCR,
2007.

[Khakhiashvili et al., 2021] I. Khakhiashvili, T. Grinshpoun,
and L. Dery. Course allocation with friendships as an
asymmetric distributed constraint optimization problem.
In WI-IAT, pages 688–693, 2021.

[Kiekintveld et al., 2010] C. Kiekintveld, Z. Yin, A. Kumar,
and M. Tambe. Asynchronous algorithms for approximate
distributed constraint optimization with quality bounds. In
AAMAS, pages 133–140, 2010.

[Kim and Lesser, 2013] Y. Kim and V. Lesser. Improved
Max-Sum algorithm for DCOP with n-ary constraints. In
AAMAS, pages 191–198, 2013.

[Kogan et al., 2023] P. Kogan, T. Tassa, and T. Grinshpoun.
Privacy preserving solution of DCOPs by mediation. Arti-
ficial Intelligence, 319:103916, 2023.

[Krigman et al., 2024] S. Krigman, T. Grinshpoun, and
L. Dery. Scheduling of earth observing satellites using
distributed constraint optimization. Journal of Scheduling,
27:507–524, 2024.

[Kumar et al., 2008] A. Kumar, A. Petcu, and B. Faltings. H-
DPOP: Using hard constraints for search space pruning in
DCOP. In AAAI, pages 325–330, 2008.

[Léauté and Faltings, 2013] T. Léauté and B. Faltings. Pro-
tecting privacy through distributed computation in multi-
agent decision making. Journal of Artificial Intelligence
Research, 47:649–695, 2013.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Maheswaran et al., 2004] R.T. Maheswaran, J.P. Pearce,
and M. Tambe. Distributed algorithms for DCOP: A
graphical-game-based approach. In PDCS, pages 432–
439, 2004.

[Maheswaran et al., 2006] R.T. Maheswaran, J.P. Pearce,
E. Bowring, P. Varakantham, and M. Tambe. Privacy loss
in distributed constraint reasoning: A quantitative frame-
work for analysis and its applications. Autonomous Agents
and Multi-Agent Systems, 13:27–60, 2006.

[Modi et al., 2005] P.J. Modi, W.M. Shen, M. Tambe, and
M. Yokoo. ADOPT: asynchronous distributed constraint
optimization with quality guarantees. Artificial Intelli-
gence, 161:149–180, 2005.

[Nguyen et al., 2019] D.T. Nguyen, W. Yeoh, H.C. Lau, and
R. Zivan. Distributed gibbs: A linear-space sampling-
based DCOP algorithm. Journal of Artificial Intelligence
Research, 64:705–748, 2019.

[Nishide and Ohta, 2007] T. Nishide and K. Ohta. Multi-
party computation for interval, equality, and comparison
without bit-decomposition protocol. In PKC, pages 343–
360, 2007.

[Nissim and Zivan, 2005] K. Nissim and R. Zivan. Secure
DisCSP protocols - from centralized towards distributed
solutions. In DCR Workshops, 2005.

[Ottens et al., 2017] B. Ottens, C. Dimitrakakis, and B. Falt-
ings. DUCT: An upper confidence bound approach to dis-
tributed constraint optimization problems. ACM Transac-
tions on Intelligent Systems and Technology, 8:69, 2017.

[Petcu and Faltings, 2005] A. Petcu and B. Faltings. A scal-
able method for multiagent constraint optimization. In IJ-
CAI, pages 266–271, 2005.

[Rust et al., 2016] P. Rust, G. Picard, and F. Ramparany. Us-
ing message-passing DCOP algorithms to solve energy-
efficient smart environment configuration problems. In IJ-
CAI, pages 468–474, 2016.

[Savaux et al., 2020] J. Savaux, J. Vion, S. Piechowiak,
R. Mandiau, T. Matsui, K. Hirayama, M. Yokoo, S. El-
mane, and M. Silaghi. Privacy stochastic games in dis-
tributed constraint reasoning. Annals of Mathematics and
Artificial Intelligence, 88:691–715, 2020.

[Shamir, 1979] A. Shamir. How to share a secret. Commu-
nunications of the ACM, 22:612–613, 1979.

[Silaghi and Mitra, 2004] M.C. Silaghi and D. Mitra. Dis-
tributed constraint satisfaction and optimization with pri-
vacy enforcement. In IAT, pages 531–535, 2004.

[Silaghi et al., 2006] M.C. Silaghi, B. Faltings, and A. Petcu.
Secure combinatorial optimization simulating DFS tree-
based variable elimination. In AI&Math, 2006.

[Tassa et al., 2017] T. Tassa, T. Grinshpoun, and R. Zivan.
Privacy preserving implementation of the Max-Sum algo-
rithm and its variants. Journal of Artificial Intelligence
Research, 59:311–349, 2017.

[Tassa et al., 2021] T. Tassa, T. Grinshpoun, and A. Yanai.
PC-SyncBB: A privacy preserving collusion secure DCOP
algorithm. Artificial Intelligence, 297:103501, 2021.

[Teacy et al., 2008] W.T.L. Teacy, A. Farinelli, N.J. Grab-
ham, P. Padhy, A. Rogers, and N.R. Jennings. Max-sum
decentralised coordination for sensor systems. In AAMAS,
pages 1697–1698, 2008.

[Vion et al., 2022] J. Vion, R. Mandiau, S. Piechowiak, and
M. Silaghi. Integrating domain and constraint privacy rea-
soning in the distributed stochastic algorithm with break-
outs. Annals of Mathematics and Artificial Intelligence,
90:31–73, 2022.

[Yokoo and Hirayama, 2000] M. Yokoo and K. Hirayama.
Algorithms for distributed constraint satisfaction: A re-
view. Autonomous Agents and Multi-Agent Systems,
3:185–207, 2000.

[Yokoo et al., 2005] M. Yokoo, K. Suzuki, and K. Hirayama.
Secure distributed constraints satisfaction: Reaching
agreement without revealing private information. Artifi-
cial Intelligence, 161:229–246, 2005.

[Zhang et al., 2005] W. Zhang, G. Wang, Z. Xing, and
L. Wittenburg. Distributed stochastic search and dis-
tributed breakout: properties, comparison and applications
to constraint optimization problems in sensor networks.
Artificial Intelligence, 161:55–87, 2005.

[Zivan et al., 2014] R. Zivan, S. Okamoto, and H. Peled. Ex-
plorative anytime local search for distributed constraint
optimization. Artificial Intelligence, 212:1–26, 2014.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

