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Abstract

Neural operators have demonstrated promise in
modeling and controlling systems governed by Par-
tial Differential Equations (PDEs). Beyond PDEs,
Stochastic Partial Differential Equations (SPDEs)
play a critical role in modeling systems influ-
enced by randomness, with applications in finance,
physics, and beyond. However, controlling SPDE-
governed systems remains a significant challenge.
On the one hand, the regularity of the system’s state
(which can be intuitively understood as smooth-
ness) deteriorates, making modeling and general-
ization more challenging. On the other hand, this
stochasticity also renders control more unstable and
thus less accurate. To address this gap, we pro-
pose the Model-Based Closed-Loop Control Al-
gorithm (MB-CC), the first model-based closed-
loop control method for SPDEs. MB-CC intro-
duces two key innovations to enhance control ro-
bustness and efficiency: a Regularity Feature (RF)
block and a closed-loop strategy with an operator-
encoded policy network. The RF block, inspired by
the regularity structure theory of SPDEs, addresses
noise-induced irregularities by transforming the
network’s input—including the system state and
noise-perturbed external forces—into a refined fea-
ture space for improved forward prediction. Com-
pared to previous works using regularity features,
we introduce a new parameterization, data augmen-
tation, and extend the RF block as a plug-and-play
component. Additionally, to achieve closed-loop
control, we introduce an operator-encoded policy
network to map the current state to optimal control,
which integrates physical priors and swiftly makes
decisions based on states returned by the environ-
ment. We conduct a systematic evaluation of MB-
CC on two notable SPDEs, showcasing its effec-
tiveness and efficiency. The ablation studies show
its ability to handle stochasticity more effectively.

∗Corresponding author.
Extended version: https://arxiv.org/abs/2505.05521.

1 Introduction
The simulation and control of stochastic partial differential
equations (SPDEs) are essential in both scientific and en-
gineering areas due to SPDEs’ ability to model dynamic
systems with stochasticity. For instance, SPDEs model
the evolution of financial derivatives and asset prices, in-
corporating market volatility and uncertainty, in quantita-
tive finance [Baudoin, 2002; McCauley, 2013; Braumann,
2019]. The stochastic Navier-Stokes equation is widely used
to describe turbulence, including ocean currents and atmo-
sphere [Mikulevicius and Rozovskii, 2004; Duan et al., 2002;
Sritharan, 1996]. These applications demonstrate the im-
portance of SPDEs in accurately representing dynamic sys-
tems influenced by stochastic processes [Tleubergenov and
Ibraeva, 2019; Cristofol and Roques, 2017; Higham, 2001;
Rüemelin, 1982].

Meanwhile, with rapid developments of deep learning,
solving and controlling PDEs and SPDEs with neural net-
works is more and more popular. On the one hand, the
combination of deep learning and control raises both the
speed and accuracy [Hwang et al., 2021; Holl et al., 2020;
Zhao et al., 2022] compared with traditional methods. On
the other hand, models for SPDEs are constructed specifically
under the consideration of normal models’ failure to handle
the coarse noise [Salvi and Lemercier, 2021; Hu et al., 2022;
Gong et al., 2023].

Although deep-learning-based methods are proposed for
PDE control, most existing methods are open-loop and thus
lack accuracy [Yang et al., 2021; Pakravan et al., 2021;
Hwang et al., 2021; Yu et al., 2022]. Also, despite all these
emerging methods, it is difficult to apply these approaches di-
rectly to SPDEs’ control. As mentioned before, random forc-
ing is a common situation while solving control problems,
however, the low regularity of random forcing, affecting both
the control’s stability and learning’s accuracy, renders it a
challenging issue, which leads to the necessity of developing
control methods aimed at SPDEs.

In this work, we propose a Model-Based Closed-Loop
Control Algorithm (MB-CC) specifically for efficient and ro-
bust SPDE control. Given the increasing demand for the ac-
curacy, robustness, and stability of control algorithms, we
consider this problem from two perspectives: one is how to
better model the forward dynamics, and the other is how to
achieve greater stability and accuracy in control. Firstly, we
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design a modified RF block in order to develop a more ad-
vanced and robust neural operator for the following control
task, overcoming the stochastic challenge. This block en-
ables the model to better handle the low regularity caused by
noise terms, and also embeds physical information more ef-
fectively, thereby enhancing generalization ability. Secondly,
in order to enhance control efficiency and robustness, we then
propose an operator-encoded policy net using the differen-
tiability of the RF block. The introduction of an operator-
encoded policy net incorporates the physical information con-
tained in the operator and offers the benefit of feedback, en-
abling real-time adjustments for improved accuracy and sta-
bility in response to dynamic changes. These aspects result in
the accurate and fast Model-Based Closed-Loop Control Al-
gorithm (MB-CC). Furthermore, this framework can be read-
ily integrated with commonly utilized network architectures,
demonstrating its versatility and broad applicability. As for
experiments, we choose the famous stochastic 1-D reaction-
diffusion equation and 2-D Navier-Stokes equation, and eval-
uate MB-CC and baselines on tracking problems, which im-
pose higher demands on the generalization ability. Our con-
tributions can be summarized as follows:

• Modeling inspired by stochasticity: In order to more
accurately model the nonlinear dynamics affected by
stochasticity, we introduce the Regularity Feature (RF)
block, which is able to deal with the low regularity of
stochastic noise in SPDEs specifically. Furthermore, we
design the data augmentation and enhance its compati-
bility with various backbones. Additionally, its differen-
tiability is essential in the training of the policy net.

• Closed-loop control: Different from the open-loop
methods before, the operator-encoded policy net is
adopted in our method. Firstly, it helps the algorithm
better handle stochasticity because it encodes the phys-
ical information and can adjust the next control action
based on the current state affected by the noise. Sec-
ondly, it eliminates the need for optimization during con-
trol, allowing for the generation of control sequences in
a very short time.

• Experiments: We conduct experiments on important
and common equations, including the 1-D stochas-
tic reaction-diffusion equation and the 2-D stochastic
Navier-Stokes equation. The results demonstrate that
MB-CC can significantly improve control outcomes, in-
cluding both accuracy and speed.

2 Related Work
AI for (S)PDE simulation There are two categories of
methods that utilize deep learning techniques to simulate
PDEs. Some works take neural networks to directly ap-
proximate the solution function by training them with phys-
ical losses, such as the residual of PDEs or the modified
variational form of residual, that represent the PDEs [Raissi
et al., 2019; Yu and others, 2018]. Others focus on de-
signing neural operators that can learn operators from the
problem functions to the solution functions to solve a se-
ries of parametric PDEs [Li et al., 2021; Lu et al., 2021;

Li et al., 2020; Tripura and Chakraborty, 2022]. For SPDEs,
taking into account the unique characteristics of inherent
noise, several studies have proposed neural operators specif-
ically tailored to solve SPDEs. Neural SPDEs propose a
model to simulate SPDEs with the consideration of stochas-
ticity [Salvi et al., 2022], while the DLR-Net utilizes regu-
larity features to enhance the performance [Hu et al., 2022;
Gong et al., 2023].

Traditional PDEs control methods In the control theory,
the functional gradient is obtained through the Fréchet deriva-
tives whose calculation is quite computationally expensive.
Based on the previous work [Lions and Magenes, 2012],
[Chavent, 1974] proposes the adjoint method based on the
adjoint state to compute the functional gradient without the
need for Fréchet derivatives, which is a mainstream way for
PDE control problems. Other recent works improve the ef-
ficiency of Fréchet derivative’s calculation [Zhou and Lu,
2024]. Furthermore, another well-known control method
is Proportional Integral Derivative (PID) [Ang et al., 2005;
Li et al., 2006] control, which controls a system by continu-
ously calculating and adjusting the control input to minimize
the difference between a desired state and the actual pro-
cess. As a common single-input single-output (SISO) con-
trol method, the PID is difficult to directly apply to multiple-
input multiple-output (MIMO) systems. Its application to the
MIMO system often requires additional decoupling and tar-
get planning modules. Therefore, although effective in some
scenarios, it is only applicable to a limited range of problems.

AI for (S)PDE control Compared with traditional meth-
ods, deep learning dramatically speeds up the process of con-
trol. Most works focus on PDE-constrained control problems.
Some researchers propose a hierarchical scheme consisting of
a predictor network and a control network [Holl et al., 2020].
Another approach consists of two stages: a surrogate model
is trained in the first stage and the control is set as a learnable
parameter in the second stage [Hwang et al., 2021]. Besides,
[Wei et al., 2024] and [Hu et al., 2024] propose a genera-
tive control method that generates the control sequences and
state trajectories simultaneously. There is also an open-source
project with various control environments and learning-based
controllers [Zhang et al., 2023]. However, these approaches
are not directly applicable to SPDEs, as the stochastic nature
introduces high complexity and difficulty in addressing con-
trol issues. For systems with inherent stochasticity, there has
been little work focusing on their control problems. [Zhang
et al., 2022] address the control of SDEs by introducing the
exponential stabilizer (ES) based on stochastic Lyapunov the-
ory and the asymptotic stabilizer (AS) based on stochastic
asymptotic stability theory. [Pirmorad et al., 2021] considers
SPDEs but directly uses the deep deterministic policy gra-
dient (DDPG) algorithm from reinforcement learning, only
making a preliminary attempt with the stochastic Burgers’
equation. In contrast, our work specifically designs the algo-
rithm to address the stochasticity of SPDE systems and con-
ducts more comprehensive experiments.
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3 Preliminary
In this section, we introduce the background and notations
used throughout this work.

3.1 Regularity Structure of SPDEs
In this work, we consider an SPDE on [0, T ]×D as follows

∂tu− Lu = µ(u, ∂1u, · · ·, ∂du) + f + σ(u, ∂1u, · · · , ∂du)ξ,
u(0, x) = u0(x), (1)

where x ∈ D ⊂ Rd, t ∈ [0, T ], L is a linear differential
operator, f is the deterministic forcing term, ξ is the random
forcing, u0 : D → R is the initial condition. u, f is in the
Banach space U and F respectively.

Under local Lipschitz condition on µ, σ with respect to
suitable norm, this SPDE has a unique mild solution [Hairer,
2014; Salvi and Lemercier, 2021]:

ut = etLu0 +

∫ t

0

e(t−s)Lµ(us, ∂1us, · · · , ∂dus)ds

+

∫ t

0

e(t−s)L(f + σ(us, ∂1us, · · · , ∂dus)ξ)ds. (2)

According to the representation of the mild solution above,
we define two linear operators I[f ](t) =

∫ t

0
e(t−s)Lf(s)ds

and Ic[u0](t) = etLu0 for any function defined on [0, T ]×D
to Rd. Like in PDEs, using Picard theorem, we can get the
following recursive sequence that can approximate the solu-
tion u of equation (1) as n → ∞

u0
t = Ic[u0]t, un+1

t = Ic[u0]t + I[µ(un) + f + σ(un)ξ]t.
(3)

Then using Taylor expansion, another recursive sequence ap-
proximates u as m, l, n → ∞, where µ(k) denotes the k-th
derivative of µ:

u0,m,l
t = Ic[u0]t, (4)

un+1,m,l
t = Ic[u0]t +

m∑
k=0

µ(k)(0)

k!
I[(un,m,l)k]t + I[f ]t

(5)

+
l∑

k=0

σ(k)(0)

k!
I[(un,m,l)kξ]t.

It is then revealed that the solution of SPDE can be
approximated by a weighted sum of the features I[f ],
I[(un,m,l)k], I[(un,m,l)kξ], l = 0, · · · , k;m = 0, · · · , k.

3.2 Problem Setup
In this work, we aim to solve the control problem optimally
and efficiently. Considering the stochastic dynamical system
in the equation (1), we can define the tracking error of the
SPDE-constraint problem as follows:

e(u0, u
∗, f, ξ)

=etrack(u0, u
∗, f, ξ) + eenergy(f)

=||ut(u0, f, ξ)− u∗||L2((0,T ]×D) + α||f ||L2([0,T ]×D),

Figure 1: Overview of the Model-Based Closed-Loop Control Al-
gorithm (MB-CC).

where u0 is the initial condition, u∗ is the function describ-
ing the target state of the system, f is the deterministic ex-
ternal forcing that we can control and apply to the system, ξ
is the random noise (usually space-time white noise), ut is
the time-dependent states depending on u0, f and ξ, and α is
the coefficient used to adjust the weight of two terms. The
first term constrains the system to the target state, while the
second limits the norm of external forcing. Intuitively, the
problem is to control the system state approach and track the
target using minimal external force. Notably, this problem is
challenging because it requires the system to reach the target
state as quickly as possible, a scenario that rarely appears in
the training set.

Due to the appearance of random forcing, we consider the
error in the sense of expectation:

ê(u0, u
∗, f) = E

ξ
[e(u0, u

∗, f, ξ)].

Thus the tracking problem is formally described as

min
f∈F

ê(u0 , u
∗, f ). (6)

4 Methodology
In this section, we will introduce our proposed Model-Based
Closed-Loop Control Algorithm (MB-CC) as shown in Fig-
ure 1, which has the following two parts: modeling with our
design RF block and operator-encoded control.

4.1 Modeling Inspired by Stochasticity
The architecture of the entire model, which learns the forward
dynamics, consists of two components.

Figure 2: Overall architecture of the combination of the RF block
and the base model.
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Figure 3: Visualization of results on the stochastic reaction-diffusion equation. The figure shows the visualized results of controlling three
samples using MB-CC, results using CNN & OpenLoop, and the control targets. It is obvious that the results controlled by MB-CC are
significantly closer to the target.

Regularity Structure Features. Due to the prominence
of the regularity structure theory in the analysis of SPDEs
[Hairer, 2014], we choose regularity structure vectors as fea-
tures for the model. We incorporate the RF block, which
maps the initial condition u0 and forcing f̃ (the collection
of the deterministic forcing f and random forcing ξ) to regu-
larity structure vectors.

These regularity structure vectors form the feature set
Sn,m,l, and are generated and computed iteratively as Algo-
rithm 1. The outer loop corresponds to the number of Picard
iterations. In each Picard iteration, we first compute the set of
integrands, Z , that appear in the Taylor expansion, followed
by a discrete time-step iteration to calculate the time integral
of each element in Z .

Algorithm 1 Generation of Regularity Structure Features

Input: Initial feature sin, forcing f̃
Parameter: Height n,m, l, discretized operator Ldis, time
grid points t0, · · · , tK−1

Output: sout = Sn,m,l(s
in, f̃)

1: Initial function set S0,m,l = {sin}
2: for p = 1, · · · , n do
3: Generate set Zp,m,l = {f̃ j

∏k
i=1 ∂

aisi : si ∈
Sp−1,m,l, ai, j ∈ {0, 1}, k ∈ N, 1 ≤ k+ j ≤ mIj=0+
ℓIj>0}

4: for k = 0, 1, · · · ,K − 1 do
5: For z ∈ Zp,m,l, I[z]tk+1

= (I[z]tk +ztk · δt) · (Id−
Ldis · δt)−1

6: end for
7: Sp,m,l = {I[z], z ∈ Zp,m,l} ∪ Sp−1,m,l

8: end for

The parameters n,m, and l are hyperparameters we select,
which affect the number of vectors in Sn,m,l. The initial fea-
ture sin = Ic[u0], the final output is sout = Sn,m,l(s

in, f̃),
which contain NS features (NS is decided by the hyperpa-
rameters n,m and l). The discretized operator Ldis is the

discretization of the operator in the SPDE from the equa-
tion (1), implemented using the finite difference numerical
method. We provide an example of Ldis in Appendix D.

These features enable the model to better handle the issue
of low regularity caused by noise terms, and it embeds the
crucial physical information of the operator, thereby enhanc-
ing the model’s ability to represent stochastic systems.
Model Architecture. We base our design on equation (5)
to reasonably and effectively integrate the features with the
backbone network. According to the equation (5), the linear
combination of the regularity structure features is actually the
first NS term of the Taylor expansion. In consequence, we let
the backbone neural network Wθ with weights θ only be used
to approximate the residual part caused by the truncation of
the Taylor expansion, which means the output ũ of the entire
model can be represented as

ũθ = θ1s
out +Wθ2(s

out,O), (7)
where O is the concatenation of the space and time grid, θ1 ∈
RNS and θ2 are the weights learned through training.
Data Augmentation. In addition, the transformation from
the initial condition and forcing to regularity features causes
the data of different time steps to separate from each other,
which makes the model with the RF block have difficulty fit-
ting data far away from the most. As a result, according to the
training error of the model trained with raw data, we address
this issue by increasing the proportion of difficult-to-fit data
in the dataset through duplication.
Plug-and-Play Component. Besides, we extend the RF
block as a plug-and-play component, which is part of our
proposed algorithm framework. The backbone model can
be changed to any suitable neural network architecture, for
instance, using either Convolutional Neural Network (CNN)
[O’shea and Nash, 2015], Fourier Neural Operator (FNO) [Li
et al., 2021], or other neural operators. In our experiments,
we test this component in combination with different network
architectures. Results show that, regardless of the backbone
network model used, our proposed framework achieves sig-
nificant improvements.
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4.2 Closed-Loop Operator-Encoded Control
Closed-Loop Control. Open-loop control algorithms func-
tion without utilizing feedback to adjust their inputs, result-
ing in a significant drawback: the absence of error correction.
This limitation leads to reduced accuracy and adaptability in
response to changes or disturbances in the system, particu-
larly in stochastic systems. To overcome the aforementioned
limitations of open-loop control, we present a policy net, in-
spired by reinforcement learning algorithms [Lillicrap et al.,
2015; Schulman et al., 2017; Haarnoja et al., 2018], that maps
from the state to the optimal control in order to decide the
next control action based on the current state in the closed-
loop control manner.

Operator-Encoded Policy Net Pγ . By rearranging the
terms in Equation 1, we can obtain

f = ∂tu− Lu− µ(u, ∂1u, · · · , ∂du)
− σ(u, ∂1u, · · · , ∂du)ξ.

From this, it can be seen that the external force term f in-
volves Lu, which inspires us to embed operator information
into the design of the policy net. We use Ldis as introduced in
the previous section. For the current state ut, we concatenate
ut and Ldisut, creating a tensor embedded with operator in-
formation that is used as input of the policy net. For the target
state uT , we perform the same operation. Due to the inclusion
of SPDE physical information in the operator, as introduced
in the previous section, we not only enhance the network’s
performance but also significantly improve its generalization
ability by encoding key physical information.

Loss Function. Fed into the current state ut, target state uT

and time t, the policy net Pγ(ut, uT , t) outputs the action ft.
As the optimization problem is in the sense of expectation, we
use the mean of multiple samples to approximate the expecta-
tion. Consequently, we generate enough number of different
random noise ξi(i = 1, · · · , N) and calculate the mean of re-
sults using the model’s predicted states uθ. The loss function
of the policy net is then defined as

L(u0, uT )

=
1

N

N∑
i=1

(||ũt,θ(u0, Pγ(ũt, uT , t), ξi)− uT ||L2((0,T ]×D)

+ α||Pγ(ũt, uT , t)||L2([0,T ]×D)), (8)

where γ is the learnable weights of the policy net,
ũt,θ(u0, Pγ(ũt, uT , t), ξi) is simulation of the physical sys-
tem’s states.

Data. Our work is data-efficient, demonstrating in two as-
pects. Firstly, the training data of the policy net Pγ are same
as that used to train the operator model before, which means
no additional data are needed in training the policy net. Sec-
ondly, we can even only use u0 and uT random sampled from
the data distribution without the force term f . Therefore,
throughout the process, we use the model’s prediction ũθ to
simulate the trajectories rather than interact with the environ-
ment, as it is supposed to be close enough to the environment.

Model Error

RF-CNN 0.0115 = 0.0106 + 0.0003 + 0.0002 + 0.0003
CNN 0.0182 = 0.0163 + 0.0010 + 0.0004 + 0.0006
RF-FNO 0.0029 = 0.0001 + 0.0004 + 0.0003 + 0.0021
FNO 0.0138 = 0.0001 + 0.0020 + 0.0014 + 0.0104

Table 1: Results of modeling the stochastic reaction-diffusion
equation. The four terms of the relative error are reconstruction
error of f, u0, u1, and prediction error (underline). The best results
are highlighted in bold.

5 Experiment
In this section, we aim to address the following question:
Do the two major parts of MB-CC contribute to improve
the performance of SPDEs control? Specifically, can they
effectively improve the handling of noise? Therefore, we
evaluate our method on the tracking problem of two widely-
used SPDEs, including the stochastic reaction-diffusion equa-
tion with linear multiplicative forcing and the 2-D stochastic
Navier-Stokes equation with additive noise. On each equa-
tion, fifty tasks are tested to provide sufficient evidence of the
answer. The objective of each task is sampled from the distri-
bution of the system state at the last time step in the training
data. The tracking problem aims for the algorithm to output
control signals that keep the system’s state close to the target
at all times, which is a challenging out-of-distribution prob-
lem. We provide our code in the supplementary materials.

The performance of modeling and control is evaluated and
reported, respectively. Through the experiments, we respec-
tively take CNN [O’shea and Nash, 2015] and FNO [Li et
al., 2021] as the backbone of our proposed method with RF
block. The naive CNN and FNO are applied as the base-
line methods to show the improvement using RF block while
demonstrating its plug-and-play ability. Specifically, follow-
ing the methodology of the previous work [Hwang et al.,
2021], we employ these two models as auto-regressive mod-
els to learn the state transitions between single steps. Addi-
tionally, the models simultaneously output the input f and u0

to calculate the reconstruction loss. To show the comprehen-
sive advantages of our framework, we apply open-loop con-
trol using CNN, FNO, RF-CNN, RF-FNO, and Soft Actor-
Critic (SAC) [Haarnoja et al., 2018] as baseline methods to
show the superior performance of our proposed policy net
with respect to three metrics: L2 relative error, objective loss
ê, and time.

5.1 1-D Stochastic Reaction-Diffusion Equation
We first evaluate our method on the reaction-diffusion equa-
tion with multiplicative forcing as in [Chevyrev et al., 2024]
with the Dirichlet boundary, which is critical in many fields,
including environmental science, energy development, and
fluid mechanics. The form is given by

∂tu− ν∆u = 3u− u3 + f + σuξ, (t, x) ∈ [0, T ]×D

u(t, x) = 0, (t, x) ∈ [0, T ]× ∂D

u(0, x) = u0(x),
(9)

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Model Method ê êtrack êenergy

RF-CNN Open Loop 0.0780 0.0504 0.0276
RF-CNN Policy Net 0.0658 0.0359 0.0299
CNN Open Loop 0.2035 0.1872 0.0163
CNN Policy Net 0.1258 0.1003 0.0255
RF-FNO Open Loop 0.1284 0.1002 0.0282
RF-FNO Policy Net 0.1126 0.0866 0.0260
FNO Open Loop 0.5865 0.5711 0.0153
FNO Policy Net 0.1208 0.0879 0.0329
SAC Policy Net 2.5924 2.5631 0.0292

Table 2: Results of tracking problems on the stochastic reaction-
diffusion equation. The table records the objective loss ê, consist-
ing of the tracking loss êtrack, which measures the distance of the
trajectory and the target state, and the energy loss êenergy . The best
results are highlighted in bold.

Model Open Loop Policy Net

RF-CNN 367.40 0.25
CNN 54.35 0.31
RF-FNO 67.83 0.30
FNO 44.10 0.25

Table 3: Mean inference time on the stochastic reaction-diffusion
equation. The unit is seconds (s).

where ν = 0.1 is the viscosity parameter, ξ is the smoothed
space-time white noise scaled by σ = 0.05. We first generate
the space-time white noise using the numerical simulator as
the previous work [Chevyrev et al., 2024], the noise is then
smoothed using the moving average algorithm with window
size 3. We choose D = [0, 1], T = 1, and take 64 space
grid points and 11 time grid points uniformly. Besides, u0(x)
and f are randomly sampled from a distribution following the
previous work [Hwang et al., 2021].

As for these models’ training, we train RF-CNN, CNN,
RF-FNO, and FNO with 4000 trajectories, respectively, while
testing on 500 trajectories. The relative L2 errors of CNN,
RF-CNN, FNO, and RF-FNO are shown in Table 1, from
which it is obvious that models with the RF block have much
more accuracy of prediction, which verifies that our intro-
duced modeling inspired by stochasticity can enhance the
model’s ability to handle the complex stochastic system with
low regularity.

Model Error

RF-CNN 0.0326 = 0.0050 + 0.0122 + 0.0057 + 0.0096
CNN 0.0784 = 0.0154 + 0.0327 + 0.0068 + 0.0235
RF-FNO 0.0061 = 0.0004 + 0.0000 + 0.0000 + 0.0056
FNO 0.0124 = 0.0010 + 0.0006 + 0.0005 + 0.0103

Table 4: Results of modeling the stochastic Navier-Stokes equa-
tion. We train RF-CNN, CNN, RF-FNO, and FNO with 400 trajec-
tories respectively, while testing on 500 trajectories. The four terms
of the relative error are reconstruction error of f, u0, u1, and predic-
tion error (underline). The best results are highlighted in bold.

Model Method ê êtrack êenergy

RF-CNN Open Loop 14.7297 13.9981 0.7316
RF-CNN Policy Net 8.2239 7.6071 0.6168
CNN Open Loop 20.8153 20.3278 0.4875
CNN Policy Net 12.5431 12.0509 0.4921
RF-FNO Open Loop 7.8103 6.9416 0.8686
RF-FNO Policy Net 1.7775 0.9253 0.8522
FNO Open Loop 44.8132 43.6540 1.1592
FNO Policy Net 2.9588 2.4274 0.5314
SAC - 121.2406 115.2638 5.9768

Table 5: Results of tracking problems on the stochastic Navier-
Stokes equation. The table records the objective loss ê, consisting
of the tracking loss êtrack and the energy loss êenergy . The best
results are highlighted in bold.

As for control, we take 4000 trajectories to train the policy
net. As mentioned before, the objective function of the track-
ing problem is defined as equation (8). In this setting, we take
α = 0.01 and N = 50. Figure 3 presents the visualizations of
the system controlled by MB-CC and open-loop CNN, from
which we can observe that MB-CC’s results are much closer
to the target states. More visualizations can be found in the
supplementary material. Besides, we provide detailed results
in Table 2, including ê, êtrack, êenergy . It clearly indicates
that the introduction of both the RF block and the policy net
can notably enhance the performance, which is a test of our
previous statement. In addition, MB-CC, due to its special-
ized design for SPDE systems, is able to outperform the rein-
forcement learning SAC algorithm.

We also provide the meantime of solving these tracking
tasks in Table 3, from which we can observe that the policy
net incredibly speeds up the process of control.

5.2 2-D Stochastic Navier-Stokes Equation
Next, we consider the important 2-D Navier-Stokes equation
for a viscous, incompressible fluid in vorticity form:

∂tw − ν∆w = −u · ∇w + f + σξ, (t, x) ∈ [0, T ]×D

w(t, 0) = w(t, 1), (Periodic BC) (10)
ω(0, x) = ω0(x)

where u is the 2-D velocity field, ω = ∇× u is the vorticity,
the viscosity parameter ν = 0.02, σ = 10−5, T = 1, D =
[0, 1]2. ω0 and f are sampled from the 2-D form of the initial
condition’s and forcing’s distribution in the reaction-diffusion
equation. The smoothing algorithm of noise ξ is the same as
above. The generation of 2-D space-time white noise and the
numerical solver follow [Salvi and Lemercier, 2021]. When
collecting the data, we take the pseudo-spectral method on
40 × 40 space grid and 200 time grid to solve the equation
and then downsample the solution every 20 time steps.

For the learning of CNN, FNO, RF-CNN, and RF-FNO,
we take 400 data, a smaller amount of data, to train and 500
data to test. Results in Table 4 further verify that the model
improved by the RF block better captures and models systems
with inherent stochasticity.

On this SPDE, we consider α = 100 and N = 20. In
addition, we again train the policy net with 4000 data. The
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Model Method σ = 0.05 σ = 1
ê êtrack êenergy ê êtrack êenergy

RF-CNN Open Loop 0.0782 0.0507 0.0276 0.5501 0.5150 0.0351
RF-CNN Policy Net 0.0658 0.0360 0.0298 0.0767 0.0460 0.0307
CNN Open Loop 0.2035 0.1872 0.0163 0.6533 0.6295 0.0238
CNN Policy Net 0.1258 0.1003 0.0255 0.1378 0.1115 0.0263

Table 6: Control results with different scales of the space-time white noise. We choose noise scaled by σ = 0.05 and 1, and test four
methods on these two systems.

Model Open Loop Policy Net

RF-CNN 81.78 0.09
CNN 59.44 0.02
RF-FNO 29.64 0.10
FNO 39.69 0.09

Table 7: Mean time of solving tracking problems on the stochas-
tic Navier-Stokes equation. The unit is seconds (s).
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Figure 4: Training and testing the forward models with different
scales of the space-time white noise.

detailed control results are reported in Table 5, from which it
is obvious that our proposed MB-CC framework still achieves
the best performance, which confirms that our proposed spe-
cialized design for SPDE is both reasonable and effective.

As for time efficiency, it can be observed that the policy
network, compared with open-loop control, can still signifi-
cantly reduce the time required for inference.

5.3 Further Analysis
In this subsection, we want to further analyze and discuss sev-
eral questions: (1) Is the effectiveness of MB-CC related to
the choice of the base model? (2) Does the improvement
brought by MB-CC truly come from its ability to handle
stochasticity more effectively? (3) Is the enhanced model-
ing capability caused by the RF block due to its improved
handling of stochasticity?

To answer the first question, this essentially considers how
well MB-CC generalizes across different base models. Re-
ferring to Table 2 and Table 5, we can see that MB-CC con-
sistently shows significant performance improvements when
CNN or FNO is used as the base model. Furthermore, if we
control for variables and consider only the RF block or the
operator-encoded policy net, both can independently enhance

control performance.
As for the second question, we show the results of an ab-

lation study on the 1-D stochastic reaction-diffusion equation
to further validate our proposal that this framework is par-
ticularly suitable for systems with stochasticity. Since the
stochasticity of the system is caused by the noise term ξ, we
adjust the coefficient σ, which determines the scale of the
system’s noise.

Therefore, we choose a higher σ = 1 and directly test RF-
CNN and CNN trained with the σ = 0.05 dataset in both
Open Loop and Policy Net scenarios again. This task re-
quires the model to not only accurately simulate dynamics
with higher noise levels but also make effective decisions and
adjustments based on new states. Results in Table 6 demon-
strate that compared to other methods, the approach com-
bined with MB-CC shows more stable control results when
σ increases. This indicates that the introduction of MB-CC
indeed enhances the algorithm’s ability to handle stochastic-
ity more effectively.

For the third question, we conduct another ablation study,
where we choose higher σ to train and test RF-FNO and FNO.
Results with σ = 0.05, 0.2, 0.3, 0.5 are plotted in Figure 4,
showing that as σ increases, the prediction error of FNO sig-
nificantly rises, whereas RF-FNO consistently maintains a
very low error level. This demonstrates the strong capabil-
ity of the RF block to enhance the model’s ability to handle
stochasticity.

To sum up, both two ablation studies show that MB-CC
indeed helps the algorithm better handle stochasticity, leading
to significant improvements in SPDE control.

6 Conclusion
In this paper, we propose a novel control framework MB-
CC to solve the SPDE-constraint control problems. The
SPDE control is challenging, since the deterioration of the
system’s state regularity complicates modeling and general-
ization, while the stochasticity also makes open-loop con-
trol more unstable and less accurate. To address these chal-
lenges, we introduce two major components in MB-CC:
stochasticity-inspired modeling based on regularity structure
theory and closed-loop control achieved through the operator-
encoded policy net. Compared with baselines, our method is
evaluated on well-known SPDEs, including the 1-D stochas-
tic reaction-diffusion equation and 2-D stochastic Navier-
Stokes equation, and performs well in both forward modeling
and control. In the future, we plan to combine MB-CC with
more diverse and larger architectures to control more com-
plex stochastic systems.
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