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Abstract
Audio adversarial examples impose acoustically
imperceptible perturbations to clean audio exam-
ples, fooling classification models into producing
incorrect results. Transferability is a critical prop-
erty of audio adversarial examples, making black-
box attacks applicable in practice and attracting in-
creasing interest. Despite recent studies achiev-
ing transferability across models within the same
domain, they consistently fail to achieve transfer-
ability across different domains. Given that time-
domain and frequency-domain models are the two
predominant approaches in audio classification, we
observe that adversarial examples generated for
one domain demonstrate significantly constrained
transferability to the other. To address this limi-
tation, we propose an Adaptive Inter-domain En-
semble (AIE) attack, which integrates transferable
adversarial information from both domains and
dynamically optimizes their contributions through
adaptive weighting, improving the cross-domain
transferability of audio adversarial examples. Ex-
tensive evaluations on diverse datasets consistently
demonstrate that AIE outperforms existing meth-
ods, establishing its effectiveness in enhancing ad-
versarial transferability across domains.

1 Introduction
Deep neural networks (DNNs) have achieved exceptional per-
formance in audio classification tasks [Sadovsky et al., 2023;
Liu et al., 2024; Choi et al., 2025; Gazneli et al., 2022;
Berg et al., 2021]. However, they have been demonstrated
to be vulnerable to audio adversarial examples, which are
maliciously crafted by imposing acoustically imperceptible
perturbations on clean audio examples to result in erro-
neous predictions [Goodfellow et al., 2015; Hai et al., 2023;
Huang et al., 2023; Ma et al., 2023a; Jin et al., 2024]. Numer-
ous works suggest adversarial examples exhibit cross-model
transferability, i.e., those crafted against one surrogate model
can also mislead other models. This property makes black-
box attacks practically effective, posing significant threats to

∗ Corresponding author.

safety-critical applications. This paper focuses on investigat-
ing the transferability of audio adversarial examples because
of their practicality.

There are two approaches, gradient-optimization [Fang
et al., 2024; Zhu et al., 2023; Zhang et al., 2023] and
model ensemble [Tang et al., 2024; Chen et al., 2023a;
Ma et al., 2023b] to improve the transferability of adver-
sarial examples in the image field. Transferable audio ad-
versarial attacks are inspired by these similar methods [Tri-
pathi and Mishra, 2022; Abdoli et al., 2019; Koerich et al.,
2020]. However, we observe that the generated audio ad-
versarial examples face a critical limitation, i.e., they ex-
hibit low transferability across different domains, specifi-
cally the time and frequency domains [Chen et al., 2024].
Typically, audio classification models are categorized into
time-domain models [Wang et al., 2023; Zeng et al., 2021;
Abdallah et al., 2022] and frequency-domain models [Gong
et al., 2021; Liu et al., 2024; He et al., 2024] according to
the input form. We find that audio adversarial examples gen-
erated by attacking a time domain surrogate model exhibit
very limited transferability to frequency domain black-box
models, as illustrated in Figure 1a. This limitation could
be attributed to changes in data distribution introduced by
the time-frequency transformation and the architectural dif-
ferences between models. Moreover, the nonlinearity of the
time-frequency transformation makes the exact inversion of
perturbations from spectrograms back to audio intractable,
consequently, adversarial examples crafted directly in the
frequency domain are less likely to transfer to time-domain
models, as shown in Figure 1b.

The above observations motivate us to dive into the ques-
tion: How can collective transferable adversarial informa-
tion from both domains be effectively captured and directly
used to generate perturbations on the audio waveform? To
cope with this problem, we investigate performing an inter-
domain ensemble strategy, which fuses outputs from both
domains to get an ensemble loss. We demonstrate that the
time-frequency transformation, such as transforming a Mel-
spectrogram back to a waveform, is differentiable, enabling
the gradient of the ensemble loss to be propagated back to the
audio waveform. Therefore, the generated adversarial exam-
ples would be optimized to converge toward a common ad-
versarial space among both domains. However, we observe
that simply averaging the outputs of both domains causes ad-
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(d) Adaptive Inter-domain Ensemble

Figure 1: The attack success rates with different surrogate mod-
els. (a) and (b) are the MI-FGSM using a surrogate model from the
time and frequency domains, respectively. (c) and (d) are the Inter-
domain Ensemble (IE) and Adaptive Inter-domain Ensemble (AIE),
which use the time and frequency surrogate models. The dataset is
UrbanSound8k.

versarial examples to predominantly transfer to one domain,
while their transferability to the other domain decreases com-
pared to ones crafted against the uni-domain case, as depicted
in Figure 1c. Such a phenomenon violates the intention of im-
proving transferability by integrating information from both
domains. Analyzing the evolution tendency of adversarial ex-
amples during the update process, we argue that this update
progression is often dominated by one domain, suppressing
the transferability to the other one. Hence, we further pro-
pose an adaptive domain weight adjustment method. Specifi-
cally, the weight assigned to each domain’s output is dynam-
ically adjusted by monitoring the ratio of the cosine similar-
ity between the potential outputs of each domain and the en-
semble potential output. We term the proposed inter-domain
ensemble attack with adaptive domain weight adjustment as
the Adaptive Inter-domain Ensemble (AIE) attack, as il-
lustrated in Figure 2. It mitigates the above imbalance and
enhances cross-domain transferability, as shown in Figure 1d.

Our contributions can be summarized as follows:

• To the best of our knowledge, this is the first work aimed
at enhancing the cross-domain transferability of audio
adversarial examples to simultaneously deceive classi-
fiers in both the time and frequency domains.

• We propose an Adaptive Inter-domain Ensemble attack
that captures collective transferable adversarial informa-
tion from both domains while dynamically assigning
the weight to each domain, enhancing the cross-domain
transferability of audio adversarial examples.

• Extensive experiments on diverse datasets demonstrate
that AIE consistently outperforms existing methods,

the generated audio adversarial examples exhibit higher
cross-domain transferability. Notably, AIE can be inte-
grated with various gradient optimization attacks.

2 Overview
2.1 Preliminaries
Given a clean audio x with its corresponding ground-truth la-
bel y, the audio classification model f is expected to predict
label argmaxf(x) = y with high confidence, where f(x)
represents logit output. Let Bϵ (x) = {x̂ : ∥x̂− x∥p ≤ ϵ}
be an ϵ-ball around x, where ϵ > 0 is a predefined per-
turbation magnitude, and ∥ · ∥p denotes the Lp-norm (e.g.,
L1-norm). Transfer-based adversarial attacks aim to find
an example xadv ∈ Bϵ that misleads the model prediction
argmaxf(xadv) ̸= y, and then transfer xadv to directly attack
the black-box target model. The objective can be formulated
as the following constrained optimization problem:

max
xadv∈Bϵ(x)

L
(
f
(
xadv

)
, y
)
, (1)

where L(·) is the cross-entropy function. The typical pro-
cess of generating adversarial examples through gradient it-
erations can be described as:

xadv
t+1 = Φϵ

[
xadv
t + α · sign(∇xadv

t
L(f(xadv

t , y))
]
, (2)

where xadv
0 = x, t is the current number of iteration, α is the

step size, and Φϵ projects xadv
t into the ϵ-ball around x.

2.2 Motivation
We observe that existing methods for crafting transferable
audio adversarial examples face a critical limitation, i.e.,
they overlook the transferability across different domains,
specifically the time and frequency domains. Typically, au-
dio classification models are categorized into the following
two types based on input form: time-domain model, de-
noted as fw, which uses raw waveforms of audio x as in-
put, and frequency-domain model, denoted fs, which uti-
lizes spectrograms F(x) obtained through the time-frequency
transformation F(·). Normally, for a clean audio x, the pre-
dictions of the two models are expected to be consistent,
which can be expressed as:

argmaxfw(x) = argmaxfs(F(x)) = y. (3)

Both time-domain and frequency-domain models are vul-
nerable to adversarial attacks. However, due to differences
in data distribution and model structures, existing attacks
demonstrate low cross-domain transferability. We notice that
the adversarial example xadv generated by attacking the time-
domain model fw exhibits very limited transferability to the
frequency-domain model fs after being converted into spec-
trograms F(xadv). As the exact inversion of perturbations on
spectrograms is intractable due to the nonlinearity of the time-
frequency transformation, crafting audio adversarial exam-
ples by attacking frequency-domain models remains a largely
unsolved challenge. From a practical standpoint, the initial
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Figure 2: The pipeline of an Adaptive Inter-domain Ensemble attack. It captures collective transferable adversarial information from both
time and frequency domains while dynamically assigning weights to each domain through ADWA (Section 3.3), addressing the optimization
imbalance problem (Section 3.2), and enhancing the cross-domain transferability of audio adversarial examples. Additionally, we further
propose augmenting AIE with an intra-domain ensemble (Section 3.4).

form of input to all audio classification models is raw wave-
forms. Therefore, a true black-box attack on the audio clas-
sification task must directly generate perturbations on wave-
forms and be able to fool target models across different do-
mains. The final attack objective can be described as:

argmaxfw(x
adv), argmaxfs(F(x

adv)) ̸= y. (4)

3 Adaptive Inter-domain Ensemble Attack
3.1 Uniformly Inter-domain Ensemble
To make generated adversarial examples more likely to trans-
fer to models from both time and frequency domains, we pro-
pose an Inter-domain Ensemble attack, which fuses outputs
from the time and frequency domains to get an ensemble loss,
finding a common adversarial space among them. We begin
by simply ensembling two models fw and fs. For the xadv ,
the fusion output can be represented as

E(xadv, η) = ηfw
(
xadv

)
+ (1− η) fs

(
F(xadv)

)
, (5)

where η ∈ [0, 1] is the domain weight, initially set to 0.5.
Intuitively, only the gradient of fw can be backpropagated
to xadv . However, we introduce a key property of the time-
frequency transformation: differentiability.
Proposition 1. Differentiability of time-frequency transfor-
mation. Given an audio x with its corresponding ground-
truth label y, the frequency-domain model fs takes the spec-
trogram F(x) as input. The gradient propagation of the loss
L(fs(F(x)), y) with respect to x can be expressed as a chain
as follows:

∇xL (fs (F (x)) , y) =
∂L (fs (F (x)) , y)

∂F (x)

∂F (x)

∂x
. (6)

The gradients of the time-domain and frequency-domain
models in the ensemble loss can be reliably propagated back-
ward. Consequently, the iterative process of inter-domain en-
semble attack can be formulated as:

xadv
t+1 = Φϵ

[
xadv
t + α · sign(∇xadv

t
L(E(xadv

t , η))
]
. (7)

The proposed attack paradigm can leverage collective vul-
nerabilities of the time-domain model and frequency-domain
model and generate perturbation on raw waveform, effec-
tively boosting the cross-domain transferability of audio ad-
versarial examples. However, we observe that simply aver-
aging the outputs of the time domain and frequency domain,
i.e., η = 0.5, causes the transferable information to be dom-
inated by one domain, ultimately leading to suboptimal re-
sults. Let us take Figure 1 as an example again, the attack
success rate decreases by 26.0% when uniformly attacking
fw and fs, compared to attacking only fs (η = 0). To miti-
gate this problem, we further propose an adaptive adjustment
strategy.

3.2 Attack Imbalance Analysis
Audio data typically exhibits high dimensionality (e.g.,
22,050 Hz). Due to the curse of dimensionality, gradient sim-
ilarity is unsuitable as a metric to observe the discrepancy in
adapting to different domains during the updating process of
the inter-domain ensemble attack, e.g., their cosine similarity
tends to approach zero. Therefore, we consider calculating
the similarity between outputs for evaluating the discrepancy.
Specifically, for models fw and fs, we define the individual
potential outputs using the probability outputs on adversarial
examples generated through one-step attacks, expressed as,{
ps =softmax (fs(F(x

adv
t +α·sign(∇xadv

t
L(fs(F(xadv

t )),y))))

pw=softmax (fw(x
adv
t + α· sign(∇xadv

t
L(fw(xadv

t ), y)))).

(8)
We then define the ensemble potential output as the average

probability output on adversarial examples generated using
the gradient of the inter-domain ensemble loss with respect
to the current adversarial examples xadv

t , expressed as,

p=softmax(E(xadv
t +α · sign(∇xadv

t
L(E(xadv

t ,η),y)), η)),
(9)

where η is initially set to 0.5, indicating that the time domain
and frequency domain are given equal weight.

The discrepancy between the individual potential outputs
and the ensemble potential output reflects the extent of dom-
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Figure 3: (a) shows the probability densities of cs and cw, which is
imbalance. (b) illustrates the influence of the parameter of k on the
adjustment function.

inance of models in the attack process. We evaluate the dis-
crepancy using the cosine similarity,{

cw = cos (pw,p)

cs = cos (ps,p) .
(10)

We statistically compared the probability densities of cw
and cs in the normal attack process, as shown in Figure 3a.
Obviously, the updating progress of the adversarial example
is often dominated by one domain (e.g., time domain).

3.3 Adaptive Domain Weight Adjustment
To address the above optimization imbalance problem, we
propose to adaptively adjust the weights of each domain η
via monitoring the ratio between cw and cs. Here, we define
the ratio as ρ = cs/cw. With ρ to dynamically monitor the
dominant discrepancy between time and frequency domains,
we are able to adaptively modulate the domain weight η via:

η = ek(ρ−1) ·
(
1 + ek(ρ−1)

)−1

, (11)

where k is a hyperparameter that controls the slope of the
function. Figure 3b intuitively illustrates how the value of η
varies with the ρ under the different values of k. Constantly,
η is constrained to the interval [0, 1] following its intrinsic
properties. In particular, when ρ = 1, indicating an equal
contribution from both domains, η converges to 0.5.

By employing the domain weight adjustment strategy, the
attack process against both domain models can be effectively
regulated, thereby mitigating the imbalance issue and enhanc-
ing transferability to time and frequency domains. Our AIE
method can integrate existing transfer-based gradient attacks
to enhance cross-domain attack performance. For example,
AIE incorporating MI-FGSM [Liu et al., 2016] is summa-
rized in Algorithm 1.

3.4 Intra-domain Ensemble Enhancement
Following Algorithm 1, AIE improves the cross-domain
transferability of audio adversarial examples. While utiliz-
ing a single model from each domain demonstrates sufficient
performance, we further propose augmenting AIE with an
intra-domain ensemble. This approach averages the outputs
of multiple models within the same domain, capturing addi-
tional intrinsic transferable adversarial information. It trans-
forms Eq. 5 into the following representation:

H(xadv, η) = ηE
[
f i
w

(
xadv

)]
+(1−η)E

[
f i
s

(
xadv

)]
, (12)

Algorithm 1 AIE with MI-FGSM attack
Input: Surrogate models fw, fs; A natural audio example x
with label y
Parameter: The perturbation magnitude ϵ; the number of
iteration T ; the decay factor µ; the hyper-parameter k
Output: An adversarial example xadv

1: Initialize: α = ϵ/T ; M0 = 0; xadv
0 = x;

2: for t = 1 to T do
3: Initialize set η = 0.5
4: # Calculate discrepancy ratio between the individual

potential outputs and the ensemble potential output
5: Calculate the individual potential outputs ps and pw

using Eq. 8
6: Calculate the ensemble potential output p using Eq. 9
7: Calculate the discrepancy ratio ρ = cos(ps,p)

cos(pw,p)

8: # Adaptively adjust the domain weights based on
the discrepancy ratio

9: Update the domain weight η using Eq. 10
10: Calculate the inter-domain ensemble loss

L
(
E(xadv, η), y

)
with updated η

11: # Update momentum using the gradient of inter-
domain ensemble loss

12: Get Mt+1 = µMt +
∇

xadv
t

L(xadv
t ,η)

∥∇
xadv
t

L(xadv
t ,η)∥1

13: # Update adversarial example
14: xadv

t+1 =
∏

Bϵ(x)

[
xadv
t + α · sign (Mt+1)

]
15: end for
16: return xadv = xadv

T .

where f i
w and f i

s represent i-th surrogate model from time
domain and frequency domain, respectively, and E (·) repre-
sents the average of gradients.

Moreover, such an ensemble can be seamlessly integrated
with AIE without conflict, as the weight assigned to the inter-
domain ensemble output can be adaptively optimized. While
extending AIE to incorporate a multi-model ensemble within
each domain is straightforward, this extension further en-
hances overall transferability compared to single-model AIE,
particularly in scenarios involving cross-architectural trans-
fer. Empirical results in Section 4.3 validate the effectiveness
of this ensemble-based approach.

4 Experiments
4.1 Experimental Setup
Dataset. To comprehensively evaluate the effectiveness of
the proposed method, we conduct extensive experiments on
two widely recognized datasets for audio classification tasks:
UrbanSound8k [Salamon et al., 2014] for environmental
sound classification and ShipsEar [Santos-Domı́nguez et al.,
2016] for underwater acoustic target identification.
Pre-processing. All audio examples are standardized to a
length of 1 second. From each dataset, we randomly select
1000 clean audio examples, ensuring that each is correctly
classified by all evaluated models and preventing data over-
lap. The results of frequency-domain attacks are reported us-
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Base Domain Time-domain models Frequency-domain models

Res18T * Res50T EffiT DensT LSTMT ResadvT Avg. Res18F * Res50F ShufF DensF ASTF ResadvF Avg.

MI IE 96.1 62.3 35.1 40.0 36.9 5.9 46.0 73.8 56.4 42.5 44.6 28.4 5.0 41.8
AIE 96.6 62.6 35.4 40.3 37.4 6.8 46.5 89.8 68.9 45.5 46.8 29.0 6.1 47.7

NI IE 96.1 62.0 34.3 40.9 39.6 5.8 46.4 77.8 59.9 42.0 45.7 27.5 4.9 43.0
AIE 96.4 62.1 38.5 42.2 41.5 7.0 48.0 96.6 69.0 47.2 50.9 32.7 6.5 50.5

VMI IE 96.1 63.2 32.1 40.4 40.7 6.3 46.5 73.7 57.1 42.1 44.6 32.5 5.4 42.6
AIE 97.1 69.2 38.0 42.0 41.4 8.2 49.3 91.5 69.3 48.6 53.1 37.0 7.9 49.7

EMI IE 100.0 67.5 38.7 40.2 37.5 6.9 48.5 81.0 64.8 46.7 48.8 32.2 5.9 46.6
AIE 100.0 68.3 40.8 41.8 40.6 8.8 50.5 93.9 69.8 48.9 53.8 37.5 8.1 52.0

Table 1: The attack success rates (%) of adversarial examples generated under different domain settings (Inter-domain Ensemble (IE) and
Adaptive Inter-domain Ensemble (AIE)), and various baseline methods, evaluated against time and frequency domain models. The bolded
numbers indicate the best results. The dataset is UrbanSound8k.

Res-
50T

DenseT

Res-
18F

Res-
50F

ShufF
DenseF

20

30

40

50

60

70

A
tt

ac
k

su
cc

es
s

ra
te

(%
)

Base Method: MI-FGSM

IE
AIE

Res-
50T

DenseT

Res-
18F

Res-
50F

ShufF
DenseF

20

30

40

50

60

Base Method: NI-FGSM

IE
AIE

Res-
50T

DenseT

Res-
18F

Res-
50F

ShufF
DenseF

20

30

40

50

60

Base Method: VMI-FGSM

IE
AIE

Res-
50T

DenseT

Res-
18F

Res-
50F

ShufF
DenseF

30

40

50

60

Base Method: EMI-FGSM

IE
AIE

Res-
50T

DenseT

Res-
18F

Res-
50F

ShufF
DenseF

40

60

80

A
tt

ac
k

su
cc

es
s

ra
te

(%
)

Base Method: MI-FGSM

IE
AIE

Res-
50T

DenseT

Res-
18F

Res-
50F

ShufF
DenseF

40

60

80

Base Method: NI-FGSM

IE
AIE

Res-
50T

DenseT

Res-
18F

Res-
50F

ShufF
DenseF

20

40

60

80

Base Method: VMI-FGSM

IE
AIE

Res-
50T

DenseT

Res-
18F

Res-
50F

ShufF
DenseF

20

40

60

80

Base Method: EMI-FGSM

IE
AIE

Figure 4: The attack success rates (%) against time and frequency domain models, exploring the transferability of adversarial examples
generated by AIE with various baseline methods. The first row presents UrbanSound8k results, while the second row is on the ShipsEar.

ing the Mel-spectrogram, which is generated by applying the
short-time Fourier transform to the audio and then mapping
the output using the Mel scale.
Baselines. Our approach is integrated and evaluated against
four advanced gradient-based adversarial attacks: MI [Liu
et al., 2016], NI [Lin et al., ], VMI [Wang and He, 2021],
and EMI [Wang et al., 2021]. Furthermore, we compare
our method with state-of-the-art ensemble attacks, namely
SVRE [Xiong et al., 2022], AdaEA [Chen et al., 2023a], and
CWA [Chen et al., 2023b], which have demonstrated strong
transferability in the image field. These baseline methods
are meticulously fine-tuned to ensure optimal performance in
generating audio adversarial examples.
Models. We evaluate our approach on a diverse range of
models in the time domain and frequency domain. These
include Convolutional Neural Network (CNN)-based models
such as Res18T and Res18F (ResNet18) [He et al., 2016],

Res50T and Res50F (ResNet50) [He et al., 2016], DensT
and DensF (DenseNet121) [Huang et al., 2017], EffiT (Ef-
ficientNet) [Tan and Le, 2019], and ShufF (ShuffleNetV2)
[Ma et al., 2018]. Additionally, we consider a Transformer-
based model ASTF (Audio Spectrogram Transformer) [Gong
et al., 2021], and a Recurrent Neural Network-based model,
LSTMT [Sang et al., 2018]. The subscripts T and F de-
note the models from the time domain and frequency do-
main, respectively. Furthermore, to assess robustness under
adversarial conditions, we include adversarially trained mod-
els, ResadvT and ResadvF

[Goodfellow et al., 2015], which are
based on the ResNet18 architecture.

Hyper-parameters. We empirically set the maximum pertur-
bation to 0.01 (l∞ = 0.01), the number of iterations T = 10,
the step size α = 0.002. For MI and NI, we set the decay
factor µ = 1.0. For VMI, we set the number of sampled ex-
amples N = 20 and the upper bound of neighborhood size
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Figure 5: The waveforms and Mel-spectrograms of the audio adversarial examples generated by the gradient-optimization methods, model
ensemble methods, and our AIE. The dataset is UrbanSound8k.

β = 1.5 × ϵ. For EMI, we set the number of sampled ex-
amples to 11, the sampling interval bound to 7, and adopt the
linear sampling. The inner update time in SVRE is set to be
four times the number of models. The tolerance threshold and
temperature coefficient in AdaEa are set to be −0.3 and 10.
Metrics for evaluation. We adopt the attack success rate
as the unified metric to evaluate the performance of various
adversarial attack methods, where ’Avg.’ denotes the average
attack success rate across all target models.

4.2 Attack Results
We evaluate the attack performance of audio adversarial ex-
amples generated by integrating our proposed method with
the MI, NI, VMI, and EMI methods under surrogate models
from both time and frequency domains. Table 1 provides a
comprehensive comparison of results across multiple victim
models, using Res18T and Res18F —both CNN-based archi-
tectures—as surrogate models. We observe that attacks uti-
lizing uniformly Inter-domain Ensemble (IE) achieve signif-
icantly lower average success rates in the frequency domain
compared to the time domain, highlighting the inherent lim-
itations of achieving unbalanced transferability. In contrast,
our Adaptive Inter-domain Ensemble (AIE) method consis-
tently achieves the highest attack success rates across both
domains. Specifically, when VMI is employed as the baseline
attack method, AIE enhances the average attack success rate
by 7.1% in the frequency domain, with an even more substan-
tial improvement of 17.8% when attacking Res18F . These
findings highlight the exceptional inter-domain transferability
of adversarial examples generated by AIE and demonstrate
its effectiveness in reducing the gap between transferability
to time and frequency domains.

Furthermore, we evaluate the attack performance of adver-
sarial examples generated using surrogate models with dis-
similar architectures—Res18T (CNN-based) for the time do-
main and ASTF (Transformer-based) for the frequency do-
main, as depicted in Figure 4. The first row of the figure
corresponds to results on the UrbanSound8k dataset, while

the second row represents the ShipsEar dataset. Figure 4
consistently demonstrates that our AIE method significantly
achieves higher attack success rates in both the time and fre-
quency domains. These results highlight the ability of AIE
to effectively balance and enhance transferability to both do-
mains, regardless of differences in the model architectures.

Additionally, Figure 5 visualizes the waveforms and Mel-
spectrograms of audio adversarial examples generated by our
proposed method and MI, NI, VMI, and EMI methods under
the IE strategy. The first and third rows depict the waveforms,
while the second and fourth rows present the corresponding
Mel-spectrograms. Although adversarial examples generated
by baseline methods are similar to the clean input in both time
and frequency domains, they exhibit limited effectiveness in
deceiving the black-box models in the frequency domain. In
contrast, our method produces adversarial examples that are
perceptually similar to those of baseline attacks in both do-
mains but achieve higher cross-domain transferability.

4.3 Evaluate Intra-domain Ensemble
AIE effectively enhances cross-domain transferability by
leveraging a single surrogate model for each domain. Pre-
vious studies [Xiong et al., 2022; Chen et al., 2023a; Chen
et al., 2023b] have demonstrated that incorporating more sur-
rogate models is a powerful strategy for further improving
attack transferability. To illustrate the scalability of our ap-
proach, this section explores the impact of varying the num-
ber of surrogate models on transferability. Table 2 presents
the attack results using more surrogate models, including
Res18T , DensT , Res18F , and ASTF , and compares these re-
sults with those of SVRE, AdaEA, and CWA—existing inter-
domain ensemble methods. While these existing methods im-
prove the transferability in the time domain compared to MI,
they show lower success rates in the frequency domain. In
contrast, our AIE method achieves substantial transferability
improvements in both the time and frequency domains. Ad-
ditionally, our method has a lower complexity of O(6n) (n is
audio size), compared to SVRE’s O(Mn) (M=16 is inner it-
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Surrogate
Models Attack Time-domain models Frequency-domain models

Res18T Res50T EffiT DensT LSTMT Avg. Res18F Res50F ShufF DensF ASTF Avg.

Res18T
DensT
Res18F
ASTF

MI 97.3 62.1 36.7 91.7 36.7 64.9 73.4 56.9 42.9 46.6 62.6 56.5
SVRE 97.2 62.8 38.1 91.8 35.4 65.1 84.1 65.7 46.1 51.5 75.6 64.6
AdaEA 99.7 61.5 37.1 86.5 34.2 63.8 74.7 61.5 46.6 49.1 64.9 59.4
CWA 87.5 54.5 35.4 90.1 35.4 60.6 87.1 68.8 47.3 53.5 81.4 67.6
AIE 99.8 63.3 38.6 92.2 38.9 66.6 90.3 69.9 48.1 55.2 82.7 69.2

Res18T
DensT
ASTF

MI 98.7 61.3 35.0 93.2 37.6 65.2 30.7 23.2 37.2 44.4 64.4 40.0
SVRE 97.7 61.2 38.0 94.1 38.4 65.9 42.5 31.8 40.6 46.4 74.2 47.1
AdaEA 95.7 56.3 35.0 87.8 35.8 62.1 43.5 36.8 40.4 42.5 79.9 48.6
CWA 75.1 49.9 33.0 87.6 38.0 56.7 49.7 38.7 45.2 45.7 87.2 53.3
AIE 100.0 58.3 38.8 95.1 40.6 66.5 50.7 39.2 48.0 46.9 96.7 56.3

Table 2: The attack success rates (%) of various model ensemble methods. The dataset is UrbanSound8k.

erations) and Adaea’s O(k(k+1)n) (k is number of models).

4.4 Ablation Studies
We further conduct ablation experiments to evaluate the
effectiveness of the adaptive domain weight adjustment
(ADWA). Additionally, we also analyze the impact of the hy-
perparameter k and perturbation ϵ. The experiments are con-
ducted on the UrbanSound8k dataset.

Adaptively Domain Weight Adjustment (ADWA)
ADWA is a crucial strategy for leveraging collective vulner-
abilities to enhance and balance cross-domain transferability.
As illustrated in Figure 6, after applying ADWA, the cosine
similarity of cw and cs both tend to 1, and their probability
densities almost coincide. This demonstrates that the dom-
inance levels of time and frequency domain models in the
attack process tend to balance.
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Figure 6: The probability densities of cw and cs across various it-
erations, without ADWA (first row) and with ADWA (second row),
demonstrate that cw and cs tend to balance.

Parameters k on Adjustment Function
We introduce the hyperparameter k that controls the slope of
the function of η with respect to ρ in this paper. Figure 7a
presents the effect of different k on the average attack success
rate of the adversarial examples. When k = 3, we obtain the
highest average success rate in both the time and frequency
domains. Therefore, k = 3 is set in our experiments.
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Figure 7: The success rates varies with different values of k and ϵ.

Perturbation Magnitude ϵ
The impact of perturbation magnitude ϵ on the attack suc-
cess rates is illustrated in Figure 7b. We observe that a
larger perturbation results in a higher attack success rate
in both the time and frequency domains. To balance the
performance and the imperceptibility [Chen et al., 2023a;
Chen et al., 2023b], we set the ϵ to 0.01 in our experiments.

5 Conclusion
This work proposes the Adaptive Inter-domain Ensemble at-
tack for generating adversarial audio examples with enhanced
cross-domain transferability. AIE introduces an adaptive do-
main weight adjustment method that dynamically assigns
weights to each domain, effectively addressing domain attack
imbalance and significantly improving cross-domain transfer-
ability. Additionally, extending AIE to include model en-
sembles within each domain further enhances overall trans-
ferability. Extensive experiments on various datasets consis-
tently demonstrate that our approach achieves higher attack
success rates on time and frequency domain models than ex-
isting attack methods. Our work could shed light on the great
potential of boosting cross-domain transferability through a
better design of the adversarial attack methods and provide
a reference for attacks on other signals (e.g., electromagnetic
signals). We hope our work will inspire further in-depth in-
vestigations into cross-domain attacks.
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