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Abstract

Term rewriting plays a crucial role in software ver-
ification and compiler optimization. With dozens
of highly parameterizable techniques developed to
prove various system properties, automatic term
rewriting tools work in an extensive parameter
space. This complexity exceeds human capacity
for parameter selection, motivating an investigation
into automated strategy invention. In this paper, we
focus on confluence of term rewrite systems, and
apply Al techniques to invent strategies for auto-
matic confluence proving. Moreover, we randomly
generate a large dataset to analyze confluence for
term rewrite systems. We improve the state-of-
the-art automatic confluence prover CSI: When
equipped with our invented strategies, it surpasses
its human-designed strategies both on the aug-
mented dataset and on the original human-created
benchmark dataset ARI-COPS, proving/disproving
the confluence of several term rewrite systems for
which no automated proofs were known before.

1 Introduction

Term rewriting studies substituting subterms of a formula
with other terms [Baader and Nipkow, 1998], playing
an important role in automated reasoning [Bachmair and
Ganzinger, 1994], software verification [Meseguer, 2003],
and compiler optimization [Willsey et al., 2021]. Mathe-
maticians have developed various techniques to analyze the
properties of term rewrite systems (TRSs). However, many
properties are undecidable [Baader and Nipkow, 1998], im-
plying that no technique can consistently prove a particular
property. To navigate this undecidability, modern term rewrit-
ing provers typically employ complicated strategies, incorpo-
rating wide arrays of rewriting analysis techniques, with the
hope that one will be effective. Each technique often accom-
panies several flags to control its behavior. The diversity of
techniques and their controlling flags result in a vast parame-
ter space for modern automated term rewriting provers.
Manually optimizing strategies for undecidable problems
is beyond human capacity given the extensive parameter
space. This inspires us to apply Al techniques to search for

appropriate strategies automatically. In this paper, we fo-
cus on confluence, an important property of term rewriting,
and discuss automated strategy invention for the state-of-the-
art confluence prover CSI [Nagele et al., 2017]. We mod-
ify Grackle [Hila and Jakubiv, 2022], an automatic tool to
generate a strategy portfolio, encoding strategies that require
transformations and complex schedules such as parallelism.

Directly using a tool like Grackle to randomly generate
parameters for CSI may produce unsound results. This is
a unique challenge compared to previous applications of
Grackle [Hila and Jakubtiv, 2022; Aleksandrova et al., 2024].
The solvers to which Grackle was previously applied always
produce sound results, while CSI’s users need to carefully
specify their strategies to ensure soundness.

We also augment the human-built confluence problems
database (ARI-COPS)', a representative benchmark for the
annual confluence competition (CoCo)?. Before 2024, CoCo
used the COPS database as the benchmark. An unpublished
duplicate checker is executed to remove duplicated problems
in COPS, resulting in the ARI-COPS database, which is used
in CoCo 2024. As ARI-COPS has been created manually, it
includes only 566 TRSs. They are of high quality, but the
relatively small number is still inadequate for data-driven Al
techniques that require large amounts of training data. To
handle this problem, we generate a large number of TRSs
randomly, but ensure that they are interesting enough to an-
alyze. For this, we develop a procedure to confirm a relative
balance in the number of TRSs most quickly solved by dif-
ferent confluence analysis techniques within the dataset.

We evaluate our strategy invention approach in ARI-COPS
and the augmented dataset. On both of the datasets, the in-
vented strategies surpass CSI’s competition strategy. In par-
ticular, we prove (non-)confluence for several TRSs that have
not been proved by any automatic confluence provers in the
history of the CoCo competition.

As an example, our invented strategy is able to dis-
prove confluence for the ARI-COPS problem 846.ari
(991.trs in COPS), never proved by any participant in
CoCo. The key is the application of the redundant rule
technique [Nagele er al., 2015] with non-standard argu-
ments. CSI’s competition strategy performs redundant

"https://ari-cops.uibk.ac.at/
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-narrowfwd —-narrowbwd -size 7 prior to perform-
ing non-confluence analysis. The flags narrowfwd and
narrowbwd determine the categories of redundant rules to
generate. Our tool automatically discovered that by changing
the original redundant rule transformation to redundant
—development 6 —-size 7,we can prove this problem.
A larger value for the flag development causes a larger
number of development redundant rules to be added. We no-
tice that the value six is crucial as small values below three
are ineffective for 846.ari. This is only one of the several
TRSs which our new strategies can solve as discussed in the
later sections.

The main reason why it is difficult to discover new proofs
in CoCo, is because CSI’s competition strategy developed
rewriting experts is very complicated, for which a compre-
hensive explanation is presented in the technical appendix.
For example the competition strategy includes the develop-
ment redundant rule technique [Nagele er al., 2015]. The
original evaluation of it shows no improvement over other
redundant rule techniques in COPS at that time. Thus, CSI’s
developers decided not to use it in the competition strategy.
As COPS grows, it becomes helpful in some new TRSs such
as 846.ari. However, the default strategy has only slightly
changed over the past years, and the development redundant
rule technique has never been tried. One reason for this could
be that choosing sound parameters is challenging even for
rewriting experts. Meanwhile, competition strategy is highly
complicated and has a prohibitively large configuration space
both in the number of parameters and structures of the strat-
egy itself. We leverage Grackle to do the tedious strategy
search. It can automatically optimize the strategies better than
experts as the dataset grows. Other rewriting tools do not dis-
cover the proof perhaps because they do not implement the
essential techniques for solving the problems.

Contributions. First, to our best knowledge, our work is
the first application of Al techniques to automatic confluence
provers. We automatically generate a lot of strategies for the
state-of-the-art confluence prover CSI and combine them as
a unified strategy. Second, we carefully design the parame-
ter search space for CSI to confirm the soundness of strategy
invention. Third, we build a large dataset for confluence anal-
ysis, comprising randomly generated TRSs and problems in
the ARI-COPS dataset. Finally, empirical results show that
our strategy invention approach surpasses CSI’s competition
strategy both in ARI-COPS and the augmented datasets. No-
tably, we discover several proofs for (non-)confluence that
have never been discovered by any automatic confluence
provers in the annual confluence competition.

2 Background

2.1 Term Rewriting

We informally define some theoretical properties of term
rewriting in this section, hoping to ease the understanding
of the behavior underlining automatic confluence provers. A
formal description can be found in the technical appendix.
We assume a disjoint set of variable symbols and a fi-
nite signature of function symbols. Constants are function
symbols with zero arity. The set of ferms is built up from

variables and function symbols. The set of variables occur-
ring in a term ¢ is denoted by Var(t). A term rewrite sys-
tem (TRS) consists of a set of rewrite rules [ — r where
l,r € terms, | ¢ variables, and Var(r) C Var(l). We write
t1 —* t, to denote ty — t2 — ... — t,, where n can be
one. A TRS is confluent if and only if Vs, t,u € terms(s —*
tAs =% u= Jv e terms(t =-* v Au —* v)). Con-
sider the TRS of {f(g(z),h(x)) — a,g9(b) — d,h(c) —
d} [Gramlich, 1996]. It is not confluent since f(d, (b)) +
f(g(b),h(b)) — a, and no rules are applicable to f(d, h(b))
and a. A rewrite rule [ — 7 is called left-linear if no variable
occurs multiple times in [. A TRS is called left-linear if all
its rules are left-linear. Left-linearity is crucial for confluence
analysis since most existing confluence techniques only ap-
ply to such systems. In this paper, a term is called complex if
it is neither a variable nor a constant.

2.2 CSI

CSI is one of the state-of-the-art automatic confluence
provers that participates in CoCo. It ranked first in five
categories of competitions in CoCo 2024. To show (non-
)confluence of TRSs, CSI automatically executes a range of
techniques, scheduled by a complicated configuration docu-
ment written by experts in confluence analysis. Subsequently,
CSI either outputs YES, NO, or MAYRE indicating confluence,
non-confluence, or indetermination, respectively.

CSI implements many techniques applicable to the analy-
sis of TRSs (many of them parametrized or transforming the
system into one that can be analyzed by other techniques)
and utilizes a complicated strategy language to control them.
In CSI, these techniques are called processors. They are de-
signed to prove the properties of TRSs, perform various trans-
formations, and check the satisfiability of certain conditions.
The strategy language can flexibly combine the execution of
processors such as specifying parallel or sequential applica-
tions, disregarding unexpected results, assigning time lim-
its, and designating repeated applications. The details of the
strategy language are presented in the technical appendix.

Since the generated proofs are almost always large and dif-
ficult to check manually, CSI relies on an external certifier
CeTA [Thiemann and Sternagel, 2009] to verify its proofs.
To utilize CeTA, CSI outputs a certificate of its proof in the
certification problem format [Sternagel and Thiemann, 2014].
Given a certificate, CeTA will either answer CERTIFIED or
present a reason to reject it. Not all processors implemented
in CSI are verifiable because CSI cannot produce certificates
for all processors, and CeTA does not implement the verifica-
tion procedures for all processors.

2.3 Grackle

Grackle [Hila and Jakubiv, 2022] is a strategy optimiza-
tion system designed to automate the generation of various
effective strategies for a given solver based on benchmark
problems. Such solvers receive a problem and decide the sat-
isfiability of a particular property of the problem. It was origi-
nally designed for automated reasoning tools and has been ap-
plied to various provers such as Prover9 [McCune, 2005] and
Lash [Brown and Kaliszyk, 2022]. We choose Grackle for
our research, as it is highly adaptable and we are not aware of
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Algorithm 1 GrackleLoop: an outline of the strategy portfo-
lio invention loop.

Input: initial strategies S, benchmark problems P,
hyperparameters

Output: a strategy portfolio

I Dgppar — S
2: while termination criteria is not satisfied do
3 Evaluate(P, @, B)
4. Dy + Reduce(P, P, )
5: s+ Select(P, ®,3)
6.
7
8
9:

if s is None then return ¢
S0 < Specialize(s, P, @, 5)
- (I)strat <~ (bstrat U s
end while

any strategy invention program that would allow the kinds of
strategies needed for automatic rewriting tools. Additionally,
Grackle has achieved good results with the solvers it was pre-
viously applied to. The strategy invention problem of Grackle
is formally defined below.

Definition 1 (Strategy Invention Problem). Assume a set of
initial strategies S. In the benchmark of examples P, the
problem is to invent a bounded set of complementary strate-
gies 8’ that can prove the largest number of problems in P.
Complementary strategies means that Vs, € S', s should
master a subset of problems P] C P, such that ¥i # j,
s € 8’ cannot solve any problem in P; quicker than s;.

Algorithm 1 outlines the strategy portfolio invention loop
of Grackle, which invents strategies via a genetic algorithm
and parameter tuning with randomness. The variable ® de-
notes the current state, including information like all invented
strategies P:.q¢, and the current generation of strategies
®.,r. The first phase is generation evaluation (evaluate). In
this phase, Grackle evaluates all strategies @, in its port-
folio on the benchmark P. The evaluation results are stored
in ® to avoid duplicated execution.

Next, Grackle performs generation reduction (reduce). It
assigns scores to every strategy in ®,.,¢ based on the evalu-
ation results in the previous phase. A configurable number of
strategies with the highest scores becomes the current gener-
ation of strategies @, .

The third phase is strategy selection (select). It selects
a strategy s from the current generation of strategies @,
based on certain criteria, which is then used to invent new
strategies. If no strategy can be selected, the algorithm termi-
nates.

Finally, strategy specialization (specialize) invents a new
strategy s via specializing s over its best-performing prob-
lems P, in P. Grackle then executes external parameter
tuning programs such as ParamILS [Hutter et al., 2009] or
SMACS3 [Lindauer et al., 2022], tuning parameters for the se-
lected strategy s with randomness. The goal is to invent a
new strategy s such that it performs better than s ion P;.
The new strategy s will be added to the portfolio ®.

Grackle employs the same approach to describe its pa-
rameter search space as ParamILS. The space is described
by a set of available parameters, each of which is associ-

ated with a default value and several disjoint potential val-
ues. Grackle users need to input the potential values based on
their domain-specific experiences on the particular solvers.
We refer to [Hala and Jakubiv, 2022] for a comprehensive
explanation of Grackle.

3 Strategy Invention and Combination

To generate a better strategy for CSI, we first invent a large set
of complementary strategies, and then appropriately combine
a subset of the invented strategies into a single strategy.

3.1 Strategy Invention

To find new strategies for CSI, we first need to represent the
parameter space in a meaningful way. The parameter space
needs to be designed with precision to guarantee soundness.

There are three reasons why CSI may produce unsound
results given an entirely random strategy. First, some pro-
cessors are not intended for confluence analysis. They may
intend to prove other properties of TRSs, such as termina-
tion [Baader and Nipkow, 1998]. Second, even for the same
processor, it may be designed to prove different properties of
TRSs with different flags. Third, some transformation pro-
cessors may change the goal of CSI to prove another property
of TRSs, which is different from confluence such as relative
termination [Zantema, 2004].

We separate CSI’s competition strategy into 23 sub-
strategies, which, along with CSI’s competition strategy, also
serve as the initial strategies for Grackle. Among the 23 sub-
strategies, nine are mainly used to show confluence, and 14
are used to show non-confluence. A comprehensive explana-
tion of the division is shown in the technical appendix.

‘We maintain the structure used in CSI’s competition strat-
egy during the strategy invention because CSI relies on cer-
tain combinations of processors to (dis)prove confluence.
There are papers proving theorems for confluence analysis,
stating that if some properties of a TRS can be proved, then
it is (non-)confluent. Such a theorem can be implemented
as a single processor, which checks whether the given TRS
satisfies the properties required by the theorem. However,
not all such theorems are implemented as a processor. To
utilize such theorems, we need to combine CSI’s strategy
language and processors to perform transformations on the
original TRS and prove the necessary properties of the trans-
formed problem. If we generate strategies randomly, it will be
difficult to generate such useful structures and may produce
unsound strategies due to inappropriate transformations.

We search for three categories of parameters. First, we
search for processor flags which do not violate the soundness
guarantee. For instance, ~-development 6 in Section 1 is
a processor flag for the redundant processor. To ensure
soundness, we only search for flags of processors existing in
CSI’s competition strategy. Second, we include iteration pa-
rameters, such as time limits or repeated numbers of execu-
tion, to regulate the running of a certain sub-strategy. These
parameters are defined in CSI’s strategy language. More-
over, we add a boolean execution-controlling parameter for
some parallel or sequential executed sub-strategies, indicat-
ing whether to run the particular sub-strategies in confluence
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analysis. Assume a strategy A | | B, where | | denotes a par-
allel execution. The boolean parameters for A and B can rep-
resent whether to run one, both, or neither of them.

We need to construct a strategy for CSI using the parame-
ters searched by Grackle. To achieve this, we start with CSI’s
competition strategy, replacing the processor flags and iter-
ation parameters with relevant invented parameters. Then,
we disable sub-strategies according to the boolean execution-
controlling parameters.

The most challenging part of our work is the proper defi-
nition of the parameter space to confirm CSI’s soundness. As
the exact definition is quite technical and verbose, we present
the explanation of the parameter space and show an invented
strategy in the technical appendix.

3.2 Strategy Combination

After inventing several complementary strategies, we want to
combine them into a single strategy and compare it with the
competition strategy of CSI. The combination is performed
by choosing a few strategies from Grackle’s final portfolio
and appropriately assigning a time limit to each of them.

To effectively divide the time, we split the whole one
minute into several time splits. Next, we greedily allocate
a strategy to each time split in the sequence by order. Each
newly chosen strategy aims at proving the largest number of
remaining benchmark problems that have not been proved by
the previously chosen strategies. We shuffle the sequence
100 times and greedily select strategies for each shuffled se-
quence, resulting in strategy schedules comprising sequences
of pairs of strategies and time splits. To use a strategy sched-
ule, CSI executes each strategy in it by order for a duration of
the relevant time split. We split the one-minute duration into
many sequences and perform the greedy strategy selection for
each. We finally choose the strategy schedule that maximizes
the number of provable problems. The details of the strategy
combination are explained in the technical appendix.

4 Dataset Augmentation

Although ARI-COPS is meticulously built by term rewriting
experts, it is unsuitable for Al techniques. First, it is relatively
small which is insufficient for contemporary Al techniques.
Second, there may be an imbalance in ARI-COPS because
the problems come from rewriting literature. The examples
are often of theoretical interest and are constructed to illus-
trate specific confluence analysis techniques. However, TRSs
encountered in practical applications can contain redundant
rules that are irrelevant to illustrating a certain property.

4.1 TRS Generation Procedure

We develop a program to randomly generate a large dataset
of TRSs, receiving multiple parameters to control the overall
generation procedure. First, the maximum number of avail-
able function symbols F', constants C, variables V', and rules
R establish the upper bound of the respective quantities of
symbols and rules. For each of F, C, and V/, a value is ran-
domly selected between zero and the specified maximum, de-
termining the actual number of available symbols. The actual
number of rules is randomly chosen between one and R. Sec-
ond, we define a parameter M, used during the initialization

of function symbols. For each function symbol, an arity is
randomly chosen between one and M

Another important parameter is the probability of generat-
ing a left-linear TRS L, which is associated with the likeli-
hood of producing provably confluent TRSs. The majority of
contemporary techniques for proving confluence are merely
effective for left-linear TRSs. Without regulating the ratios
of left-linearity, randomly generated TRSs rarely exhibit left-
linearity, making it theoretically difficult to show confluence
for them. We also notice that, in practice, CSI can merely
prove confluence of very few generated TRSs if the ratios of
left-linearity are not controlled. By default, we force 60% of
generated TRSs to be left-linear.

Moreover, for a rule [ — 7, there is a parameter called
CT related to the probability of generating [ and r that are
complex terms. We need it because we prefer complex terms,
whereas constants and variables are quite simple.

Algorithm 2 presents the generation procedure of a single
term. While choosing the root symbol, we first randomly
sample a value between zero and one and compare it with
comp to determine whether to only use funs as candidates
for the root symbol. Here, comp is a value randomly cho-
sen between zero and C'T" during the initialization stage of
the generation of a TRS. If the comp is larger than one, we
can only generate complex terms. Meanwhile, according to
the definition of rewrite rules in Section 2.1, the left term [ in
I — r cannot be a variable. After choosing a root symbol for
the term ¢, we continuously choose new symbols for unde-
fined function arguments until all of them are defined. After
selecting a new variable, we need to remove it from the set
of available variables if we are generating a left-linear TRS.
The size of the terms generated by us is at most 15, where the
size of a term is defined as the number of symbols in it. We
choose 15 as the maximum value because the sizes of most
terms in ARI-COPS are smaller than 15.

To generate a rule [ — r, we first execute Algorithm 2 to
generate [ and then execute it again to generate r. We extract
all used variables in [ and mark them as available variables for
the generation of r, thereby Var(r) C Var(l), as required by
the definition of rewrite rules in Section 2.1.

We repeatedly generate rewrite rules until they reach the
expected number and then return the newly generated TRS.

4.2 Dataset Generation

We utilize the program explained in this section to construct
a large dataset, facilitating the application of Al techniques
to confluence analysis. First, we randomly generate 100,000
TRSs with the parameters of the maximum number of avail-
able function symbols F' = 12, constants C' = 5, variables
V =8, and rules R = 15. Other parameters include the max-
imum arity of function symbols M = 8, the probability of
generating left-linear TRSs L = 0.6, and the value related to
the possibility of generating complex terms CT = 1.6.

However, the randomly generated dataset can be imbal-
anced. First, there may be significant differences in the
number of confluent, non-confluent, and indeterminate TRSs.
Second, the number of TRSs mastered by different conflu-
ence analysis techniques may vary considerably.
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Algorithm 2 Term Generation

Input: consts,vars, funs
comp, the likelihood of making a complex term
left, whether the term is on the rewrite rule’s left side
linear, whether to construct a linear term
Output: a term ¢
1: if random(0,1) < comp then
2:  root_symbols < funs
3: else if left then
4:  root_symbols < funs + consts
5: else
6:  root_symbols < funs + consts + vars
7: end if
8: t + random_choose_one(root_symbols)
9: undefs < undefined function arguments in ¢
10: while undefs is not empty do
11:  for all undef € undefs do

12: sym <« random_choose_one(funs + consts +
vars)

13: replace the undefined function argument corre-
sponding to undef in t with sym

14: if linear and is_var(sym) and left then

15: remove sym from vars

16: end if

17:  end for

18:  undefs < undefined function arguments of ¢
19: end while
20: return ¢

We develop a multi-step procedure to build a relatively bal-
anced dataset. First, we execute CSI’s competition strategy
on all generated TRSs for one minute using a single CPU. CSI
outputs NO, YES, and MAYBE for 69317, 25012, and 5671
TRSs, respectively.

Second, we randomly choose 5,000 problems from each
set of problems classified as NO, YES, and MAYBE by CSIL.

Third, we execute the duplicate checker used in CoCo 2024
to remove the duplications in the 15,000 chosen TRSs and
566 ARI-COPS TRSs. It checks the equivalence of syntac-
tical structures between TRSs modulo renaming of variables
and a special renaming on function symbols of their signa-
tures. If TRSs of an equivalence class occur both in the
randomly generated dataset and ARI-COPS, we only remove
those randomly generated TRSs.

Fourth, we want to mitigate the imbalance in the number
of problems mastered by different confluence techniques. We
execute 26 strategies for all TRSs, aiming at labeling each
of them with the most effective strategy. The labeling strate-
gies contain all initial strategies for Grackle, which are ex-
plained in Section 3.1. The other two that are used to prove
confluence are extracted from two complicated initial strate-
gies, both consisting of many sub-strategies and integrated
with transformation techniques that potentially simplify the
search for proofs. Specifically, the two complicated initial
strategies parallelly execute two important confluence analy-
sis techniques, development closedness [Van Oostrom, 1997]
and decreasing diagrams [Van Oostrom, 1994], not used by
the other initial sub-strategies. If we do not use them for
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Figure 1: The number of TRSs solved most quickly (y-axis) for each
labeling strategy (x-axis). Two labeling strategies that do not master
any problems are ignored in the x-axis.

labeling, we will not be able to understand whether a TRS
is mastered by one of the two important confluence analy-
sis techniques. The details of the two new labeling strate-
gies are explained in the technical appendix. The time limit
for using CSI’s competition strategy as a labeling strategy is
one minute. The time limit for other labeling strategies is
30 seconds, smaller than one minute because the execution
of decomposed sub-strategies is more efficient. We calculate
the number of problems most quickly solved by each label-
ing strategy. The details of labeling strategies are presented
in the technical appendix. The randomly generated dataset
is quite imbalanced, four strategies master more than 1,000
problems; however, 16 strategies master less than 250 prob-
lems. To address the imbalance, we randomly choose at most
300 problems for a strategy from its set of mastered problems.
We also randomly add 1,200 problems that cannot be solved
by any labeling strategy to the dataset.

Finally, we obtain a dataset of 5,267 TRSs. Within this
dataset, 1,647 TRSs are classified as confluent, 1,910 as non-
confluent, and 1,710 as indeterminate when evaluated by CSI
using a single CPU within a one-minute time limit.

Figure 1 shows the final distribution of the number of prob-
lems mastered by each labeling strategy. It is not perfectly
balanced; however, we consider it relatively balanced, given
that certain strategies can only master problems that satisfy
particular properties. Such properties can be uncommon in
randomly generated TRSs and practical applications.

There are infinitely many strategies that can be chosen as
labeling strategies, such as strategies obtained by changing
processor flags. We do not choose other labeling strategies as
we have already decomposed CSI’s competition strategy, en-
abling us to label problems with all categories of confluence
analysis techniques implemented in CSI. Further decomposi-
tion or modification of processor flags may allocate problems
to different labeling strategies that only slightly differ.

5 Experiments

We evaluate our strategy invention method on ARI-COPS
and a combination of the randomly generated TRSs and ARI-
COPS datasets. In both datasets, CSI with invented strategies
outperforms CSI with the competition strategy, the state-of-
the-art approach in confluence analysis for TRSs.
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ARI-COPS | augment

CPU 1 4 1 4
init 475 | 477 | 846 | 852
total 479 | 484 | 873 | 871
confs 73 93 92 | 104
bothin final | 6 2 22 12

Table 1: Statistics of Grackle’s training procedure. The rows init and
total denote the number of problems solved by Grackle’s initial strat-
egy and the number of problems solved by strategies in Grackle’s
final portfolio, respectively. The row confs denotes the number of
strategies that remains in Grackle’s final portfolio. The row both in
final represents the number of strategies in the final portfolio that
master both confluence and non-confluence of TRSs.

5.1 Experimental Settings

The ARI-COPS 2024 dataset comprises a total of 1,613 prob-
lems of which 566 are TRS problems. We focus on evaluat-
ing our approach on TRS problems since they are standard
term rewriting problems for confluence analysis and repre-
sent the major category in ARI-COPS. Another evaluation
dataset consists of data from both ARI-COPS and our ran-
domly generated datasets in Section 4.2. For training pur-
poses, we arbitrarily select 283 examples from ARI-COPS
and 800 examples from the randomly generated dataset. To
build the test dataset, we exclude the examples in the train-
ing dataset, subsequently randomly selecting 800 examples
from the randomly generated dataset and the remaining 283
examples from ARI-COPS.

The Grackle time limit for proving a TRS is 30 seconds,
employed both in the evaluation and the strategy special-
ization phases. During the specialization phase, Grackle
launches ParamILS for parameter tuning. The overall time
limit for one strategy specialization phase is 45 minutes. The
total execution time of Grackle is two days. Grackle performs
parallel execution in both the evaluation and specialization
phases; thus, we also limit the number of CPUs it can use.
For each dataset, we perform two Grackle runs, configuring
the numbers of available CPUs for a single strategy run to be
either one or four. When it is set to one and four, the total
number of available CPUs for Grackle is set to 52 and 66, re-
spectively. Here, a CPU denotes a core of the AMD EPYC
7513 32-core processor. Grackle’s portfolio stores at most
200 of the best strategies.

The use of four CPUs has been selected to match the results
of CST’s competition strategy in CoCo 2024 on the competi-
tion setup. Given exactly the same problems solved by CSI
in our own setup described above with four CPUs and in the
CoCo competition in their Starexec [Stump et al., 2014] setup
we consider the further comparisons in the paper fair.

5.2 Experimental Results

Performance on ARI-COPS. Table 1 depicts the statis-
tics of Grackle’s training procedure. The value fotal shows
the number of solved TRSs after the training, while init is
the number solved by the initial strategies. When using four
CPUs, Grackle’s final portfolio contains more strategies than
those in the final portfolio generated using one CPU. A prob-
able reason is that executing with four CPUs can discover

comp total combine

CPU [T [ 4 T ] 4 14|
yes 266 | 272 | 271 | 277 | 271 | 276 272
no 203 | 205 | 208 | 207 | 207 | 207 205
solved | 469 | 477 | 479 | 484 | 478 | 483 477

Table 2: Numbers of solved TRSs on ARI-COPS. The column comp
represents CSI’s competition strategy, total shows the total number
of problems proved by all invented strategies, and combine denotes
combining invented strategies as a single strategy. CoCo denotes the
results obtained by CSI in CoCo 2024.

never by CSI never in CoCo
CPU yes | no | solved | yes | no | solved
1 2 3 5 1 3 4
4 4 2 6 1 2 3
1&4 6 3 9 2 3 5
1-CeTA 0 3 3 0 3 3
4-CeTA 1 0 1 0 0 0
1&4-CeTA | 1 3 4 0 3 3

Table 3: Numbers of TRSs solved by all strategies in Grackle’s final
portfolio that have never been solved by all versions of CSI or any
tool in CoCo. The suffix CeTA denotes the proofs can be certified
by CeTA. The notion 1&4 means the union of all strategies invented
by employing one CPU and four CPUs per strategy execution.

some strategies that are only effective with enough computa-
tion resources. The final augmented portfolios contain more
strategies that master both confluence and non-confluence of
TRSs. The likely reason is that a larger dataset makes train-
ing slower, and it is more difficult for Grackle to find optimal
strategies for particular theoretical properties of TRSs.

Table 2 compares the invented strategies with CSI’s com-
petition strategy. With a single CPU per each strategy evalua-
tion, Grackle’s final portfolio proves ten more problems than
CSI’s competition strategy. With four CPUs, total proves
seven more problems than comp.

The invented strategies additionally (dis)prove several
TRSs that have never been proved by different versions of
CSI or all CoCo’s participants, as depicted in Table 3. In to-
tal, we show (non-)confluence for nine TRSs that could not
be solved by any versions of CSI. Five of the nine new proofs
have never been proven by all CoCo’s participants.

We combine the invented strategies as a single strategy to
compare it with CSI’s competition strategy. The number of
time splits and the exact time assigned for each invented strat-
egy are presented in the technical appendix. With single and
four CPUs, combine proves nine and six more problems than
the competition strategy, respectively.

When using one CPU, we gain more improvements over
CSI's competition strategy compared to using four CPUs. A
likely reason is that our strategy invention approach is partic-
ularly good at generating efficient strategies. With four CPUs,
CSI can run several processors in parallelly, effectively reduc-
ing the runtime.

Certification. First, we check whether the answers found
by the invented strategies are consistent with the answers dis-
covered in CoCo. Second, we execute CeTA to verify the
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comp combine

CPU 1 4 1 4
yes | 403 | 412 | 412 | 418
no 399 | 442 | 450 | 449
solved | 802 | 854 | 862 | 867

Table 4: Numbers of solved TRSs on the testing examples of the
augmented dataset.

proofs for the newly solved problems. Table 3 depicts the
number of newly solved problems certifiable by CeTA. If we
cannot certify the proofs due to the limitation of CeTA and
CSI as explained in Section 2.2, we analyze the related strate-
gies. We aim to understand what changes they perform to the
original strategy lead to the proofs. From the analysis, we
either slightly modify the sub-strategy defined in the compe-
tition strategy or directly use some existing sub-strategies to
produce the same answers as the invented strategies. These
modifications that lead to the answers are employed in the
corresponding invented strategies, which are small and sound
according to our knowledge of term rewriting. We also check
the certification errors output by CeTA to figure out whether
they are indeed errors or just caused by limitations of CSI and
CeTA. Third, for each strategy in Grackle’s final portfolio, we
run CSI on its mastered problems and apply CeTA to verify
the proofs. Only 234 and 226 proofs can be verified when
one and four CPUs are employed for strategy invention, re-
spectively. We manually check the proofs that cannot be ver-
ified by CeTA. The details of our certification procedures are
shown in the technical appendix.

Performance on the augmented dataset. Table 1 also
summarizes Grackle’s training procedure in the augmented
dataset. Compared to the training in ARI-COPS, Grackle’s
final portfolios consist of more strategies. The likely reason is
that the augmentation dataset comprises more examples, ne-
cessitating more diverse strategies to cover them. We notice
that with one CPU, the invented strategies prove more prob-
lems than those invented with four CPUs. This is probably
caused by the randomness in the strategy invention.

The results of the evaluation in the test dataset are pre-
sented in Table 4. With one and four CPUs, combine respec-
tively proves 60 and 13 more problems than comp. Notice
that here the training examples are disjoint from the testing
examples, whereas in the evaluation for ARI-COPS, they are
the same. From this, we can conclude that our invented strate-
gies generalize well to unseen data. With four CPUs, the uni-
fied strategy proves more problems than using one CPU. The
likely reason is that the invented strategies with four CPUs
can discover proofs more quickly, leading to a stronger uni-
fied strategy within the one-minute time limit.

6 Examples

Besides the example in Section 1, we present two more ex-
amples of the invented strategies that (dis)prove problems un-
provable by any participant in CoCo.

The core structure of the first example is AT. It proves con-
fluence for 794 .ari in ARI-COPS (939.trs in COPS).
The sub-strategy AT, denoting Aoto-Toyama criteria [Aoto

and Toyama, 20121, is defined in CST’s competition configu-
ration document. CSI’s competition strategy executes AT in
parallel with many other sub-strategies, reducing the compu-
tational resources allocated to it and failing to find a proof.

Another example is similar to that in Section 1, we dis-
cover that if CSI employs redundant —-development
6 to generate redundant rules in the competition strategy, it
can disprove confluence for 852 .ari (997.trs in COPS),
and the proof can be certified by CeTA.

7 Related Work

There have been several attempts to apply machine learning
to rewriting; however, none have been applied to automatic
confluence provers. While [Winkler and Moser, 2019] inves-
tigate feature characterization of term rewrite systems, they
do not build any learning models based on the features. There
are works analyzing the termination of programs using neu-
ral networks to learn from the execution traces of the pro-
gram [Giacobbe er al., 2022; Abate et al., 2021]. Neverthe-
less, they do not transform programs to term rewrite systems
and apply machine learning to guide automatic term rewriting
tools in termination analysis. MCTS-GEB [He et al., 2023]
applies reinforcement learning to build equivalence graphs
for E-graph rewriting, but it focuses on optimization prob-
lems, not on confluence.

There has been extensive research on parameter tuning and
strategy portfolio optimization in automated reasoning. Hy-
dra [Xu et al., 2010] employs a boosting algorithm [Fre-
und and Schapire, 1997] to select complementary strategies
for SAT solvers. [Ramirez ef al., 2016] propose an evolu-
tionary algorithm for strategy generation in the SMT solver
73 [De Moura and Bjgrner, 2008]. A comprehensive review
of these approaches is provided by [Kerschke e al., 2019].

8 Conclusion and Future Work

We have proposed an approach to automatically invent strate-
gies for the state-of-the-art confluence analysis prover CSI.
We have performed data augmentation by randomly gener-
ating a large number of term rewrite systems and mixing
these with the human-built dataset ARI-COPS. We have eval-
uated the invented combined strategy both on the original
ARI-COPS dataset and the augmented dataset. The invented
strategies discover significantly more proofs than CSI’s com-
petition strategy on both datasets. Notably, five of the human-
written problems have never been proved by any automatic
confluence provers in the annual confluence competitions.

Future work includes applying machine learning to indi-
vidual term-rewriting techniques, for example those that per-
form search in a large space. Prioritizing the more promising
parts of the search space could improve the individual tech-
niques. Our strategy invention approach could also be ex-
tended to other automatic term rewriting provers. It would
also be possible to apply neural networks to directly pre-
dict appropriate strategies for automatic term rewriting tools,
however, soundness of proofs generated using such an ap-
proach remains a major challenge.
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