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Abstract
Compositional zero-shot learning (CZSL) is to
recognize unseen attribute-object compositions by
learning from seen compositions. The distribution
shift between unseen compositions and seen com-
positions poses challenges to CZSL models, espe-
cially when test images are mixed with both seen
and unseen compositions. The challenge will be
addressed more easily if a model can distinguish
unseen/seen compositions and treat them with spe-
cific recognition strategies. However, identifying
images with unseen compositions is non-trivial,
considering that unseen compositions are absent
in training and usually contain only subtle differ-
ences from seen compositions. In this paper, we
propose a novel compositional zero-shot learning
method called COMO, which composes outliers in
training for distinguishing seen and unseen com-
positions and further applying specific strategies
for them. Specifically, we compose attribute-object
representations for unseen compositions based on
primitive representations of training images as out-
liers to enable the model to identify unseen compo-
sitions in inference. At test time, the method dis-
tinguishes images containing seen/unseen compo-
sitions and uses different weights for composition
classification and primitive classification to recog-
nize seen/unseen compositions. Experimental re-
sults on three datasets show the effectiveness of
our method in both the closed-world setting and the
open-world setting.

1 Introduction
Compositional generalization, understanding unseen combi-
nations composed of seen primitives, is one of the fundamen-
tal properties of human intelligence [Fodor and Pylyshyn,
1988]. To evaluate such ability of vision models, com-
positional zero-shot learning (CZSL) [Misra et al., 2017;

∗corresponding author
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Figure 1: Illustration of identifying unseen compositions for com-
positional zero-shot learning. (a) shows two seen compositions in
the training set of the MIT-States [Isola et al., 2015] on the left and
an unseen composition in the testing set on the right. (b) shows that
the testing images contain both seen and unseen compositions, and
our method first identifies whether testing images contain seen com-
positions and then uses different strategies for seen/unseen compo-
sitions. The λs/λu denotes the weights for combining composition
classification and primitive classification for seen/unseen composi-
tions, respectively.

Purushwalkam et al., 2019] requires recognizing unseen
attribute-object compositions by learning from seen compo-
sitions in training images, as shown in Fig. 1 (a). In partic-
ular, CZSL usually follows a practical and challenging gen-
eralized zero-shot learning setting [Pourpanah et al., 2022;
Chen et al., 2020; Liu et al., 2021a], where the test set con-
tains both seen and unseen classes, in evaluation. Since
the label combinations of unseen compositions were never
observed during training, the distribution shift between the
seen compositions and unseen compositions is significantly
large, which poses challenges to CZSL models [Atzmon et
al., 2021; Mancini et al., 2022]. The learned correlations of
models in training may be detrimental at test time.

Previous works deal with the distribution shift via invari-
ant representation learning [Atzmon et al., 2021; Zhang et
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al., 2022], prototypical representation learning [Ruis et al.,
2021] or propagating information of seen primitives for un-
seen compositions [Naeem et al., 2021; Mancini et al., 2022].
They aim to recognize unseen compositions well by adding
structural constraints, which may reduce the useful correla-
tions for seen compositions and influence the performance.
However, considering the potential differences between un-
seen and seen compositions, the tasks can be handled more
easily if a model can distinguish the seen and unseen com-
positions and treat them with specific recognition strategies,
such as specific expert classifiers. In this work, we explore an
explicit way to handle the distribution shift caused by unseen
cases, separating images of seen compositions from those of
unseen compositions and using different strategies for them.
Nonetheless, identifying unseen compositions at test time is
non-trivial. The unseen compositions are absent in model
learning, and thus their distribution is unknown. Sharing sim-
ilar primitives with seen compositions, they may be only sub-
tly different from seen compositions.

To address these challenges, we present a novel com-
positional zero-shot learning method called COMO that
composes outliers in training for identifying unseen compo-
sitions and further using different strategies for seen/unseen
attribute-object compositions. The method composes image-
level representations for unseen attribute-object compositions
based on learned representations of seen primitives. These
composed representations are regarded as outliers of the train-
ing distribution to encourage the model to identify out-of-
distribution (OOD) samples at testing. Besides, the disen-
tanglement of the primitive representations and the discrim-
inability of the composed representations is considered to
guarantee appropriate composed representations.

Specifically, our method combines a composition classifi-
cation module and a primitive classification module for com-
position recognition, as shown in Fig. 1 (b). The former mod-
ule characterizes compatibility between images and candidate
compositions, while the latter module independently charac-
terizes the compatibilities between images and the candidate
attributes and objects. By enforcing the composition classi-
fication module to output the uniform distribution for com-
posed representations, the module learns heuristics to iden-
tify images with unseen composition. Considering the two
classification modules focus on different perspectives of an
image and can supplement each other [Yang et al., 2022;
Wang et al., 2023b; Huang et al., 2024], we assign differ-
ent weights for seen/unseen compositions to combine the two
modules to achieve composition recognition. The experimen-
tal results on three widely used CZSL datasets under both the
closed-world setting and the open-world setting show the ef-
fectiveness of the proposed method.

The contributions of this paper are summarized as:

1. We propose a novel compositional zero-shot learning
method that can identify images with unseen compo-
sitions at test time and uses different strategies for
seen/unseen compositions.

2. Our method composes unseen attribute-object composi-
tions based on primitive representations to obtain out-
liers for the model to identify unseen compositions.

2 Related Work

Compositional zero-shot learning. The task of composi-
tional zero-shot learning aims to recognize unseen attribute-
object compositions by learning from seen compositions. Ex-
isting methods mainly achieve the task via composition clas-
sification with a composition classifier [Misra et al., 2017;
Naeem et al., 2021], or primitive classification, which inde-
pendently recognize attributes and objects, [Li et al., 2020;
Purushwalkam et al., 2019], or combines composition clas-
sification and primitive classification for better contextual-
ity [Yang et al., 2022; Wang et al., 2023b]. With the re-
cent advance in pre-trained vision-language models, CLIP-
based CZSL methods [Nayak et al., 2023; Lu et al., 2023;
Huang et al., 2024; Bao et al., 2023] achieved state-of-the-art
performance. CSP [Nayak et al., 2023] first uses the CLIP
[Radford et al., 2021] in CZSL. They replace the classes
in textual prompts with trainable attributes and object to-
kens. Troika [Huang et al., 2024] jointly models the vision-
language alignments for the attribute, object, and composition
using the CLIP. PLID [Bao et al., 2024] leverages pre-trained
large language models to enhance the compositionality of the
softly prompted class embedding. The aforementioned work
mainly focuses on parameter-efficient fine-tuning of CLIP. By
contrast, our method focuses on identifying unseen composi-
tions and designing different strategies for seen/unseen com-
positions and only uses CLIP as the backbone.
Distribution shift in CZSL. Atzmon et al.[Atzmon et al.,
2021] points out that the distribution shift between seen com-
positions and unseen compositions is a fundamental chal-
lenge for CZSL. They propose to ensure conditional indepen-
dence between attribute and object representations via causal
inference to handle this issue. Naeem et al.[Naeem et al.,
2021] and Mancini et al.[Mancini et al., 2022] use graph
convolutional networks to extract attribute-object representa-
tions and propagate information from seen compositions to
unseen compositions to improve the generalization ability.
Ruis et al.[Ruis et al., 2021] learned compositional proto-
types of novel attribute-object combinations that reflect the
dependencies of the target distribution. Zhang et al.[Zhang
et al., 2022] treated CZSL as a domain generalization task,
and proposed to learn attribute-invariant and object-invariant
representations for CZSL. Li et al.[Li et al., 2023] believe the
influence of the distribution shift for the composition classifi-
cation is larger, and only use a primitive classification module
for composition recognition. Different from these works, we
explicitly separate the seen class instances from those of the
unseen classes, and independently classify seen and unseen
class data samples via domain-specific strategies.
Generalized zero-shot learning (GZSL). GZSL is a typi-
cal setting of zero-shot learning (ZSL) to imitate the human
capability of recognizing samples from both seen and un-
seen classes [Pourpanah et al., 2022]. Previous work ex-
plores embedding-based [Min et al., 2020; Hu et al., 2023]
or generative-based [Verma et al., 2021; Liu et al., 2021b]
methods for GZSL. In this work, we borrow the idea of
embedding-based GZSL methods to deal with the distribu-
tion shift issue of CZSL, and propose a simple but effective
method tailored for CZSL.
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Figure 2: Overview of our method. In composition classification, the method characterizes primitive-level and composition-level compatibil-
ities between the image and candidate compositions. The method composes representations for unseen compositions based on attribute and
object representations of training images. An outlier exposure loss is used to enable identifying images with unseen compositions at testing.
A disentanglement loss and a discriminability loss are used to guarantee the effectiveness of composed representations.

3 Method
In this section, we formulate the CZSL task and illustrate the
proposed method, as shown in Fig. 2. Specifically, we illus-
trate how we achieve composition recognition based on out-
of-distribution (OOD) detection by combining two classifi-
cation modules, introduce how we compose representations
of unseen compositions as outliers in training to enable the
model to identify OOD samples, and introduce the overall
learning objective.

3.1 Formulation
Compositional zero-shot learning aims at learning a model
from limited compositions of attributes (e.g., young, wet)
and objects (e.g., cat, dog) to recognize an image from novel
compositions. Given an attribute set A = {a1, a2, . . . , a|A|}
and an object set O = {o1, o2, . . . , o|O|}, the compositional
class set C = A × O is defined as their Cartesian prod-
uct. The class set C can be divided into two disjoint sets,
the seen set Cs and the unseen set Cu, where Cs ∩ Cu = ∅
and Cs ∪ Cu ⊂ C. In particular, CZSL follows the gen-
eralized zero-shot learning setting [Pourpanah et al., 2022;
Chen et al., 2020; Liu et al., 2021a], where the training im-
ages only contain classes from the Cs and the images of test-
ing set contains both seen classes and unseen classes.

Given a test image I ∈ I, the CZSL task requires a model
to predict a class label c = (a, o) from the testing class
set. In the closed-world setting, only the known composi-
tions (compositions of the whole dataset) are considered, i.e.,
Ctest = Cs ∪ Cu. That is, the test class set contains all seen
classes for the training images and unseen classes of the test
set. Thus the test class set is only a subset of the compo-
sitional class set C. By contrast, in the challenging open-
world setting, the test class set is all possible compositions,
i.e., Ctest = C. Formally, the model is required to model
a score function S : I × A × O → R between an image
I and a candidate composition. During inference, the can-
didate composition with the highest score is regarded as the
final prediction.

3.2 Composition Recognition Based on OOD
Detection

Feature encoding. We use the image encoder and text en-
coder of the CLIP [Radford et al., 2021] as the visual back-
bone and textual backbone, respectively. Given an input im-
age I , we use the visual encoder of CLIP to obtain the rep-
resentation of the [CLS] token v ∈ Rd, and then use three
multi-layer perceptions (MLPs) to obtain image representa-
tion vI ∈ Rd, attribute representation va ∈ Rd, and object
representation vo ∈ Rd, respectively.

For candidate compositions, attributes, and objects, we use
the soft prompt [Nayak et al., 2023] to obtain textual rep-
resentations, by using a prompt template like “a photo of
[class]”. We feed the text encoder of CLIP with “a photo
of [attribute] [object]”, “a photo of [attribute] object”, and
“a photo of [object]” for each candidate composition, at-
tribute and object to obtain their textual representations T c ∈
RNc×d, T a ∈ RNa×d, T o ∈ RNo×d, respectively. The Nc,
Na, and No are the numbers of candidate compositions, at-
tributes, and objects, respectively. Specifically, the [attribute]
and [object] tokens are trainable and initialized with the cor-
responding word embeddings of CLIP.
Two types of classification modules. To fully characterize
the contextuality of attributes and objects, we use two types
of classification modules: a composition classification mod-
ule and a primitive classification module, to achieve compo-
sition recognition based on the above-mentioned representa-
tions. The composition classification models the composition
compatibility Sc(I, a, o). The primitive classification models
the attribute compatibility Sp

a(I, a), the object compatibility
Sp
o (I, o), and further obtain primitive-level scores Sp(I, a, o).

Specifically, for an input image I and a candidate compo-
sition ci = (aj , ok), the composition classification module
measures the compatibility score as

Sc(I, aj , ok) = cos(vI ,T c
i ), (1)

where cos(·, ·) denotes the cosine similarity function of two
vectors. The primitive classification module independently
measures the compatibility scores between an image and the
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attribute aj and the object ok, and computes the primitive-
level scores by using the aforementioned primitive-level vi-
sual and textual representations as

Sp(I, aj , ok) = Sp
a(I, aj) + Sp

o (I, ok)

= cos(va,T a
j ) + cos(vo,T o

k ).
(2)

We optimize the two modules in training with the cross-
entropy loss as

Lcls = Lc + La + Lo,

Lc = − log
exp(Sc(I, cgt))∑|Cs|
k=1 exp(Sc(I, ck))

,

La = − log
exp(Sp

a(I, agt))∑|A|
k=1 exp(S

p
a(I, ak))

,

Lo = − log
exp(Sp

o (I, ogt))∑|O|
k=1 exp(S

p
o (I, ok))

,

(3)

where cgt = (agt, ogt), are the ground truth composition,
attribute, and object for the image I , respectively. We set
equal weights for the two modules to let them supplement
each other.
Combining classification modules for recognition. At test
time, we identify images with unseen compositions through
OOD detection by using the maximum logit value before the
softmax layer [Jung et al., 2021], and then assign different fu-
sion weights for the above-mentioned classification modules
for composition recognition.

For a testing image, we select the maximum value of the
predicted distribution lmax of the composition classification
module over the seen compositions. By performing threshold
comparison with a pre-defined threshold T , we can obtain ŷ,
which is the predicted label about whether the image contains
a unseen composition. ŷ is set as 1 if lmax <= T and 0
otherwise. Then we compute the final compatibility score for
the image with a candidate composition as

S(I, a, o) =
{
λuSp(I, a, o) + (1− λu)Sc(I, a, o), ŷ = 1,

λsSp(I, a, o) + (1− λs)Sc(I, a, o), ŷ = 0,

where λs and λu are weights of fusing the two scores for
images with seen compositions and unseen compositions, re-
spectively. Finally, the candidate composition with the high-
est overall score is predicted.

Specifically, the validation set is used to obtain the thresh-
old T and two weights. We first cast identifying unseen com-
positions in the validation set as a binary classification task
based on the maximum probability, and select the best thresh-
old T by varying its value. Then the best threshold is used
to classify images in the validation set into two groups: im-
ages with seen compositions and images with unseen com-
positions. We further use grid search to find the best fusion
weights λs and λu on the validation, to combine the two clas-
sification modules.

3.3 Composing Outliers in Training for
Composition Recognition

To identify images with unseen compositions, we borrow the
idea of outlier exposure [Hendrycks et al., 2018] to encourage

the model to learn effective heuristics for out-of-distribution
detection, by exposing OOD examples to the model.
Composing unseen compositions. In real applications, it
may be difficult to know the distribution of testing images
one will encounter in advance. Fortunately, in CZSL, the set
of possible compositions can be composed using seen classes.
Thus by using the primitive representations of seen composi-
tions, representations of unseen compositions can be easily
obtained.

Intuitively, we can build the representation for an unseen
composition wet cat, by using the attribute representation of
an image about wet ground and the object representation of
an image about young cat. Motivated by the famous mathe-
matics of computational linguistics “King – Man + Woman =
Queen”, we simply add two primitive representations to ob-
tain composition-level representation for an unseen composi-
tion ui = (aj , ok) in model learning as

vu
i = v̂a

j + v̂o
k, (4)

where v̂a
j /v̂o

k is the attribute/object representation of the im-
age containing attribute aj or object ok, respectively. Specifi-
cally, we compose features for all possible compositions that
do not appear in the training set, rather than the unseen com-
positions in the validation set or the testing set. The GloVe
[Pennington et al., 2014] is used to obtain the feasibility cali-
bration of each possible composition for filtering out infeasi-
ble compositions. In model learning, we randomly select the
attribute/object representations of the current training batch to
obtain representation for a given unseen composition. Specif-
ically, in model learning, we can obtain various unseen com-
positions based on a batch of Nbs training images. For sim-
plicity, we also generate representations for Nbs unseen com-
positions, by randomly sampling primitives of the batch.
Constraints for feature composing. To obtain appropri-
ate composed representations for unseen compositions, we
enforce some constraints on the composed representations
for unseen compositions and the primitive representations of
training images, taking into consideration the disentangle-
ment of the primitive representations, and the discriminability
of the composed representations.

We first introduce a disentanglement loss to learn more
disentangled primitive representations, considering the com-
plex semantic entanglement of the attribute and the object in
an image. We penalize the object representations for predict-
ing the ground truth attribute labels, and attribute representa-
tions for predicting the ground truth object labels, and com-
pute the loss as

Lde = cos(va,T o
gt) + cos(vo,T a

gt), (5)

where T o
gt and T a

gt are the textual representations for the
ground-truth object label and ground-truth attribute label, re-
spectively. Intuitively, the disentanglement loss can reduce
the mutual information between attribute representations and
object representations. Note that we directly optimize the
similarities to make the model cannot predict the attribute la-
bel agt with the object representation vo, and vice versa. An
alternative option is to use a negative cross-entropy classifi-
cation loss, which will lead to the value of the loss becoming
negative infinity quickly.
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We further introduce a classification loss over all composed
unseen compositions, to enforce the composed representa-
tions to be discriminative. For an unseen composition ui,
the loss is calculated as

Ldc = − log
exp(Su(vui , ui))∑|Cs,u|

k=1 exp(Su(vuk , uk))
,

Su(vui , ui) = cos(vu
i ,T

c,u
ui

),

(6)

where, |Cs,u| is all composed unseen compositions, and T c,u

is the textual representations for these unseen compositions
obtained via the textual encoder. Intuitively, we encourage
the composed feature to be close to the textual presentations
of unseen compositions at the semantic level.
Outlier exposure. To encourage the model to identify unseen
compositions in testing, we introduce a loss as

Loe = CE(P u
i ,Puni), P u

i = softmax(f(vu
i ,T

c)), (7)

where Puni is a uniform distribution over all seen composi-
tions, and P u

i is the predicted distribution of the composi-
tion classification module. CE() is the cross-entropy func-
tion. f() is to compute cosine similarities between a com-
posed representation vu

i and all seen compositions T c. Loe

prevents composition classification from outputting confident
predictions for OOD samples. Thus unseen compositions can
be detected in testing via threshold comparison.

3.4 Optimization
We sum up all the above-mentioned losses to compute the
overall loss to supervise the model learning. The overall loss
is calculated as

L = Lcls + α1Lde + α2Ldc + α3Loe, (8)

where α1, α2, and α3 are hyper-parameters. We use a two-
stage training strategy for the proposed method. In the first
stage, all the losses are used to train a outlier detector. In the
second stage, we use only the classification loss to obtain the
classifier. The model architecture is the same for two stages.

4 Experiments
4.1 Experimental Settings
Datasets. We conduct experiments on three widely used
datasets, UT-Zappos [Yu and Grauman, 2014], MIT-States
[Isola et al., 2015], and C-GQA [Naeem et al., 2021]. UT-
Zappos is a synthetic fine-grained dataset consisting of 116
kinds of shoe classes composed of 16 attributes (e.g., rub-
ber) and 12 objects (e.g. sandal). The dataset is split into
83 seen and 15/18 unseen compositions for training and val-
idation/testing. MIT-States consists of 53, 753 crawled web
images labeled with 1962 attribute-object. The dataset con-
tains 1, 262 seen and 300/400 unseen compositions for train-
ing and validation/testing, respectively. C-GQA contains over
9, 000 common compositions and is split into 5, 592 seen
and 1, 040/923 unseen compositions for training and valida-
tion/testing, respectively. Note that in validation/testing set
of each dataset, the number of appeared seen compositions is
equal to that of unseen compositions.

Metrics. We report the standard metrics of CZSL evaluation
protocol in both closed-world and open-world settings, in-
cluding the best seen accuracy (S), the best unseen accuracy
(U), the best harmonic mean (HM) between the seen and un-
seen accuracy, and the area under the curve (AUC) of unseen
versus seen accuracy. In the standard evaluation, to counter-
act biases of models for seen classes, the calibration bias, a
scalar, is added to scores of unseen classes [Purushwalkam et
al., 2019]. By varying the value of the calibration bias, the
best seen/unseen accuracy, the best HM, and the AUC can be
computed. Specifically, the AUC is the area under the curve
of obtained seen accuracies and unseen accuracies. Consid-
ering that the best seen/unseen accuracy, and the best HM is
obtained with a specific calibration bias, the AUC is thus able
to better describe the overall performance of a model. In the
open-world setting, the GloVe [Pennington et al., 2014] is
used to filter out infeasible compositions.
Implementation details. We build our method with two
backbones, the ResNet [He et al., 2016] and CLIP [Radford et
al., 2021]. For the CLIP architecture, ViT-L/14 is used as the
previous work [Lu et al., 2023]. For the ResNet backbone,
we use a frozen ResNet-18 to obtain visual representations as
[Yang et al., 2022]. We report the results of our method with
both backbones on three datasets under two settings (Sec.
4.2). For other analyses, we use the CLIP backbone because
the performance with it is superior. In outlier composing, we
filter infeasible pairs by removing pairs with a Glove score
lower than 0.5. In the first stage, we perform the grid search
with the validation set to find the threshold to identify unseen
compositions. In the second stage, we perform the grid search
on the validation set by varying λu in {0.0,0.1,0.2,...1.0} and
λs in {0.0,0.1,0.2,...1.0}. For the CLIP backbone, the train-
ing epochs for each dataset as 5/15 for the two stages, respec-
tively. In the first stage, the hyper-parameters α1, α2, and
α3 are set as (0.1, 0.1, 5.0) for the UT-Zappos, (0.01, 0.01,
1.0) for MIT-State, and (0.1, 0.5, 1.0) for C-GQA, respec-
tively. For the ResNet backbone, the training epochs for each
dataset as 50/100 for the two stages, respectively. The hyper-
parameters α1, α2, and α3 are set as (5.0, 0.1, 5.0) for the
UT-Zappos, (5.0, 0.1, 1.0) for MIT-States, and (0.1, 1.0, 1.0)
for C-GQA, respectively.

4.2 Main Results
We compare our method with various state-of-the-art meth-
ods, including both methods without CLIP and CLIP-based
methods. All methods use a frozen visual feature extractor.
Results of all methods on the test split of MIT-States [Isola et
al., 2015], UT-Zappos [Yu and Grauman, 2014], and C-GQA
[Naeem et al., 2021] under the standard closed-world setting
are listed in Tab. 1. We observe that our method outperforms
all methods in terms of AUC, which comprehensively eval-
uate the performance of CZSL models. The main reason is
that our method can identify unseen compositions and sepa-
rately classify seen and unseen compositions to alleviate the
influence of distribution shift. Thus our method can achieve
satisfactory performance for seen compositions and unseen
compositions in testing with different values of the calibra-
tion bias. Note that we didn’t compare with Troika [Huang
et al., 2024], CAILA [Zheng et al., 2023], and RAPR [Jing
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Closed-world MIT-States C-GQA UT-Zappos
Model Venue AUC HM S U AUC HM S U AUC HM S U

Without
CLIP

CGEff [Naeem et al., 2021] CVPR’21 5.1 17.2 28.7 25.3 2.5 11.9 27.5 11.7 26.4 41.2 56.8 63.6
SCEN [Li et al., 2022] CVPR’22 5.3 18.4 29.9 25.2 2.9 12.4 28.9 12.1 32.0 47.8 63.5 63.1

DECA [Yang et al., 2022] TMM’22 5.3 18.2 29.8 25.2 - - - - 31.6 46.3 62.7 63.1
CANet [Wang et al., 2023b] CVPR’23 5.4 17.9 29.0 26.2 3.4 14.5 30.0 13.2 33.1 47.3 61.0 66.3

COMO 5.5 18.0 28.4 26.3 3.6 14.8 29.7 14.9 33.5 49.0 60.3 65.3

With
CLIP

CSP [Nayak et al., 2023] ICLR’23 19.4 36.3 46.6 49.9 6.2 20.5 28.8 26.8 33.0 46.6 64.2 66.2
HPL [Wang et al., 2023a] IJCAI’23 20.2 37.3 47.5 50.6 7.2 22.4 30.8 28.4 35.0 48.2 63.0 68.8

DFSP [Lu et al., 2023] CVPR’23 20.6 37.3 46.9 52.0 10.5 27.1 38.2 32.9 36.9 47.2 66.7 71.7
DLM [Hu and Wang, 2024] AAAI’24 20.0 37.4 46.3 49.8 7.3 21.9 32.4 28.5 39.6 52.0 67.1 72.5

ProLT [Jiang and Zhang, 2024] AAAI’24 21.1 38.2 49.1 51.0 11.0 27.7 39.5 32.9 36.1 49.4 66.0 70.1
PLID [Bao et al., 2024] ECCV’24 22.1 39.0 49.7 52.4 11.0 27.9 38.8 33.0 38.7 52.4 67.3 68.8

COMO 22.4 39.3 50.4 52.7 11.4 27.7 40.3 33.3 43.7 56.6 68.5 74.0

Table 1: The results on CZSL datasets in the closed-world setting. All methods use a frozen visual feature extractor. The best results of
methods without CLIP are underlined and the best results of methods with CLIP are bold.

Open-world MIT-States C-GQA UT-Zappos
Model Venue AUC HM S U AUC HM S U AUC HM S U

Without
CLIP

CGEff [Naeem et al., 2021] CVPR’21 0.7 4.9 29.6 4.0 0.30 2.2 28.3 1.3 21.5 39.0 58.8 46.5
KG-SPff [Karthik et al., 2022] CVPR’22 1.0 6.7 23.4 7.0 0.44 3.4 26.6 2.1 22.9 39.1 58.0 47.2

Co-CGECW
ff

[Mancini et al., 2022] TPAMI’22 1.1 6.5 28.2 6.0 0.29 2.1 28.9 1.2 20.1 36.1 59.5 41.5

COMO 1.4 7.9 26.7 7.9 0.48 3.5 29.4 2.4 23.7 40.8 60.3 48.2

With
CLIP

CSP [Nayak et al., 2023] ICLR’23 5.7 17.4 46.3 15.7 1.2 6.9 28.7 5.2 22.7 38.9 64.1 44.1
HPL [Wang et al., 2023a] IJCAI’23 6.9 19.8 46.4 18.9 1.5 7.5 30.1 5.8 24.6 40.2 63.4 48.1

DFSP [Lu et al., 2023] CVPR’23 6.8 19.3 47.5 18.5 2.4 10.4 38.3 7.2 30.3 44.0 66.8 60.0
PILD [Bao et al., 2024] ECCV’24 7.3 20.4 49.1 18.7 2.5 10.6 39.1 7.5 30.8 46.6 67.6 55.5

COMO 7.7 20.8 49.2 19.5 3.1 12.4 40.7 8.8 33.8 50.1 65.0 61.2

Table 2: The results on CZSL datasets in the open-world setting. All methods use a frozen visual feature extractor. The best results of
methods without CLIP are underlined and the best results of methods with CLIP are bold.

et al., 2024], because they use adapter or LoRA [Hu et al.,
2021] module in the transformer-based image encoder.

Tab. 2 shows the results on three datasets in the open-
world setting. The proposed method outperforms all other
methods, which demonstrates the effectiveness of our method
for open-world compositional zero-shot learning. We ob-
serve that the performance gap between other methods and
our method in the open-world setting is larger than that in the
closed-world setting. A possible reason is in feature compos-
ing, we compose all possible compositions based on training
images, which aligns with the open-world setting, where all
possible compositions should be considered. Note that we
use identical model weights, threshold, and fusion weights
λs and λu for the two settings.

4.3 Ablation Studies
To study the effectiveness of several key designs of our
method, we evaluate different variants of our model on the
UT-Zappos in the closed-world setting with CLIP.
Effect of identifying images with unseen compositions. We
first investigate the effectiveness of identifying unseen com-
positions in testing and separately classifying images with
unseen compositions and seen compositions. In Tab. 3, we
provide the results of our baseline model with only the two
classification modules. The AUC of the model is much lower
than our full model. The results of the composition classifi-
cation module and the primitive classification module of the
baseline model are also reported. Formally, we set both λu

and λs as 0 to obtain the model “Composition”, and set them

Model AUC HM S U
Baseline 41.9 55.4 68.0 72.1

Composition 38.2 51.1 65.2 72.6
Primitive 39.2 55.0 68.8 64.7

Real images 42.6 55.4 68.3 73.7
Generated images 42.8 55.9 68.0 74.1

sub 43.4 56.4 68.7 74.0
mul 43.4 56.0 68.7 73.4
cat 43.2 56.1 67.8 73.8

w/o composing 43.0 55.7 68.1 73.8
w/o Loe 42.7 55.9 68.2 74.1
w/o Lde 43.4 56.6 68.3 74.1
w/o Ldc 42.8 55.9 68.2 74.2
Oracle 48.3 65.2 68.7 73.2
COMO 43.7 56.6 68.5 74.0

Table 3: Ablations on UT-Zappos in closed-world setting.

as 1 to obtain the model “Primitive”. Both models are inferior
to the baseline models. We can also obtain an oracle model
by using the ground truth binary label for whether an image
contains a seen composition. We observe that the model sig-
nificantly outperforms the full model in terms of AUC, which
shows the two classification modules are complementary to
each other and the idea of detecting images of unseen pairs
is promising. Note that the best seen/unseen accuracies of
the Oracle model don’t always outperform other models. The
reason is that it also searches fusion weights to softly combine
the classification modules, rather than directly use a specific
module for seen or unseen compositions.
Effect of each component. Then we study the influence of
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Dataset Train T λu, λs λu,λs (SGS)
UT-Zappos 320 0.1 5.4 0.5
MIT-States 825 0.1 150 30

CGQA 1530 0.1 610 70

Table 4: Time cost (s) for training one epoch, finding the best thresh-
old and best fusion weights. The SGS denotes a simplified grid
search with a smaller range.

composing unseen attribute-object compositions as outliers.
We ablate the outlier composing to obtain the model “w/o
composing”, which also uses the MSP to identify images
with unseen compositions. As shown in Tab. 3, the model
performs slightly better than the baseline model, but is much
worse than our full model, which demonstrates that the com-
posed outliers bring substantial improvements. We further
ablate the outlier exposure loss, the disentanglement loss, and
the discriminability loss, to obtain three models, respectively.
The comparisons demonstrate the three losses are also bene-
ficial on both datasets.
Effect of composing primitive representations via addi-
tion. In our implementation, we add two primitive represen-
tations to obtain representation for an unseen composition.
To investigate the effect of this design, we use subtraction
and multiplication to obtain two models (“sub” and “mul”),
respectively. We also concatenate the two representations and
use a trainable linear mapping to project it into a single repre-
sentation, to obtain the model “cat”. We observe that they are
inferior to our full model, which demonstrates the simplicity
and effectiveness of using the addition. A possible reason is
that directly adding two representations can effectively main-
tain their information, and does not introduce any trainable
parameters, which may affect the model learning.
Effect of using composed representations as outliers. To
further study whether using composed representations as out-
liers is really beneficial for out-of-distribution detection, we
conduct experiments on the UT-Zappos by using real images
from the ImageNet dataset [Deng et al., 2009] and the im-
ages generated by the stable diffusion [Rombach et al., 2022].
The results are shown Table 3. Specifically, we randomly
select 22, 998 images in the ImageNet or use the stable dif-
fusion to generate over 2, 2998 images for the unseen com-
positions of the UT-Zappos, and require the model to output
uniform distribution for these images. The obtained models
(“Real images” and “Generated images”) underperform our
full model. The main reason is that by using composed fea-
tures, we can obtain features of unseen pairs to better identify
unseen compositions. These results demonstrate that adding
primitive representations of training images to compose rep-
resentations of unseen compositions is simple but effective.

4.4 Runtime Consideration
In this part, we analyze the computation time of the grid
search. Table 4 shows the time for training one epoch, finding
the best threshold T , finding the best fusion weights λs, λu,
and a simplified grid search (SGS) to find the fusion weights,
on all datasets. For the SGS, we only perform the grid search
within the full range after the first epoch, and then perform
the grid search in a small neighborhood around the fusion

Figure 3: Feature distributions on CGQA.

weights found in the last epoch. For example, if the found λu,
λs are 0.3 and 0.7, the range of the next grid search should
be [0.2, 0.3, 0.4] and [0.6, 0.7, 0.8], respectively. It is shown
that finding the threshold takes almost no time while find-
ing the fusion weights indeed takes some time. For the MIT-
States and C-GQA, finding the fusion weights with the SGS
can save a lot of time. Besides, using the SGS leads to the
same results with using vanilla grid search, because the fu-
sion weights found of different epochs remain stable. Thus,
the extra computations of the grid search are acceptable.

4.5 Qualitative Results
We visualize the feature distributions of our method with
CLIP on the CGQA dataset in Fig. 3 to demonstrate the
effectiveness of composing unseen compositions as outliers.
Specifically, we select 10 most frequent seen/unseen compo-
sitions on the train/test set, respectively, randomly select 4
images for each composition, and visualize their image rep-
resentations via the t-SNE tool [Van der Maaten and Hinton,
2008]. We also visualize 40 composed representations con-
taining the 4 unseen compositions, by using primitive rep-
resentations of training images. We observe that composed
representations for unseen compositions are close to repre-
sentations of testing images with unseen compositions, and
thus can help our model to identify images with unseen com-
positions in testing. Note that we only expect composed rep-
resentations to be beneficial for OOD detection, rather than
matching the real distribution of unseen compositions.

5 Conclusion and Future Work
In this work, we have presented COMO, a novel compo-
sitional zero-shot learning method. COMO composes rep-
resentations of unseen compositions as outliers to identify
unseen compositions. By combining composition/primitive
classification modules, the method is able to separately rec-
ognize images with seen/unseen compositions. Extensive ex-
periments show the effectiveness of our method.

In our implementation, the threshold and fusion weights
are found via grid search on a validation set, which introduces
extra computations. Besides, the fusion weights are the same
for all samples with seen/unseen compositions. In the future,
we will use several neural modules to predict sample-specific
scalars based on each sample, and use reinforcement learning
to enable end-to-end training.
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