
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Large-Scale Trade-Off Curve Computation for Incentive Allocation with
Cardinality and Matroid Constraints

Yu Cong1 , Chao Xu1 and Yi Zhou1

1University of Electronic Science and Technology of China
{yucong143, the.chao.xu}@gmail.com, zhou.yi@uestc.edu.cn

Abstract
We consider a large-scale incentive allocation prob-
lem where the entire trade-off curve between bud-
get and profit has to be maintained approximately
at all time. The application originally comes from
assigning coupons to users of the ride-sharing apps,
where each user can have a limit on the number of
coupons been assigned. We consider a more gen-
eral form, where the coupons for each user forms a
matroid, and the coupon assigned to each user must
be an independent set. We show the entire trade-off
curve can be maintained approximately in near real
time.

1 Introduction
In the current age, we are dealing with increasingly large in-
centive allocation problems. One is given a fixed amount
of budget to allocate to different incentives to maximize
some objective. A prototypical example is assigning a single
coupon to each rider in ridesharing apps, where each assign-
ment uses up some marketing budget, and increase some met-
ric such as rides or driving hours [Wang and Shmoys, 2019].
For example, an incentive allocation problem under cardinal-
ity constraints can be formalized as the following integer pro-
gram.

max
x

∑
i

∑
j

vijxij

s.t.
∑
i

∑
j

cijxij ≤ B

∑
j

xij ≤ k ∀i

xij ∈ {0, 1} ∀i, ∀j

For each agent i, there is a candidate incentive set consist-
ing of coupons, where the value and cost of the jth coupon
is vij and cij , respectively. The goal is to select at most k

Supplementary materials are available at https://github.com/
congyu711/incentive-allocation-supplementaries.

coupons for each agent and to make sure that the total cost
of the selected coupons does not exceed the budget B while
maximizing the total value of those coupons.

The problem is a variant of the knapsack problem, and
computing the exact optimum is NP-hard. However, the frac-
tional optimum is very close to the integer optimum, even
if there are strong constraints in the allocation [Camerini and
Vercellis, 1984]. Hence, in this article, we only consider find-
ing the fractional optimum.

The allocation under a fixed budget is often insufficient for
decision and analytic purposes. For example, the company
might want to decide on the total budget for a campaign. A
data scientist might need to know how much marketing spend
is required to obtain an expected profit. These questions can
all be answered if the entire trade-off curve of the budget vs
profit can be computed. There can be more complicated cases
where the decider might not be a person but an algorithm.
Consider the following case: The ridesharing company wants
to allocate a budget to two campaigns, one of which is incen-
tive allocation. We are optimizing maxx f(x) + g(B − x),
where f would map to the trade-off curve in the incentive al-
location problem and g is the value of the other campaign. g
can be complicated and in that case an algorithm optimizing
the sum would evaluate g at many different values of x. Im-
plementing such an algorithm will be a lot faster and easier
if we can compute the trade-off curve f quickly. Moreover,
the curve is not static: In practice, the cost and value of a
coupon are usually predicted by algorithms or models. An
agent might take a certain action, say take a ride, and the
model would change its predictions of the expected profit of
each incentive associated with the agent.

Hence, we investigate the dynamic incentive allocation
trade-off curve problem, where the entire trade-off curve has
to be maintained, while supporting updates(insertions and
deletions) of agents’ incentives. In practice, the number of
agents is large (in the millions), the choices of incentives for
each agent is relatively small (a few hundred), and no agent
is critical to the objective. That is, removing any agent would
not significantly impact the objective. Also, we assume each
agent is independent: the incentives to one do not affect oth-
ers.

Generally, for each agent, there can be constraints on the
allocation of incentives. We consider some examples in the
ridesharing apps. A user can be assigned at most one of the

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/congyu711/incentive-allocation-supplementaries
https://github.com/congyu711/incentive-allocation-supplementaries

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

incentives (multiple choice constraint). A user can be as-
signed no more than p incentives (cardinality constraint). A
user can have 2 incentives for weekends, and 2 incentives for
weekdays, but only 3 incentives in total (special case of ma-
troid constraint). The most general constraints are given as
an arbitrary family of feasible subset of incentives. Our work
would also consider how the problem changes under different
constraints, but we mainly focus on cardinality and matroid
constraints.

Finally, we want the implementation to be easily transfer-
able to queries in a modern OLAP databases.

Previous Works. The (integral) incentive allocation prob-
lem for a fixed budget B is a knapsack problem with side con-
straints. Our work is concerned with the linear programming
relaxation, the fractional version, of the knapsack problem.

When each agent is allocated exactly 1 incentive, it is
also called the continuous multiple choice knapsack prob-
lem (CMCKP), and was widely studied. Sinha and Zoltners
[Sinha and Zoltners, 1979] showed the optimum gap from
the integral case is the value of a single incentive. Later,
optimum linear time algorithm was discovered [Dyer, 1984;
Zemel, 1984]. When each agent is required to be allocated
exactly (or at most) p incentives, namely having cardinal-
ity constraint on the incentives, it is equivalent to the con-
tinuous bounded multiple choice knapsack problem (CBM-
CKP). CMCKP is the special case of CBMCKP when p = 1.
Pisinger showed a reduction from CBMCKP to CMCKP,
but running time depends on B [2001]. In the same paper,
Pisinger used the Dantzig-Wolfe decomposition to devise a
faster polynomial time algorithm. However, the algorithm’s
running time depends on the size of the value and the cost,
therefore it is not a strongly polynomial time algorithm.

When the incentive for each agent must form an inde-
pendent set (or a base) in a matroid, it is the (continuous)
matroidal knapsack problem [Camerini and Vercellis, 1984].
The running time for finding an optimum is O(m2+T logm)
time, where m is the number of incentives and T is the com-
plexity of finding the optimum base for a given weighting
of the elements in the matroid. After the technique of para-
metric search was introduced and improved [Megiddo, 1983;
Cole, 1987], the running time was improved to O(T logm)
[Tokuyama, 2001]. CBMCKP is a special case of the ma-
troidal knapsack problem when the matroid is a p-uniform
matroid. Although not explicitly stated, the matroid algo-
rithm can be used for CBMCKP, and obtain an O(m logm)
time algorithm because it takes O(m) time to find the op-
timum base for a uniform matroid [Tokuyama, 2001]. See
Table 1 for a comparison of results.

From another point of view, the incentive allocation prob-
lem can be considered a matroid optimization problem with
an additional linear constraint. For general matroid this prob-
lem admits no fully polynomial-time approximation scheme
[Doron-Arad et al., 2024].

For readers familiar with parametric or multi-objective op-
timization, it may also be helpful to view the trade-off curve
as the Pareto curve between objectives. Under the multi-
objective optimization framework, we are solving matroidal
knapsack problem with an additional objective that minimize

the total budget. Computing the trade-off curve can also be
considered a sensitivity analysis problem, where the budget
is the parameter whose sensitivity we are interested in. While
these interpretations provide additional insight, our analysis
is mainly conducted within the linear programs for the incen-
tive allocation problem, as LPs better capture the properties
of the problem and are easier to understand.

We are not aware of explicit computation of the entire
trade-off curve except in the CMCKP case. A recent study
in the transportation economics area [Javaudin et al., 2022]
considered each agent must pick one of a few incentives, each
having a different impact to social welfare. The regulator
consults the entire trade-off curve for informed policymak-
ing. The algorithm has a running time of O(m logm). The
result is static, as it does not concern about updating the curve
when individual incentive changes.

Our contribution. We show that the entire incentive allo-
cation trade-off curve is piecewise linear and concave. We
construct a conceptually simple method to maintain the curve
under different constraints, while allowing updates in loga-
rithmic time with respect to number of fundamental changes
of the trade-off curve. In particular,

1. In the multiple choice constraint case, the result matches
the current fastest algorithm for static trade-off curve,
but our implementation allows dynamic updates.

2. In the cardinality constraint case, we show the entire
trade-off curve can be computed with O(logm) amor-
tized time per breakpoint.

3. We also observe that our problem is related to the k-
level problem in computational geometry and paramet-
ric matroid optimization. The connection shows a sub-
quadratic bound to the number of breakpoints in the
trade-off curve, when previously the bound is quadratic.

Finally, we show part of the algorithm can be handled by
modern OLAP database to avoid implementation complexity.

As a preview, we will prove the following theorems.

Theorem 1. Consider an incentive allocation problem with a
total of m incentives. If there is a cardinality p constraint on
each agent, and k is the number of breakpoints on the trade-
off curve, then k = O(mp1/3), and the trade-off curve can be
computed in O((k +m) logm) time.

Theorem 2. Consider an incentive allocation problem with a
total of m incentives. If there is a matroid constraint on each
agent, each matroid has rank at most p, and k is the number of
breakpoints on the trade-off curve, then k = O(mp1/3), and
the trade-off curve can be computed in O(Tk+k logm) time,
where T is the time to compute the optimum weight base.

Theorem 3. If the slope-difference form of trade-off curve
after an update differs from previous trade-off curve at t po-
sitions, then the update takes O(t log k) time, where k is the
total number of breakpoints in the curve.

Assuming each agent is only available for a few hundred
incentives, then each update of an agent, t would be around
the same number, which would make the running time near-
real time.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Constraint Type Result Fixed budget Trade-off curve Dynamic

Multiple Choice
[Dyer, 1984; Zemel, 1984] O(m) - -

[Javaudin et al., 2022] - O(m logm) No
Theorem 1 - O(m logm) Yes

Cardinality

[Pisinger, 2001] O(m log V C) - -
[Pisinger, 2001] O(mp+ nB) - -

[Tokuyama, 2001] O(m logm) - -
Theorem 1 - O((k +m) logm) Yes

Matroid
[Camerini and Vercellis, 1984] O(m2 + T logm) - -

[Tokuyama, 2001] O(T logm) - -
Theorem 2 - O(Tk + k logm) Yes

Table 1: Comparison of algorithms for incentive allocation: m is the total number of incentives, M is the maximum number of incentives over
each agent, p is the max rank of the matroid constraint over each agent, or the limit in the cardinality constraint. V and C is the maximum
value and cost of the incentives, respectively. B is the budget. k = O(mp1/3) is the number of breakpoints of the trade-off curve. T is the
time complexity of matroid optimum base algorithm.

2 Preliminaries
We define [n] = {1, . . . , n}. Let x ∈ Rm, if I ⊆ [m], then
xI is the vector of length |I| obtained by deleting elements
outside the index set. x(I) =

∑
i∈I xi. Conv(X) is the

convex hull of X .

2.1 Prefix Sum and Piecewise Linear Convex
Function Representations

Given a sequence of elements a1, . . . , an and some associa-
tive operation ⊕, the prefix sum is the sequence b1, . . . , bn,
such that b1 = a1, and bi = bi−1 ⊕ ai. The prefix sum data
structure maintains the corresponding prefix sums under up-
dates of the original sequence, allowing query of each prefix
sum value and binary search (if monotonic) in O(log n) time
[Blelloch, 1991].

Let f : [0,∞) → R be a piecewise linear convex function
with n breakpoints (0 is always a breakpoint). There are 3
different forms that capture almost all information of f , and
one can transform between them using prefix sum or even
easier operations.

1. The slope-difference form SD(f) = {(x1,∆1), . . . ,
(xn,∆n)}, where x1 = 0, ∆1 is the left most slope of
f , and xi is the ith breakpoint, and ∆i for i > 1 is the
difference between the right slope and the left slope.

2. The slope form S(f) = {(x1, s1), . . . , (xn, sn)}.
Again, xi are the breakpoints, and si =

∑i
j=1 ∆i is

the right slope at point xi.
3. The value form V (f) = {(x1, f(x1) − f(0)), . . . ,

(xn, f(xn)− f(0))}.

Note that the previous forms also require the value of f(0)
in order to uniquely recover the function, hence it has to be
stored elsewhere. One can write the prefix sum data struc-
ture by hand, such that the original sequence is the slope-
difference form, and any update in slope-difference form
would propagate to slope and value form.

The slope-difference form is also easy for sums. SD(f+g)
is simply SD(f)∪SD(g) if f and g do not share breakpoints,
otherwise, sum the slope-difference at the breakpoint. For
simplicity of exposition, we assume the functions we sum do

not share breakpoints. This also allows one to maintain f =∑
i fi easily by taking the union.
By maintaining a function, we means that the following

question can be answered quickly

1. Evaluate: Given x, return f(x).

2. Inverse: Given y, find smallest x such that f(x) = y.

3. Output: Given x and y, output the function f restricted
on [x, y].

If f is the trade-off curve, then “Evaluate” can answer how
much value can be obtained for a given budget, and “In-
verse” can answer how much budget is required for a par-
ticular value.

2.2 Matroids
A matroid M = (E, I) is a set system over ground set E, and
I consists of subsets of E, such that the following properties
hold.

1. ∅ ∈ I.

2. A ∈ I, then every subset of A is in I.

3. If A,B ∈ I, and |A| > |B|, then there is x ∈ A \ B,
such that B ∪ {x} ∈ I.

The sets in I are called independent sets, and the maximal
independent sets are called bases. The rank function r asso-
ciated with M is defined as r(S) = max{|S′| | S′ ⊆ S, S′ ∈
I}, the size of the largest independent set contained in S. The
rank of the matroid is defined as r(E).

A matroid is a p-uniform matroid if there exists an integer
p, such that every set of size at most p is an independent set.

2.3 Problem and Properties
Consider an (integral) incentive allocation problem with n
agents. The ith agent has a candidate set of incentives, Ei.
Each incentive e has a cost ce and a value ve, respectively. To
model constraints, let Fi be the feasible subsets of Ei, which
can be encoded as a set of binary vectors. Let mi = |Ei| and
m =

∑
i mi. The problem is to choose a feasible set of in-

centives for each agent, such that the sum of value of all the

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

chosen incentives is maximized while the total cost does not
exceed budget B.

The (integral) incentive allocation problem can be formu-
lated as the following integer program (IP):

max
x

v · x
s.t. c · x ≤ B

xEi
∈ Fi ∀i ∈ [n]

x ∈ {0, 1}m

Define τ̄(B) to be the objective value of the above integer
program. The exact trade-off curve is the function τ̄ as B
ranges from 0 to ∞. Finding τ̄(B) is NP-hard, therefore we
consider the linear programming relaxation instead. This is
shown below.

max
x

v · x
s.t. c · x ≤ B

xEi ∈ Conv(Fi) ∀i ∈ [n]

(1)

Define τ(B) to be the objective value of the linear pro-
gramming relaxation of the integer program IP . We call τ
the (fractional) trade-off curve.

One can reduce the problem to multiple choice knapsack
similar to the reduction by Pisinger [2001], and show τ(B)−
τ̄(B) ≤ maxi{

∑
e∈Ei

ve}. That is, the maximum difference
is at most the value a single agent can provide. If additionally,
we know Fi forms a matroid for each i, then a stronger result
exists: the difference is at most the value of a single incentive
[Camerini and Vercellis, 1984]. Namely, τ(B) − τ̄(B) ≤
∥v∥∞.

Because in large-scale problems such as coupon assign-
ment, single agent’s value is small compared to the objective.
Therefore, τ is a very close approximation of τ̄ . Hence, our
work is to maintain the function τ .

3 Algorithm
The algorithm is conceptually simple. The computation gets
broken into two independent parts, allowing for greater par-
allelization and customization.

The idea is to compute a signature function for each agent.
The signature functions can be computed in parallel, com-
pletely independently. The sum of the signature functions is
the function we will maintain, and we show how to use the
sum to obtain the desired information on τ .

3.1 From Signature Functions to Trade-Off Curve
We start with the most general form of the problem Equa-
tion (1). Let Pi = Conv(Fi). Consider we have n
polyhedrons P1, . . . , Pn together with disjoint index sets
E1, . . . , En with their union [m].

Consider the following linear program,

max
x

v · x
s.t. c · x ≤ B

xEi ∈ Pi ∀i ∈ [n]

We define fi(λ) = max{(vEi − λcEi)x|x ∈ Pi}, and we
call it the signature function of agent i. The signature function
fi is piecewise linear and convex since it is the upper envelope
of line arrangement {lx(λ) = vEi

· x− λcEi
· x|∀x ∈ Pi}.

Let f =
∑

i fi. The Lagrangian dual of the linear program
is therefore

min
λ

(Bλ+ f(λ)) . (2)

Note that each fi is a piecewise linear convex function,
hence λB + f(λ) is also piecewise linear and convex.

Given the signature function fi for each agent, we have to
maintain the function f =

∑
i fi. Maintaining f itself is an

easy task since it is just the sum of piecewise linear functions,
the number of breakpoints is the total number of breakpoints
for fi. If each fi is stored in slope-difference form, then f
can be computed through a simple merge of the lists.

Theorem 4. τ is a piecewise linear concave function and
τ(B) = minλ λB + f(λ).

This shows once we have the signature functions, the trade-
off curve is easy to compute through common techniques for
manipulating piecewise linear functions. See the technical
appendix for the full proof.

We have already established that τ is closely related to f .
Next, we show how to maintain τ dynamically.

Assume f has k breakpoints and all three forms(value,
slope and slope-difference) of f are given. We answer the
following questions.

1. Evaluate: For a fixed B, how to find τ(B)?

2. Inverse: Find a B such that τ(B) = y.

3. Update: Maintain τ after a single agent’s incentive
changes.

4. Output: Output a contiguous piece of τ .

Evaluate. Bλ+f(λ) is a piecewise linear convex function,
the minimum is at the first position where the slope becomes
positive. Or in other words, find the first λ in f , where the
slope is greater than −B. This can be processed easily by
looking at the slope form of f and do a binary search, and it
would take O(log k) time.

Inverse. The idea is to find τ(B1) ≤ y < τ(B2), such that
B1 and B2 correspond to the two consecutive slopes of f .
We can do binary search over the breakpoint of f to find the
corresponding λ1 for B1. Finally, solve the linear equation
Bλ1 − f(λ1) = y to obtain B.

Update. Assume information for agent i updates, then the
only change is the signature function for that agent. Assume
the new signature function after the update is gi. The new f
is obtained by subtracting fi and adding gi successively. We
could also save time by only updating the difference in fi and
gi. Hence, the amount of time spent on update is bounded by
the number of breakpoint changes times a log factor, and the
time finding the new signature function.

Note that the function is stored in slope-difference form;
hence, any update in which only t positions in the slope-
difference form change takes O(t log k) time, which proves
Theorem 3.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Output τ . Evaluating and finding the inverse are sufficient
for most purposes, but if we do want to output a contiguous
piece of τ that consists of at most t breakpoints, we can do
so in O(log k + t) time. We know precisely for which B the
curve τ changes in slope: a one to one correspondence with
the breakpoints of f . Hence, we can first find the desired
place in τ and output the breakpoints one by one by walking
through the slope table of f .

Theorem 5. Given the signature functions for each agent,
it takes O(k log k) time to compute a representation for τ ,
where k is the number of breakpoints in the trade-off curve.

The running time in Theorem 5 is obtained by merging sig-
nature functions of agents and depends on the output size.
The complexity of maintaining the trade-off curve depends
on how many breakpoints there are in f , which in turn is lin-
early related to the number of breakpoints in each signature
function. The next step is to bound the number of breakpoints
in the signature functions, and the time to compute it.

Because f decomposes as the sum of signature functions,
we only have to focus on a single agent. So from this point
on, we only consider the signature function for a single agent.

3.2 General Signature Function
In the most general case, we would define the signature func-
tion f(λ) to be the optimum of maxx{(v − λc) · x|x ∈ P},
where x is an m dimensional vector. This is the general
parametric linear program. The number of breakpoints in f

can be exponentially large, namely Ω(2
√
m) [Zadeh, 1973;

Murty, 1980; Carstensen, 1983].
However, if the constraints in the question are matroids,

the number of breakpoints is reasonably small, and can be
computed quickly. To start, we focus on the cardinality con-
strained case.

3.3 Cardinality Constraint
Consider an agent who has m incentives E, and at most p of
them can be allocated to the agent. The signature function
is f(λ) = max{(v − λc) · x|1 · x ≤ p, 0 ≤ x ≤ 1}. For
ease of manipulation later, we actually want equality. That
is, the agent gets exactly p incentives. Indeed, we can add p
dummy incentives with 0 value and 0 cost. Pisinger observed
the number of possible slopes is upper bounded by m2, hence
showing f have at most O(m2) breakpoints [2001].

We use techniques from computational geometry to view
this problem. Consider an arrangement of lines {ℓe | e ∈ E},
where ℓe(λ) = ve − λce for e ∈ E. f(λ) is the sum of p top
most lines when x coordinate is λ. Therefore, in order to find
f , it is sufficient to find the top p lines in the arrangement for
each λ.

The simple brute force method is to first find all inter-
sections of the lines, and sort them by x coordinate. In be-
tween each two consecutive intersections, the top p lines can-
not change. So we calculate the top p lines on all x inter-
vals formed by two consecutive intersections. Because there
are O(m2) intersections, the number of breakpoints is also
O(m2), which gives an alternative way to show Pisinger’s
bound. The bound is very loose, and next we show how the
geometric view can improve the bound. The set of points

λ

v − cλ

Figure 1: The bold line forms a 2-level in the line arrangement.

that is the top pth point in an arrangement of lines is called
the p-level [Erdös et al., 1973; Lovász, 1971]. 1-level is the
upper envelope of the lines, which is the boundary of a con-
vex space. However, for p > 1, it is not necessarily con-
vex, see Figure 1. p-level is known to be computable in
O(m logm + k) time through clever computational geom-
etry data structures [Chan, 1999], where k is the number of
breakpoints of in the p-level. Observe that the slope of the
signature function f can only change at the breakpoint of the
p-level. Indeed, even when there are many line intersections
above the p-level, the top p lines does not change, hence the
sum would not change. The current best upper bound on the
number of breakpoints of p-level is O(mp1/3) [Dey, 1998].
Together, it reflects f has O(mp1/3) breakpoints and can be
computed in the same time as computing the p-level.
Theorem 6. A signature function of k breakpoints for p car-
dinality constrained incentive allocation trade-off curve can
be computed in O(m logm + k) time, and it has at most
O(mp1/3) breakpoints.

The true upper bound for number of breakpoints in p-level
might be much smaller. The currently known lower bound
is only m2Ω(

√
log p) [Tóth, 2001]. Any improvement in the

upper bound implies a better bound on the complexity of the
trade-off curve.

3.4 Matroid Constraint
The agent must be assigned an independent set of incentives
in a matroid over ground set E. Let |E| = m, r is the rank
function, and p = r(E) is the rank of the matroid.

Using standard knowledge from matroid theory [Schrijver,
2002], f(λ) would be defined as the optimum of the follow-
ing linear program, after adding dummy items with 0 cost and
0 value into every independent set.

max
x

(v − λc) · x
s.t. x(S) ≤ r(S) ∀S ⊆ E

x(E) = p

x ≥ 0

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

For a fixed λ, this LP is finding the optimum weight base in
a matroid, where the weight is w(e) = ve−λce. Breakpoints
on f(λ) indicate that the matroid’s optimum base changes due
to the linear change in weights. The number of breakpoints on
f is bounded by O(mp1/3) [Dey, 1998]. Unfortunately, un-
like the cardinality case, there are matroids forcing Ω(mp1/3)
breakpoints on the signature function [Eppstein, 1998].

To compute f , we need to find all breakpoints on f . How-
ever, for matroid constraints there is no existing efficient al-
gorithm finding breakpoints on the signature functions for
general matroids as the k-level algorithm for cardinality con-
straints.

Similar problem under graphic matroid has been studied
in [Agarwal et al., 1998]. The authors use parametric search
and sparsification techniques to find breakpoints efficiently.
The techniques are limited to graphs and cannot be applied to
general matroids. We achieve a running time of O(Tmp1/3)
for general matroids by using the Eisner-Severance method,
where T is the time complexity of finding optimum weight
base in a matroid.

Eisner-Severance method is a simple algorithm for find-
ing breakpoints on convex piecewise linear functions [Eis-
ner and Severance, 1976]. Given any piecewise linear con-
vex function f : R → R with k breakpoints and an ora-
cle which computes f(λ) and arbitrary tangent line of f at
λ. ES method finds all breakpoints on f with O(k) oracle
calls. The method is as follows. We maintain a sequence of
line segments L = {l1, ..., lk} of f . Initially, the sequence
L = {l1, lk} contains the leftmost and rightmost segments.
Denote by Λ the list of intersections of adjacent lines in L.
ES method works by repeatedly adding line segments to L.
In each iteration we check one intersection λi ∈ Λ and eval-
uate f(λi). Suppose λi is the intersection of line segments
lt and lt+1. Note that λi is a breakpoint on f if and only if
f(λi) = lt(λi) = lt+1(λi). Thus for every λ ∈ Λ, we can
easily check if it is a breakpoint on f by calling the oracle at
λ and performing several comparisons. If λ is a breakpoint
on f , we remove λ from list Λ; Otherwise, there exists a new
line segment lp that attains the maximum at λ among all lines
in L and can be found using the oracle. We insert lp to L and
add its intersections with adjacent lines to Λ. The algorithm
terminates when Λ = ∅. The correctness of the algorithm is
ensured by the correctness of the ES method.

Each intersection added to Λ gives us a breakpoint or a
new line segment. Thus the total number of evaluations of f
is O(k), where k = O(mp1/3) is the number of breakpoints.

For finding lp and evaluate f(λ), we need to find the opti-
mal weight base which takes O(T). Thus the total time com-
plexity of computing signature function for one agent with m
incentives is O(Tmp1/3).

Our algorithm also leads to a simple proof that the opti-
mal solution has at most two fractional variables. This fact
can also be deduced from the proof of the integrality gap
[Camerini and Vercellis, 1984].

Theorem 7. There exists an optimal solution to Equation (1)
under matroid constraints with at most 2 fractional variables.

See the technical appendix for the proof.

3.5 Wrapping Up
Combining Theorem 6 and Theorem 5, we obtain the desired
theorems.

Theorem 1. Consider an incentive allocation problem with a
total of m incentives. If there is a cardinality p constraint on
each agent, and k is the number of breakpoints on the trade-
off curve, then k = O(mp1/3), and the trade-off curve can be
computed in O((k +m) logm) time.

Proof. Assume the ith agent has mi choices of incentives,
and the breakpoint of the signature function is ki. By Theo-
rem 6, the running time for computing all signature functions
is O(

∑
i mi logmi+ki) = O(m logm+k). By Theorem 5,

constructing the data structure for τ takes O(k log k) =
O(k logm) time. So together we have the running time
O(m logm+ k + k logm) = O((m+ k) logm).

By the above theorem, when p = 1, namely the multiple
choice constrained case, k = O(m), and we obtain the de-
sired O(m logm) running time.

For matroid constraints, we get a more modest result.

Theorem 2. Consider an incentive allocation problem with a
total of m incentives. If there is a matroid constraint on each
agent, each matroid has rank at most p, and k is the number of
breakpoints on the trade-off curve, then k = O(mp1/3), and
the trade-off curve can be computed in O(Tk+k logm) time,
where T is the time to compute the optimum weight base.

Proof. Assume the signature function has ki breakpoints for
agent i and m is the total number of incentives. The running
time of computing one signature function is O(Tki). Com-
puting all signature functions takes O(Tk) since

∑
i Tki ≤

Tk. By Theorem 5, constructing the data structure for τ takes
O(k log k) = O(k logm) time. So together we have the run-
ning time O(Tk + k logm).

For practical purpose, once we have the signature functions
for single agents, the trade-off curve can be easily computed
with OLAP databases. See the Technical Appendix for de-
tails.

Next we discuss the work per update of a single agent.
Each single agent update can only change breakpoints of the
associated signature function. If s incentives are related to the
agent, at most O(s4/3) breakpoint changes can happen, The
update time would be O(s4/3 log k). As we assumed in the
scenario, s is small because no agent is related to too many
incentives, hence this would be a fast operation in modern
systems.

4 Submodular Objective
In this section we discuss a more general case where the ob-
jective function is submodular instead of linear. Submodular
objective function reflects the diminishing marginal gain phe-
nomenon thus is closer to reality. In practice, agents usually
receive incentives for free. We further assume that the sub-
modular objective function g : 2E → R is monotone, non-
negative and satisfies g(∅) = 0. Thus, we are particularly
interested in polymatroid objective functions.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

The submodular incentive allocation problem can be for-
mulated as follows:

max
x

g(x)

s.t. c · x ≤ B

xEi
∈ Fi ∀i ∈ [n]

x ∈ {0, 1}m

where g : {0, 1}m → R is a polymatroid set function.
We define the signature function for agent i to be fi(λ) =

max
{
g(x)− λc · x|x ∈ Fi ∩ {0, 1}|Ei|

}
. The Lagrangian

dual can be written as minλ≥0 Bλ+
∑

i fi(λ).
Note that the properties of signature functions in Sec-

tion 3.1 are independent of the objective function and con-
straints. Therefore, fi(λ) is piecewise linear and convex, even
for submodular objectives. However, our algorithm does not
extend to the submodular case.

Our method requires an efficient algorithm for evaluat-
ing fi(λ). For the submodular case, we need to solve a
constrained submodular maximization problem to compute
fi(λ). It is known that this problem is NP-hard [Calinescu et
al., 2011], so we consider solving it approximately. g(x)−λc·
x is still submodular for x but is not monotone. The best ap-
proximation rate is g(x)−λ·x ≥ (1−1/e)g(xOPT)−λ·xOPT

in [Sviridenko et al., 2014]. However, the running time is
impractical for implementations and currently no nontrivial
upper bound is known for the number of breakpoints on fi.

5 Computational Results
Our paper is mostly theoretical, but we did an implementa-
tion to see how does theory fair in practice for the cardinality
constraint case. Do we need to use advanced computational
geometry tools to obtain good result in practice?

For cardinality case we implemented two algorithms, one
is to use the optimum p-level data structure which runs in
O((k+m) logm) time. The other is a simple scan line algo-
rithm. The algorithm maintains the p-level by looking at all
intersections with the current pth line, which gives an O(km)
running time.

All tests were run on MacOS operating system with an
M2Max cpu. Table 2 shows the average running time of 10
random instances each case, the numbers are drawn from a
uniform sample.

The scan line algorithm is surprisingly good for small p.
It is because in those cases k is actually very small, much
smaller than m. There is an intuitive argument. If p = 1, then
k is the same as the number of points on the convex hull of
a uniform random sample of m points. The expected value
is O(logm) [Efron, 1965]. Note as p becomes larger, for
a random set of points k also becomes larger, and therefore
the O(mk) algorithm suffers. Still, k is much smaller than
m, and we get the optimum algorithm with a running time of
O(m logm).

For the matroid case we tested our algorithm on laminar
matroids. The laminar matroid is defined on a laminar fam-
ily. Given a set E, a family A of subsets of E is laminar if
for every two sets A,B ∈ A with A ∩ B ̸= ∅, either A ⊆ B
or B ⊆ A. Define the capacity function c : A → R. The

m
p = 20 p = 40

scan opt scan opt

1× 103 0.000 0.000 0.000 0.001
5× 103 0.003 0.005 0.006 0.005
1× 104 0.008 0.010 0.014 0.012
5× 104 0.043 0.089 0.080 0.087
1× 105 0.094 0.216 0.173 0.223
5× 105 0.528 2.911 0.937 2.952
1× 106 1.147 7.291 1.989 7.140
1× 107 12.994 100.512 23.863 101.675

m
p = 2000 p = m/5

scan opt scan opt

1× 103 - - 0.003 0.002
5× 103 0.137 0.027 0.091 0.02
1× 104 0.384 0.048 0.384 0.048
5× 104 2.634 0.187 9.531 0.326
1× 105 5.795 0.397 38.275 1.222
5× 105 33.760 3.398 TLE 10.500
1× 106 72.485 7.604 TLE 23.203
1× 107 TLE 101.775 TLE 133.974

Table 2: The time (in seconds) to compute the breakpoints on the
signature function under cardinality constraint using the optimum
p-level algorithm (opt) and the scan line algorithm (scan).

m t m t m t

1× 103 0.0161 1.1× 104 1.5270 2.5× 104 6.8601
2× 103 0.0575 1.2× 104 1.8602 3× 104 7.8284
3× 103 0.1375 1.3× 104 1.8959 3.5× 104 12.1495
4× 103 0.2093 1.4× 104 2.3682 4× 104 15.6755
5× 103 0.3547 1.5× 104 2.4609 4.5× 104 18.9251
6× 103 0.5193 1.6× 104 2.7309 5× 104 25.0841
7× 103 0.6469 1.7× 104 3.1121 5.5× 104 24.6682
8× 103 0.7878 1.8× 104 3.7226 6× 104 26.5710
9× 103 1.0582 1.9× 104 4.3983 6.5× 104 34.9471
1× 104 1.2360 2× 104 4.2026 7× 104 44.8108

Table 3: The time (in seconds) to compute the signature function
under matroid constraint.

independent set I of a laminar matroid L is the set of subsets
I of E such that |I ∩A| ≤ c(A) for all A ∈ A [Fife and Ox-
ley, 2017]. We implemented the Eisner-Severance method on
laminar matroids for demonstration purposes. Table 3 shows
the average running time for computing the signature func-
tion under laminar matroid constraints.

Acknowledgments

This work was supported by the National Natural Science
Foundation of China under grant 62372093, and by Science
and Technology Department of Sichuan Province under grant
M112024ZYD0170.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

References
[Agarwal et al., 1998] P.K. Agarwal, D. Eppstein, L.J.

Guibas, and M.R. Henzinger. Parametric and kinetic
minimum spanning trees. In Proceedings 39th Annual
Symposium on Foundations of Computer Science (Cat.
No.98CB36280), pages 596–605. IEEE Comput. Soc,
1998.

[Blelloch, 1991] Guy E. Blelloch. Prefix sums and their ap-
plications, chapter 1. Morgan Kaufmann, Oxford, Eng-
land, 1991.

[Calinescu et al., 2011] Gruia Calinescu, Chandra Chekuri,
Martin Pál, and Jan Vondrák. Maximizing a Monotone
Submodular Function Subject to a Matroid Constraint.
SIAM Journal on Computing, 40(6):1740–1766, January
2011.

[Camerini and Vercellis, 1984] Paolo M. Camerini and Carlo
Vercellis. The matroidal knapsack: A class of (often)
well-solvable problems. Operations Research Letters,
3(3):157–162, 1984.

[Carstensen, 1983] Patricia J. Carstensen. Complexity of
some parametric integer and network programming prob-
lems. Mathematical Programming, 26(1):64–75, May
1983.

[Chan, 1999] Timothy M. Chan. Remarks on k-level algo-
rithms in the plane. Manuscript, 1999.

[Cole, 1987] Richard Cole. Slowing down sorting networks
to obtain faster sorting algorithms. Journal of the ACM,
34(1):200–208, January 1987.

[Dey, 1998] T. K. Dey. Improved bounds for planar k -sets
and related problems. Discrete & Computational Geome-
try, 19(3):373–382, Mar 1998.

[Doron-Arad et al., 2024] Ilan Doron-Arad, Ariel Kulik, and
Hadas Shachnai. Lower Bounds for Matroid Optimization
Problems with a Linear Constraint. In Karl Bringmann,
Martin Grohe, Gabriele Puppis, and Ola Svensson, editors,
51st International Colloquium on Automata, Languages,
and Programming (ICALP 2024), volume 297 of Leibniz
International Proceedings in Informatics (LIPIcs), pages
56:1–56:20, Dagstuhl, Germany, 2024. Schloss Dagstuhl
– Leibniz-Zentrum für Informatik.

[Dyer, 1984] M. E. Dyer. An O(n) algorithm for the
multiple-choice knapsack linear program. Mathematical
Programming, 29(1):57–63, May 1984.

[Efron, 1965] Bradley Efron. The convex hull of a random
set of points. Biometrika, 52(3/4):331–343, 1965.

[Eisner and Severance, 1976] Mark J. Eisner and Dennis G.
Severance. Mathematical Techniques for Efficient Record
Segmentation in Large Shared Databases. Journal of the
ACM, 23(4):619–635, October 1976.

[Eppstein, 1998] D. Eppstein. Geometric Lower Bounds for
Parametric Matroid Optimization. Discrete & Computa-
tional Geometry, 20(4):463–476, December 1998.

[Erdös et al., 1973] P. Erdös, L. Lovász, A. Simmons, and
E.G. Straus. Chapter 13 - dissection graphs of planar point

sets. In Jagdish N. Srivastava, editor, A Survey of Combi-
natorial Theory, pages 139–149. North-Holland, 1973.

[Fife and Oxley, 2017] Tara Fife and James Oxley. Laminar
matroids. European Journal of Combinatorics, 62:206–
216, 2017.

[Javaudin et al., 2022] Lucas Javaudin, Andrea Araldo, and
Andrù de Palma. Large-scale allocation of personalized
incentives. In 2022 IEEE 25th International Confer-
ence on Intelligent Transportation Systems (ITSC), page
4151–4156. IEEE Press, 2022.

[Lovász, 1971] L. Lovász. On the number of halving
lines. Annales Universitatis Scientiarum Budapestinen-
sis de Rolando Eőtvős Nominatae Sectio Mathematica,
14:107–108, 1971.

[Megiddo, 1983] Nimrod Megiddo. Applying parallel com-
putation algorithms in the design of serial algorithms. J.
ACM, 30(4):852–865, oct 1983.

[Murty, 1980] Katta G. Murty. Computational complexity of
parametric linear programming. Mathematical Program-
ming, 19(1):213–219, December 1980.

[Pisinger, 2001] David Pisinger. Budgeting with bounded
multiple-choice constraints. European Journal of Oper-
ational Research, 129(3):471–480, 2001.

[Schrijver, 2002] Alexander Schrijver. Combinatorial Opti-
mization: Polyhedra and Efficiency. Springer, Berlin, Ger-
many, 2003 edition, 2002.

[Sinha and Zoltners, 1979] Prabhakant Sinha and Andris A.
Zoltners. The multiple-choice knapsack problem. Opera-
tions Research, 27(3):503–515, 1979.

[Sviridenko et al., 2014] Maxim Sviridenko, Jan Vondrák,
and Justin Ward. Optimal approximation for submodular
and supermodular optimization with bounded curvature,
December 2014. arXiv:1311.4728 [cs].

[Tokuyama, 2001] Takeshi Tokuyama. Minimax parametric
optimization problems and multi-dimensional parametric
searching. In Proceedings of the Thirty-Third Annual ACM
Symposium on Theory of Computing, STOC ’01, page
75–83, New York, NY, USA, 2001. Association for Com-
puting Machinery.

[Tóth, 2001] G. Tóth. Point Sets with Many k-Sets. Dis-
crete & Computational Geometry, 26(2):187–194, January
2001.

[Wang and Shmoys, 2019] Shujing Wang and David
Shmoys. How to solve a linear optimization problem on
incentive allocation?, Sep 2019.

[Zadeh, 1973] Norman Zadeh. A bad network problem for
the simplex method and other minimum cost flow algo-
rithms. Mathematical Programming, 5(1):255–266, De-
cember 1973.

[Zemel, 1984] Eitan Zemel. An o(n) algorithm for the linear
multiple choice knapsack problem and related problems.
Information Processing Letters, 18(3):123–128, 1984.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

