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Abstract
Accurate prediction of ADMET (Absorption, Dis-
tribution, Metabolism, Excretion, and Toxicity)
properties is crucial in drug development, as these
properties directly impact a drug’s efficacy and
safety. However, existing multi-task learning mod-
els often face challenges related to noise interfer-
ence and task conflicts when dealing with com-
plex molecular structures. To address these issues,
we propose a novel multi-task Graph Neural Net-
work (GNN) model, MTGIB-UNet. The model
begins by encoding molecular graphs to capture
intricate molecular structure information. Subse-
quently, based on the Graph Information Bottle-
neck (GIB) principle, the model compresses the
information flow by extracting subgraphs, retain-
ing task-relevant features while removing noise
for each task. These embeddings are then fused
through a gated network that dynamically adjusts
the contribution weights of auxiliary tasks to the
primary task. Specifically, an uncertainty weight-
ing (UW) strategy is applied, with additional em-
phasis placed on the primary task, allowing dy-
namic adjustment of task weights while strengthen-
ing the influence of the primary task on model train-
ing. Experiments on standard ADMET datasets
demonstrate that our model outperforms existing
methods. Additionally, the model shows good
interpretability by identifying key molecular sub-
structures related to specific ADMET endpoints.

1 Introduction
Computer-aided drug design (CADD) has emerged as a key
area of focus at the intersection of artificial intelligence and
scientific domains [Rentzsch et al., 2019; Zhao et al., 2020;
Yang and Du, 2022]. In the costly drug discovery process,
approximately half of clinical trial failures are attributed to

Figure 1: Illustrations of different notions. (a) single task; (b) task
similarity based grouping; (c) substructure similarity based group-
ing. Best viewed in color.

an insufficient understanding of the absorption, distribution,
metabolism, excretion, and toxicity (ADMET) properties of
candidate drugs, which are crucial for their efficacy and
safety as therapeutic agents [Norinder and Bergström, 2006;
Feinberg et al., 2020]. Poor pharmacokinetic properties and
unacceptable potential characteristics, such as toxicity, pose
significant risks to human health and the environment and
are primary reasons for the exclusion of candidate drugs.
In this context, ADMET prediction lays the foundation for
drug-candidate selection, thereby supporting advancements
in CADD [Du et al., 2023a].

Today, machine learning (ML) methods are widely em-
ployed for this purpose. Typically, such methods involve
capturing compound structures by molecular descriptors such
as SMILES strings, molecular topological graphs, molecu-
lar fingerprints, etc., and then analyzing them using elab-
orately designed algorithms in classification and regression
tasks to explore potential quantitative structure-activity rela-
tionships (QSAR) [Fang et al., 2024b; Du et al., 2023b]. For
example, CORAL utilized Monte Carlo models to encode
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SMILES for predicting pIC50 values [Azimi et al., 2023;
Du et al., 2024]. HRGCN+ utilized molecular graphs as the
input to capture the intricate QSAR [Wu et al., 2021]. How-
ever, when applied to multi-tasks scenarios, their efficacy di-
minishes significantly. One primary reason for this decline
is the pervasive issue of optimization in multi-task prediction
datasets [Zhang and Yang, 2021], manifesting in two major
aspects.

Intrinsic connections in multi-tasks. In the realm of
molecular field, many predictive models focus solely on indi-
vidual molecular properties (Figure 1(a)), neglecting the in-
terdependencies among these properties [Wang et al., 2024;
Xu et al., 2025]. In reality, there are complex interac-
tions between ADMET properties, while single-task mod-
els are limited in capturing [Kim et al., 2024]. For in-
stance, studies have shown that a drug’s solubility is closely
related to its lipophilicity, which in turn affects the drug’s
ability to permeate cell membranes [Gleeson et al., 2011;
Du et al., 2023c]. This relationship directly influences the
drug’s absorption characteristics and subsequently impacts
its distribution, metabolism, and excretion [Swanson et al.,
2023] (Figure 1 (b)). Although multitask learning has been
effectively implemented in this field, previous studies ig-
nore the potential conflicts between tasks during training,
which may induce negative task interference and result in
suboptimal model performance [Xu et al., 2017; Guo et al.,
2018]. Dynamic weighting strategies appear to be a poten-
tial approach to mitigate optimization discrepancies between
tasks [Sener and Koltun, 2018; Vandenhende et al., 2021],
but optimizing the weights for different tasks requires con-
sideration of the true physical meaning of chemical tasks to
be applicable for ADMET prediction.

Intrinsic connections in molecular substructure.
Molecular representation plays a crucial role in determining
the predictive performance of machine learning models [Gao
et al., 2024a]. A single molecule possesses multiple physic-
ochemical properties, each of which is often influenced by
distinct substructural fragments. For instance, the -NH2
group is frequently associated with toxicity, while the
-COOH group exhibits hydrophilicity. These substructures
hold significant chemical relevance, suggesting that identify-
ing substructures unique to specific properties could enhance
model interpretability and performance [Fang et al., 2024a;
Du et al., 2025] (Figure 1 (c)). Furthermore, the similarity
between different substructures may also provide insights
into the underlying commonalities among related tasks, such
as -OH is both alkaline and has a certain hydrophilicity.

In response to the limitations of existing models, we
propose the Multi-Task Graph Information Bottleneck and
Uncertainty Weighted NETwork (MTGIB-UNet) for AD-
MET prediction, a novel framework that carefully considers
inter-task and inter-subgraph correlations to enhance the per-
formance of the primary task. This framework significantly
improves the accuracy of ADMET predictions. As illustrated
in Figure 2, MTGIB-UNet begins by grouping tasks based on
their initial similarities. Following this, an improved Graph
Information Bottleneck (GIB) theory is employed to capture
the core substructures relevant to different tasks, which are
then used to further refine the task groupings. Based on

these criteria, a select number of auxiliary tasks are cho-
sen to enhance the learning of the primary task. Finally,
an uncertainty-weighting method is employed to balance the
contributions of the primary and auxiliary tasks, leading to
precise predictive outcomes. Our contributions in this work
are summarized as follows:

• Introduction of MTGIB-UNet: We present the Multi-
Task Graph Information Bottleneck and Uncertainty
Weighted Network (MTGIB-UNet), a pioneering frame-
work designed to capture inter-task and inter-subgraph
correlations, enabling more accurate predictions across
multiple ADMET properties.

• Auxiliary Task Grouping: Our approach integrates
GIB theory into the model to effectively filter out irrel-
evant information. By combining this with task similar-
ity, we optimize the selection of auxiliary tasks, and UW
strategy is introduced to keep balance between tasks,
thereby enhancing the overall performance of the model.

• Validation through Extensive Experiments: We con-
ducted comprehensive experiments to validate the effec-
tiveness of our proposed model on real-world ADMET
datasets, demonstrating significant improvements over
existing state-of-the-art methods.

2 Related Work
2.1 ADMET Property Prediction
In recent years, the rapid development of deep learning has
significantly advanced ADMET property prediction. Ini-
tially, researchers employed various machine learning (ML)
algorithms to predict ADMET properties [Kim et al., 2024].
With the success of deep learning across various fields, deep
learning models have shown strong potential in ADMET re-
search [Tao and Abe, 2025]. For example, [Yang et al., 2019]
applied a GCNN model to a dataset from Amgen Inc., signif-
icantly improving the prediction accuracy for multiple end-
points. [De Carlo et al., 2024] predict ADMET properties
from molecule SMILES using a bottom-up approach with
attention-based graph neural networks. These methods often
fail to capture the complex interdependencies between AD-
MET properties, which is crucial for accurate prediction, we
propose an improved method that integrates task weighting
and grouping strategies in multitask learning to better capture
these connections and enhance prediction accuracy.

2.2 Multitask Learning
Multitask learning (MTL) leverages knowledge from related
tasks to improve performance, optimizing weights through a
combined loss function of multiple tasks. While this can en-
hance predictions, training different tasks on a shared model
can increase optimization challenges and risk negative trans-
fer [Caruana, 1997]. Task weighting addresses this by as-
signing different weights to task losses, suppressing noise and
promoting beneficial training signals. Homoscedastic uncer-
tainty [Kendall et al., 2018] and Dynamic Weight Averag-
ing (DWA) [Liu et al., 2019] are common methods to bal-
ance task losses and learning speeds. Task grouping can fur-
ther mitigate these risks by balancing task losses and clus-
tering tasks into subsets. Techniques such as differentiable
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pruning [Gao et al., 2024b] and status theory with maxi-
mum flow [Du et al., 2023a] have been developed to opti-
mize task grouping and model weights simultaneously. How-
ever, these methods still face limitations in addressing task
conflicts. We build upon the GIB theory with an uncertainty
weighting strategy to better manage inter-task dynamics and
minimize negative impact.

2.3 Preliminaries
Problem Definition
Given a set of molecular compounds, the goal is to predict
multiple ADMET (Absorption, Distribution, Metabolism,
Excretion, and Toxicity) properties. These properties corre-
spond to K endpoint tasks T = {t1, t2, . . . , tK}, where each
task represents a specific ADMET property. These include
both classification (binary) and regression (continuous) tasks.
Definition 1. (IB-Graph) Molecules are represented as a
graph G = (V, E), where V is the set of nodes (atoms) and E
is the set of edges (bonds).

The GIB method [Yu et al., 2021] identifies and extracts
the most relevant substructures for a given task Y. By com-
pressing the graph G to obtaion the core subgraph GIB, which
is determined by:

GIB = argmin
GIB

− I(Y;GIB) + βI(G;GIB), (1)

where I(·, ·) denotes the mutual information, and β is a La-
grangian multiplier that controls the trade-off between the
prediction and compression.
Definition 2. (UW) The Uncertainty Weighting (UW) strat-
egy [Kendall et al., 2018] dynamically adjusts task weights
in multi-task learning based on each task’s uncertainty. This
strategy utilizes a learnable parameter σ2

k for each task, mod-
ifying the loss calculation as follows:

Luncertainty =
K∑

k=1

(
1

2σ2
k

Lk + δk

)
, (2)

where σ2
k adjusts the weight of each task’s loss Lk. The reg-

ularization term δk = log
(
1 + σ2

k

)
ensures stability by pre-

venting the assignment of negative weights.

3 Methodology
The architecture of our model is illustrated in Figure 2. The
model consists of five components: the Molecular Graph
Encoder, Task-oriented Subgraph Extraction, Auxiliary Task
Grouping, Task-Centered Gating, and Multi-task Predic-
tion. The Molecular Graph Encoder processes the molecular
graphs to obtain atomic embeddings using a three-layer GCN.
The Task-oriented Subgraph Extraction module applies the
GIB principle to extract task-specific subgraphs. Next, these
subgraphs are then utilized in the Auxiliary Task Grouping
module to identify and group tasks with similar subgraph fea-
tures. The Task-Centered Gating module optimizes the con-
tribution of the grouped auxiliary tasks to the primary task.
Finally, the Multi-task Prediction module generates predic-
tions for each task, integrating an uncertainty weighting strat-
egy to dynamically adjust the task weights. Detailed expla-
nation of each component is following:

3.1 Molecular Graph Encoder Module
Each node vi is encoded as a 40-dimensional feature vector
xi ∈ Rd, where d is the dimensionality. The set of all node
feature vectors constitutes the feature matrix X ∈ R|V|×d,
where each row corresponds to a node’s feature vector.The
specific details of the node and edge features are provided in
Appendix A.

The feature matrix X is then passed through three layers of
GCN [Kipf and Welling, 2017] to update information:

H = GCN(X). (3)

Here, H represents the updated graph.

3.2 Task-oriented Subgraph Extraction Module
We introduce the GIB theory to extract the task k’s core sub-
structure Gk, as defined in Equation (1). Specifically, We op-
timize the following two items to obtain Gk:
Minimizing: −I (Y;Gk) We consider Pθ (Y | Gk) as the
variational estimation of P (Y | Gk). Thus, we derive:

I (Y;Gk) ≥ E(Y,Gk) log

[
Pθ (Y | Gk)

P (Y)

]
= E(Y,Gk) log [Pθ (Y | Gk)] +H(Y) := Lpre,

(4)

where H(Y) is a constant, and thus omitted in the model
optimization process. The proof is given in Appendix B.
Minimizing: I(Gk;G) Following the information-bottleneck
principle, we encourage the encoder to discard superfluous
structures by perturbing node embeddings. For each node i
with hidden state Hi we first obtain a retention logit:

si = MLP(Hi), pi = σ(si), (5)

where σ(·) is the sigmoid. A Bernoulli mask λi ∼
Bernoulli(pi) is then relaxed with the Gumbel-Sigmoid trick
[Maddison et al., 2017] to keep gradients:

λi = σ
(1
t
log pi

1−pi
+ log u

1−u

)
, u ∼ U(0, 1), t>0.

(6)
The resulting perturbed embedding is

Ti = λiHi + (1− λi)ε, ε ∼ N (µH, σ2
H), (7)

so uninformative nodes (small pi) are replaced by Gaussian
noise. This operation yields a pruned subgraph Gk that retains
the salient information of G.

Finally, the mutual information I(Gk;G) admits the follow-
ing upper bound, a detailed proof is in Appendix B.2:

I(Gk;G) ≤ EG [−
1

2
logA+

1

2N
A+

1

2N
B2]

:= LMI(Gk,G),
(8)

where A =
∑N

j=1 (1− λj)
2 and B =

∑N
j=1 λj(H−µH)

σH
.

Therefore, the following objective function must be opti-
mized:

L = Lpre + βLMI, (9)
where Lpre is the cross-entropy (classification) or MSE (re-
gression) loss, and LMI is the Kullback-Leibler (KL) di-
vergence between the extracted core subgraphs and random
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Figure 2: Overview of our proposed multi-task learning model. First, the Molecular Graph Encoder uses a three-layer Graph Convolutional
Network (GCN) to encode molecular structures into atomic embeddings. Next, the Subgraph Extraction module applies the GIB to extract
subgraphs specific to each task. These subgraphs are then used by the Auxiliary Task Grouping module to identify and group tasks with
similar subgraph features, facilitating knowledge transfer. The Task-Centered Gating module optimizes the contribution of these grouped
auxiliary tasks to the primary task through gating mechanisms. Finally, the Multi-task Prediction module generates predictions for each task,
incorporating an uncertainty weighting strategy to dynamically adjust task weights, thereby enhancing the overall predictive performance.
Best viewed in color.

noise graphs.The parameter β acts as a factor to balance the
contributions of these two loss components. Finally, the sub-
graph Gk is pooled by the Set2Set network [Vinyals et al.,
2016], yielding the representation vector zk:

zk = Set2Set(Gk). (10)
This vector serves as a compact representation that encodes
the essential information of the subgraph.

3.3 Auxiliary Task Grouping Module (ATG)
Task Similarity Calculation
First, we calculate the similarity between each auxiliary task
and the primary task by comparing their core subgraph rep-
resentations zpri and zk. The similarity score Sk could be
calculated as:

Sk = sim(zk, zpri). (11)
Here, sim(·, ·) denotes the cosine similarity. A higher Sk in-
dicates a greater similarity.

Auxiliary Task Selection
Tasks are ranked in descending order by their similarity
scores Sk. A threshold τ = 0.7 is applied to obtain a fil-
tered set Tfiltered, which includes tasks with scores above the
threshold:

Tfiltered = {zk | Sk ≥ τ} . (12)
To ensure an adequate number of auxiliary tasks, a mini-
mum m = 2 is enforced. The final number of selected tasks
Nselected is the maximum of m and the size of the filtered set:

Nselected = max(m, |Tfiltered|). (13)
The primary task representation zpri and the selected aux-

iliary task representations zk (where k ∈ Tfiltered) are then
passed to the next module.

3.4 Task-Centered Gating Module
The task-centric module aims to optimize the contribution of
each auxiliary task to the primary task. Each gating network
in the module consists of a multi-layer feed-forward neural
network and a sigmoid activation function. The input of each
network is zk of the auxiliary task, and it outputs two scalar
weights: (1) θk, for the primary task and (2) 1 − θk, for the
auxiliary task.

θk = Sigmoid(Wgate · zk), k ∈ Tfiltered (14)

The final embedding for the primary task is obtained by sum-
ming the weighted embeddings from all auxiliary tasks:

ẑpri =
∑

k∈Tfiltered

(θkzk + (1− θk)zpri) . (15)

This combined embedding ẑpri is then passed through fully
connected layers to predict the primary task. The embeddings
of the other auxiliary tasks zk remain unchanged.

3.5 Multi-task Prediction Module
Each task’s embedding zk is processed through a task-specific
three-layer fully-connected network to generate the corre-
sponding predictions:

ypri = FCpri(ẑpri), yk = FCk(zk). (16)

This formula captures the process of generating the final pre-
dicted value for each task. These predicted values are then
used to calculate the task-specific losses.
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Uncertainty Weighting
Considering potential optimizing conflicts in multi-task train-
ing, an uncertainty weighting strategy is applied, as described
in Definition 2. This strategy adjusts the weight of each task
dynamically, reflecting the uncertainty associated with each
task.

Loss Function
The total loss Ltotal for multi-task learning is calculated by
aggregating the losses from all tasks. The loss L for each
task is defined as shown in Equation (9). After introducing
the uncertainty weighting strategy, the total loss function is
expressed as:

Ltotal =

(
α

2σ2
pri

)
Lpri+

∑
k∈Tfiltered

(
1

2σ2
k

Lk

)
+

∑
k∈{pri}∪Tfiltered

δk,

(17)
where α scales the primary-task loss, σ2

k are learnable uncer-
tainty parameters that adjust the weight of each task’s loss
based on its uncertainty, and δk = log

(
1 + σ2

k

)
acts as a

regularization term to maintain the stability of the learning
process. Lpri and Lk represent the losses for the primary task
and auxiliary tasks, respectively.

4 Experiment
4.1 Experimental Setup
Datasets. In this study, we utilized the dataset constructed
by [Du et al., 2023a], consisting of 24 endpoints, including
18 classification tasks and 6 regression tasks, collected from
8 published studies related to ADMET properties. It com-
prises 43,291 drug-like compounds, with 28,153 compounds
involved in classification tasks and 16,545 in regression tasks.
Depending on the specific tasks, each molecular may be as-
sociated with one or more endpoint labels [Yang et al., 2018;
Wang et al., 2020; Delaney, 2004].
Evaluation Metrics. For the regression tasks, includ-
ing Caco-2 permeability, PPB, LD50, IGC50, ESOL, and
logD7.4, the coefficient of determination (R2) is used as the
evaluation metric, covering a total of 6 tasks. For the remain-
ing 18 classification tasks, including HIA, OB, P-gp inhibitor,
P-gp substrates, BBB, CYP1A2 inhibitor, and others, the area
under the receiver operating characteristic curve (ROC-AUC)
is used as the evaluation metric.
Baselines. We compare our model with several state-of-the-
art models including: Uni-Mol [Zhou et al., 2023], Chem-
BFN [Tao and Abe, 2025], and MTGL [Du et al., 2023a],
MT-GCN [Montanari et al., 2019] and MGA [Peng et al.,
2020], along with single-task variants like ST-GCN and ST-
MGA [Montanari et al., 2019; Peng et al., 2020]. Detailed
descriptions are in Appendix C.

Implementation Details
In the model implementation, the input feature dimension is
set to 40, and the core computations are performed via three
GCN layers of dimensions 64, 128, and 128.

During training, the Adam optimizer was employed with a
learning rate of 0.001 and a weight decay of 10−5. The batch
size was set to 128, and the model was trained for 200 epochs.

Additionally, the UW coefficient for the primary task, α, was
set to 1.2. All experiments were conducted on a Tesla V100-
PCIE-16GB GPU. Each experiment was repeated eight times,
with the mean and variance reported.

4.2 Model Performance
Table 1 presents the quantitative results for ADMET property
prediction using various baseline models. MTGIB-UNet con-
sistently outperformed other models, achieving superior re-
sults in both classification and regression tasks. Specifically,
MTGIB-UNet demonstrated significant improvements across
14 classification tasks and 5 regression tasks, surpassing the
second-best model by 0.79 % and 0.85 %, respectively. Over-
all, MTGIB-UNet secured the first position in 19 out of 24
tasks and the second position in the remaining 5 tasks.

In particular, for the BBB endpoint, MTGIB-UNet im-
proved the ROC-AUC score from 0.973 to 0.979, represent-
ing a 0.62 % increase compared to MTGL. For the IGC50
endpoint, the ROC-AUC score was elevated from 0.819 to
0.824, marking a 0.61 % improvement. When considering
all endpoints, MTGIB-UNet achieved an overall performance
enhancement of 1.03% compared to MTGL. Notably, when
compared to single-task models like ST-GCN and ST-MGA,
MTGIB-UNet demonstrated an average improvement of 7.32
% to 4.28 %, underscoring its superiority within a multi-task
learning framework.

4.3 Ablation Studies
We conduct a series of ablation studies to evaluate the contri-
bution of various components in our proposed model, specif-
ically the Task-oriented Subgraph Extraction Module, Un-
certainty Weighting Analysis, and Auxiliary Task Grouping
Module. The primary results of these studies are summarized
in Table 2, more detailed results provided in Appendix D.

Impact of the Task-oriented Subgraph Extraction
Module
This module constitutes a critical component of our model.
To assess the impact of accurate subgraph extraction on the
target prediction properties, we conducted experiments by ex-
cluding the GIB module from the model. The results, pre-
sented in Table 2, reveal a notable degradation in model per-
formance across both classification and regression tasks when
this module is removed.

Impact of Uncertainty Weighting (UW)
The UW strategy is designed to dynamically adjust task
weights during training, prioritizing tasks based on their un-
certainty. We conducted an ablation study by setting uni-
form task weights to 1, as detailed in Table 2. The results
clearly demonstrate that the absence of UW leads to de-
creased model performance, especially on tasks with higher
uncertainty. This underscores the importance of adaptive task
weighting in improving overall model efficacy.

Impact of the Auxiliary Task Grouping (ATG) Module
The ATG module is a crucial component of our multi-task
learning model. To evaluate its impact, we performed an ab-
lation study by removing the ATG strategy and treating auxil-
iary tasks as independent, without grouping based on their re-
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Endpoint Metric ST-GCN ST-MGA MT-GCN MGA MTGL ChemBFN Uni-Mol MTGIB-UNet Imp(↑)
HIA ROC-AUC 0.916(0.054) 0.972(0.014) 0.899(0.057) 0.911(0.034) 0.981(0.011) 0.944(0.010) 0.987(0.012) 0.985(0.006) 5.317
OB ROC-AUC 0.716(0.035) 0.710(0.035) 0.728(0.031) 0.745(0.029) 0.749(0.022) 0.753(0.024) 0.720(0.023) 0.761(0.003) 4.023
P-gp inhibitor ROC-AUC 0.916(0.012) 0.917(0.006) 0.895(0.014) 0.901(0.010) 0.928(0.008) 0.922(0.011) 0.894(0.009) 0.939(0.007) 3.138
P-gp substrates ROC-AUC 0.775(0.034) 0.755(0.014) 0.733(0.044) 0.719(0.035) 0.801(0.031) 0.774(0.034) 0.726(0.032) 0.809(0.015) 7.193
BBB ROC-AUC 0.956(0.008) 0.959(0.004) 0.945(0.007) 0.956(0.010) 0.973(0.005) 0.931(0.009) 0.950(0.007) 0.979(0.003) 2.744
CYP1A2 inhibitor ROC-AUC 0.932(0.007) 0.931(0.013) 0.914(0.009) 0.940(0.006) 0.952(0.005) 0.947(0.008) 0.951(0.006) 0.959(0.002) 2.223
CYP2C19 inhibitor ROC-AUC 0.774(0.012) 0.781(0.008) 0.775(0.011) 0.795(0.019) 0.804(0.015) 0.780(0.020) 0.793(0.017) 0.806(0.004) 2.545
CYP2C9 inhibitor ROC-AUC 0.746(0.016) 0.764(0.017) 0.771(0.016) 0.798(0.019) 0.794(0.019) 0.722(0.025) 0.733(0.021) 0.802(0.005) 5.368
CYP2D6 inhibitor ROC-AUC 0.848(0.016) 0.841(0.022) 0.839(0.015) 0.877(0.017) 0.869(0.016) 0.800(0.019) 0.860(0.017) 0.871(0.007) 2.747
CYP3A4 inhibitor ROC-AUC 0.892(0.006) 0.915(0.006) 0.865(0.007) 0.875(0.006) 0.916(0.007) 0.878(0.014) 0.914(0.009) 0.920(0.006) 2.958
Half life ROC-AUC 0.725(0.011) 0.708(0.024) 0.688(0.035) 0.707(0.017) 0.727(0.022) 0.715(0.030) 0.709(0.026) 0.738(0.011) 3.756
Clearance ROC-AUC 0.723(0.030) 0.710(0.015) 0.686(0.031) 0.740(0.027) 0.779(0.027) 0.768(0.032) 0.707(0.029) 0.781(0.017) 6.924
Hepatotoxicity ROC-AUC 0.653(0.040) 0.669(0.022) 0.612(0.039) 0.713(0.053) 0.701(0.036) 0.697(0.041) 0.660(0.037) 0.725(0.031) 7.864
Respiratory toxicity ROC-AUC 0.842(0.018) 0.872(0.013) 0.810(0.014) 0.828(0.021) 0.859(0.010) 0.818(0.028) 0.865(0.015) 0.867(0.006) 2.969
Cardiotoxicity-1 ROC-AUC 0.707(0.026) 0.703(0.020) 0.683(0.028) 0.684(0.023) 0.740(0.023) 0.745(0.027) 0.761(0.024) 0.765(0.015) 6.610
Cardiotoxicity-5 ROC-AUC 0.620(0.015) 0.637(0.010) 0.626(0.027) 0.623(0.014) 0.641(0.014) 0.630(0.022) 0.677(0.019) 0.653(0.007) 2.627
Cardiotoxicity-10 ROC-AUC 0.627(0.013) 0.611(0.015) 0.609(0.022) 0.603(0.026) 0.654(0.010) 0.642(0.014) 0.658(0.012) 0.663(0.004) 5.381
Cardiotoxicity-30 ROC-AUC 0.664(0.036) 0.653(0.036) 0.645(0.036) 0.709(0.035) 0.723(0.029) 0.704(0.035) 0.709(0.032) 0.728(0.016) 6.012
Caco-2 permeability R2 0.451(0.033) 0.519(0.014) 0.374(0.022) 0.385(0.031) 0.523(0.025) 0.443(0.027) 0.510(0.026) 0.527(0.023) 15.101
PPB R2 0.577(0.028) 0.585(0.004) 0.589(0.036) 0.568(0.038) 0.626(0.029) 0.537(0.030) 0.562(0.028) 0.637(0.005) 10.262
LD50 R2 0.588(0.018) 0.617(0.018) 0.503(0.017) 0.492(0.029) 0.635(0.015) 0.622(0.020) 0.622(0.017) 0.640(0.011) 9.831
IGC50 R2 0.703(0.055) 0.818(0.021) 0.618(0.027) 0.772(0.021) 0.819(0.008) 0.797(0.014) 0.832(0.012) 0.824(0.003) 7.632
ESOL R2 0.814(0.030) 0.896(0.013) 0.824(0.030) 0.866(0.020) 0.931(0.038) 0.907(0.042) 0.920(0.039) 0.935(0.006) 6.285
logD7.4 R2 0.759(0.056) 0.904(0.008) 0.770(0.019) 0.838(0.018) 0.915(0.008) 0.863(0.025) 0.796(0.022) 0.922(0.007) 10.419

Table 1: Model Performance on ADMET datasets (The best result is in bold, the second-best is underlined. Imp: The improvement relative
to the baseline average results. %).

latedness. This configuration effectively represents a single-
task strategy. The results, summarized in Table 2, indicate a
noticeable decline in performance across all tasks when ATG
is removed, highlighting the significance of strategic auxiliary
task grouping in enhancing model accuracy.

To further investigate the role of the ATG module, we shuf-
fled the learned groupings from the current model in Ap-
pendix D. This additional analysis helps to validate the im-
portance of the ATG module.

Classification (R2)

PPB IGC50 ESOL

w/o ATG 0.624(0.014) 0.817(0.012) 0.929(0.011)

w/o GIB 0.631(0.006) 0.812(0.016) 0.926(0.015)

w/o UW 0.628(0.013) 0.818(0.007) 0.930(0.014)

Ours 0.637(0.005) 0.824(0.003) 0.935(0.006)

Regression (ROC-AUC)

P-gp substrates Cardiotoxicity-1 Cardiotoxicity-5

w/o ATG 0.792(0.009) 0.739(0.013) 0.643(0.012)

w/o GIB 0.796(0.014) 0.736(0.014) 0.641(0.010)

w/o UW 0.791(0.015) 0.740(0.010) 0.640(0.014)

Ours 0.809(0.015) 0.765(0.015) 0.653(0.007)

Table 2: Ablation Study Results.

4.4 Sensitivity Analysis
In this section, we explore the impact of various hyperparam-
eters on the performance of our model.

First, we examine the effect of the parameter β in the
GIB layer, which governs the trade-off between preserving
task-specific information and reducing redundant informa-
tion. When β is set to lower values, the model tends to retain
more noise, leading to suboptimal performance. On the other
hand, higher values of β result in excessive compression of
subgraphs, leading to the loss of critical information and, con-
sequently, diminished performance. Optimal performance is
achieved at β = 10−3, where the balance between noise re-
duction and information preservation is well-maintained, as
illustrated in Table 3.

We also conducted a sensitivity analysis on α, which ad-
justs the weighting of the primary task relative to auxiliary
tasks. A higher α increases the model’s focus on the primary
task, thereby enhancing its influence on overall learning and
performance. As α increases, the model’s performance ini-
tially improves due to this enhanced focus. However, setting
α too high leads to diminishing returns, where the model may
overly prioritize the primary task at the expense of valuable
insights from auxiliary tasks, potentially resulting in a decline
in overall performance, as shown in Table 3.

Overall, our sensitivity analysis highlights that carefully
chosen values of α and β are critical for optimizing the per-
formance of our model. These parameters significantly influ-
ence the model’s ability to effectively capture core subgraphs
and maintain a balance between different tasks.

4.5 Qualitative Analysis
In this section, we evaluate the interpretability and effective-
ness of our model on the primary task Caco-2 permeability
and its auxiliary tasks OB and ESOL. We examine the dy-
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Regression (R2) Classification (ROC-AUC)

β IGC50 logD7.4 BBB HIA

0 0.782(0.010) 0.875(0.012) 0.949(0.013) 0.956(0.009)

1e-5 0.806(0.005) 0.902(0.008) 0.960(0.004) 0.969(0.004)

1e-4 0.819(0.006) 0.913(0.014) 0.979(0.003) 0.980(0.015)

1e-3 0.824(0.003) 0.922(0.007) 0.971(0.008) 0.985(0.006)

1e-1 0.803(0.014) 0.898(0.011) 0.967(0.008) 0.973(0.010)

α IGC50 logD7.4 BBB HIA

1.0 0.793(0.014) 0.907(0.012) 0.970(0.011) 0.978(0.014)

1.2 0.824(0.003) 0.922(0.007) 0.979(0.003) 0.985(0.006)

1.5 0.813(0.013) 0.911(0.012) 0.973(0.010) 0.980(0.014)

3.0 0.805(0.012) 0.909(0.013) 0.968(0.011) 0.977(0.013)

5.0 0.792(0.014) 0.901(0.015) 0.962(0.012) 0.972(0.011)

Table 3: Sensitivity analysis for β and α.

namic changes in task weights and total loss over epoch, and
analyze the extracted subgraphs for compounds.

As shown in Figures 3 (a) and (b), we examine the
core substructures of the compounds clonidine and propylth-
iouracil across three different tasks. It is evident that the core
substructures extracted for the primary task, Caco-2 perme-
ability, bear a closer resemblance to those for the auxiliary
task OB. Both tasks are related to important absorption prop-
erties, highlighting the role of auxiliary tasks in enhancing the
primary task. Interestingly, for the propylthiouracil molecule,
the substructures extracted for the primary task, Caco-2 per-
meability, are more similar to those for the auxiliary task
ESOL. The model accurately identifies significant groups like
sulfonamide and amide, suggesting that similar substructures
can also contribute to enhancing the primary task. Therefore,
the enhancement of the primary task is jointly determined by
the type of auxiliary tasks and the similarity of the core sub-
structures extracted by GIB.

The model’s dynamic weights during training are evident
in Figure 3 (c), where the weight of the primary task, Caco-2
permeability, increases rapidly in the early stages, reflecting
the model’s prioritization of this task. Simultaneously, the
auxiliary tasks OB and ESOL receive refined weight adjust-
ments, ensuring balanced multi-task learning. As shown in
Figure 3 (d), the total loss decreases consistently over time,
with a sharp decline in the first 50 epochs, indicating the
model’s effective learning and adaptability across tasks.

PPB Classification (R2)

Model Params (M) Time (min) Memory (G) Performance

MGA 12.62 11.37 1.27 0.568(0.038)
MTGL 0.066 9.25 1.04 0.626(0.029)
ChemBFN 54.50 13.65 15.74 0.537(0.030)
Uni-Mol 47.61 10.55 7.40 0.562(0.028)
Ours 0.77 56.53 1.30 0.637(0.005)

Table 4: Computational resource usage and classification perfor-
mance on the PPB dataset. Params (M) denotes the number of
learnable parameters (in millions).

Figure 3: Comparison of different paradigms for Gibbs free energy
prediction. (a) Method by concatenation; (b) method by merging;
(c) a schematic diagram of the process where acetonitrile (solute) is
dissolved in ethanol (solvent); and (d) the illustration of our method.
Best viewed in color.

4.6 Resource Usage Analysis
In this section, we evaluate the computational resource us-
age of our model on the PPB dataset. As shown in Table 4,
although the proposed method requires longer training time
compared to other baselines, the total number of parameters
remains relatively small. Meanwhile, the performance shows
a noticeable improvement over other approaches, indicating
that our design achieves a favorable balance between model
complexity and predictive accuracy.

5 Conclusion and Broader Impact
In this paper, we address the intricate challenge of ADMET
property prediction, a pivotal aspect of drug discovery and
development. We introduce a novel multi-task GNN model,
MTGIB-UNet, that integrates UW and auxiliary learning
strategies to enhance predictive accuracy across multiple
tasks. Our model functions in two stages: the first stage em-
ploys a grouping method based on structural and task simi-
larity, to identify auxiliary task groups for each primary task.
The second stage employs a multi-task learning framework
incorporating a graph information bottleneck and UW strate-
gies. The graph information bottleneck effectively filters out
irrelevant information by constraining the information flow,
thereby reducing noise interference, while the UW strategy
dynamically adjusts task weights to mitigate potential con-
flicts between tasks. Our experimental results demonstrate
that MTGIB-UNet outperforms existing models in the AD-
MET prediction domain, underscoring the effectiveness of
our integrated approach. Meanwhile, there remains potential
for further refinement as in Appendix E.
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