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Abstract

Although AlphaZero has achieved superhuman per-
formance in board games, recent studies reveal
its limitations in handling scenarios requiring a
comprehensive understanding of the entire board,
such as recognizing long-sequence patterns in Go.
To address this challenge, we propose ResTNet,
a network that interleaves residual and Trans-
former blocks to bridge local and global knowl-
edge. ResTNet improves playing strength across
multiple board games, increasing win rate from
54.6% to 60.8% in 9x9 Go, 53.6% to 60.9% in
19x19 Go, and 50.4% to 58.0% in 19x19 Hex. In
addition, ResTNet effectively processes global in-
formation and tackles two long-sequence patterns
in 19x19 Go, including circular pattern and lad-
der pattern. It reduces the mean square error
for circular pattern recognition from 2.58 to 1.07
and lowers the attack probability against an ad-
versary program from 70.44% to 23.91%. ResT-
Net also improves ladder pattern recognition accu-
racy from 59.15% to 80.01%. By visualizing at-
tention maps, we demonstrate that ResTNet cap-
tures critical game concepts in both Go and Hex,
offering insights into AlphaZero’s decision-making
process. Overall, ResTNet shows a promising ap-
proach to integrating local and global knowledge,
paving the way for more effective AlphaZero-based
algorithms in board games. Our code is available at
https://rlg.iis.sinica.edu.tw/papers/restnet.

1 Introduction

AlphaZero [Silver et al., 2018] has demonstrated super-
human performance in various board games, such as Go,
chess, and Shogi. Following the advent of AlphaZero, re-
searchers have successfully reproduced and extended the al-
gorithm, achieving superhuman performance across a broader
range of board games, such as Hex [Gao et al., 2018] and
Gomoku [Xie et al., 2018; Liang et al., 2023]. However, de-
spite these advancements, several studies [Wang et al., 2023;

*The full version is at https://arxiv.org/abs/2410.05347.
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(a) Circular pattern (b) Ladder pattern

Figure 1: Two challenging long-sequence patterns that require an
understanding of global knowledge in 19x19 Go.

Tian et al., 2019] have reported that AlphaZero remains vul-
nerable in scenarios requiring a more comprehensive under-
standing of the entire board, particularly in games with larger
board sizes, such as 19x19 Go.

For example, recent research [Wang et al., 2023] intro-
duces a specialized program, named cyclic-adversary, de-
signed specifically to find the weaknesses in KataGo [Wu,
20201, the current strongest open-sourced Go program. Dur-
ing the game, the cyclic-adversary subtly induces KataGo to
form a circular pattern, as illustrated by the marked black
stones in Figure 1a, while simultaneously encircling and cap-
turing these stones. These circular patterns usually cover a
wide range of the Go board, requiring a global understand-
ing to handle these patterns effectively. Consequently, the
cyclic-adversary successfully attacks KataGo with a success
rate exceeding 90%. Another challenge requiring global un-
derstanding is the recognition of the ladder pattern in Go. In
ladder, the player needs to simulate a long sequence of moves
in zig-zag patterns across the entire board to capture or es-
cape a group of stones, as shown by the marked white stones
in Figure 1b. While this concept is relatively simple for hu-
man players, a previous study [Tian et al., 2019] has shown
that AlphaZero struggles to handle ladder patterns perfectly.

These examples highlight that handling global information
remains a significant challenge in AlphaZero algorithms for
board games, primarily due to their reliance on convolutional
neural networks (CNNs), which are inherently designed to
capture local patterns. To address this limitation, Transform-
ers with self-attention mechanisms [Sutskever et al., 2014;


https://arxiv.org/abs/2410.05347

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Vaswani er al., 2017] present a promising alternative, of-
fering strong capabilities in capturing the global context.
For example, similar to board games, computer vision —
particularly image classification — primarily relies on ex-
tracting features in local patterns using CNNs. Recently,
several network architectures, such as Vision Transformers
(ViT) [Dosovitskiy et al., 2020], Convolutional vision Trans-
formers (CvT) [Wu et al., 20211, and CoAtNet [Dai et al.,
2021], have been proposed to leverage Transformers to bet-
ter capture global patterns in computer vision. However,
directly applying these Transformers from computer vision
to games does not yield better results [Czech et al., 2023;
Tseng et al., 2024] due to the distinct objectives of the two
domains: while the former focuses on achieving higher accu-
racy in image classification, the latter aims to maximize win
rates in gameplay. This raises an important research ques-
tion: How can Transformers be effectively integrated into Al-
phaZero algorithms to improve global information process-
ing while preserving the ability to recognize local patterns
for board games?

To answer this question, this paper introduces ResTNet,
a novel network architecture specifically designed for Alp-
haZero algorithms which interleaves the use of residual and
Transformer blocks to effectively balance between local and
global information processing. The contribution of this paper
can be summarized as follows:

* For the first time, the integration of Transformers and resid-
ual networks within AlphaZero for board games is thor-
oughly investigated. Experiments show ResTNet improves
playing strength, with win rates increasing from 54.6% to
60.8% in 9x9 Go, 53.6% to 60.9% in 19x19 Go (using four
KataGo models [Wu, 2020] as baselines), and 50.4% to
58.0% in 19x19 Hex (using MoHex [Arneson et al., 2010]
as the baseline), indicating a promising approach for train-
ing AlphaZero in board games.

» ResTNet demonstrates the ability to process global infor-
mation by: (a) reducing the mean square error for rec-
ognizing circular patterns from 2.58 to 1.07 and lowering
the attack probability from 70.44% to 23.91% against the
cyclic-adversary among 24 games provided by Wang et
al. [2023], and (b) improving ladder recognition accuracy
from 59.15% to 80.01% in a human game collection.

» RestNet offers insights into the interpretation of AlphaZero
models and enhances explainability by visualizing attention
maps from Transformers, capturing key concepts in both
Go and Hex.

2 Background
2.1 AlphaZero

AlphaZero [Silver er al., 2018] is a reinforcement learning-
based algorithm that combines deep neural networks with
search algorithms to master board games without the need
for any human knowledge. The network architecture is com-
posed of several residual blocks with convolutional layers,
followed by two head outputs: a policy head for predicting
the probability distribution of the next move, and a value head
for estimating the win rate. The training process consists of

self-play and optimization phases. In the self-play phase,
AlphaZero executes a Monte Carlo Tree Search (MCTS)
[Coulom, 2007; Browne et al., 2012] to generate self-play
games and store them in a replay buffer. In the optimization
phase, self-play games are uniformly sampled from the replay
buffer and used to optimize the neural network model. The
policy network aims to learn the move distribution that re-
flects the search results of the MCT'S, while the value network
aims to predict the game outcomes. The newly optimized net-
work models are then used to generate new self-play games.
Repeating this process allows AlphaZero to progressively en-
hance its performance and achieve superhuman performance.

2.2 Transformers in Computer Vision

In recent years, Transformers have achieved remarkable suc-
cess in natural language processing [Vaswani et al., 2017,
Devlin et al., 2019], and have also been successfully extended
to computer vision. Unlike textual data, images contain rich
positional and local information. To accommodate this, the
Vision Transformer (ViT) [Dosovitskiy et al., 2020] divides
an image into patches, treating each patch as a token anal-
ogous to a word in a sentence. This allows the network to
apply the Transformer’s sequential data processing capabili-
ties to visual data.

Recent trends in computer vision show that integrating
convolutional operations within the Transformer significantly
enhances the performance [Wu et al., 2021; Wang et al.,
2021; Guo et al., 2022; Dai et al., 2021]. For example, CoAt-
Net [Dai et al., 2021] proposes a network architecture that
begins with several convolutional blocks, followed by a se-
ries of Transformer blocks with relative attention [Shaw et
al.,2018]. CoAtNet has demonstrated state-of-the-art perfor-
mance on image classification tasks, even under conditions of
low data availability.

2.3 Transformers in Board Games

Transformers have recently been applied to board games,
particularly in two directions: (a) using text representations
of board games to frame game-playing Al as a natural lan-
guage processing task, and (b) using visual representations of
board games to apply Transformers for processing these rep-
resentations, similar to image classification tasks. For text
representations, Ciolino et al. [2020] fine-tuned GPT-2 on
Go games to predict the next move based on the SGF text
format. Similarly, Feng et al. [2024] proposed ChessGPT,
which finetunes a pre-trained Large Language Model (LLM)
on chess datasets, including games, books, and videos, to pre-
dict moves or evaluate positions. Ruoss et al. [2024] trained
a chess policy network through supervised learning on high-
quality games annotated by Stockfish 16 [Romstad ef al.,
2023], demonstrating that search-based programs can be dis-
tilled into large-scale transformers. Schultz et al. [2024] in-
troduced the Multi-Action-Value (MAV) model, which inte-
grates Transformers with internal and external planning and
supports multiple board games within a unified framework.
On the other hand, for visual representation, researchers
utilize Transformers to process board states directly. Sagri et
al. [2023] proposed replacing the residual network with Effi-
cientFormer [Li et al., 2022b] and trained the policy and value
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network from KataGo’s self-play games. Their experiments
show that using EfficientFormer can achieve a higher win rate
in scenarios where only CPU is available. Similarly, Monroe
and Chalmers [2024] applied ViT architecture to train policy
and value networks by supervised learning from a self-play
game collection in the chess environment, achieving higher
win rates when using only the policy or value network. In
addition, Czech et al. [2023] proposed combining Mobile
Convolutional Blocks [Sandler ef al., 2018] and Next Trans-
former Blocks [Li ef al., 2022a] in the chess environment.
They improved the Transformer performance by identifying
chess-specific input features.

While these studies have made progress in applying Trans-
formers to visual board representations, they primarily adapt
Transformers from computer vision without thoroughly in-
vestigating configurations tailored for board games. Further-
more, most of these works focus on supervised learning on
game collections rather than training within the reinforce-
ment learning framework of the AlphaZero algorithm. In con-
trast, our work focuses on visual representation by leveraging
Transformers to design novel network configurations specif-
ically for board games, bridging local and global knowledge
within the AlphaZero training algorithm.

3 ResTNet

3.1 Network Design

This paper proposes ResTNet, a novel architecture that com-
bines residual and Transformer blocks, as shown in Figure 2.
It consists of several blocks, with each block being either a
residual block or a Transformer block. For any given board,
the network outputs a policy distribution and a value, as de-
picted in Figure 2a, where the architectures for the residual
block and Transformer block are described in more detail in
Figure 2b and 2c respectively. The residual block follows the
same architecture as AlphaZero [Silver et al., 2018], compris-
ing two convolutional layers. The Transformer block is based
on the standard Transformer [Vaswani er al., 2017], aug-
mented with relative position encoding [Shaw et al., 2018],
and uses four attention heads per block.

For simplicity, we use “R” to denote the residual block,
and “T” to represent Transformer block in the network con-
figuration for the rest of the paper. For instance, RRTRRT
represents a network configuration that begins with two resid-
ual blocks, followed by a Transformer block, then two addi-
tional residual blocks, and finally another Transformer block.
In addition to this notation, we employ a numerical naming
method as an alternative way. For example, RRTRRT corre-
sponds to the same configuration as 2R1T2R1T, while 6R1T
represents a network configuration starting with six consecu-
tive residual blocks followed by one Transformer block.

ResTNet offers a general version that covers a variety of
network architectures. For example, in a 3-block configu-
ration of ResTNet, if all blocks are residual blocks, repre-
sented as RRR or 3R, this configuration matches the archi-
tecture of the AlphaZero network. Conversely, if all blocks
are Transformer blocks, denoted as TTT or 3T, the network
aligns with ViT. Additionally, a configuration that starts with
residual blocks and transitions to Transformer blocks towards

the end, such as RRT or RTT, corresponds to the CoAtNet ar-
chitecture. Note that there are still some configurations, such
as TRR or RTR, that are not covered in the above architectures
but are included in ResTNet.

3.2 Feature Conversion

In ResTNet, the residual and Transformer blocks process dif-
ferent input features. The residual blocks utilize convolu-
tional neural networks to process 2D feature maps, whereas
the Transformer blocks, designed for sequences handling, use
1D tokens as input. In board games, precise and accurate po-
sitional representation is crucial, as each position on the board
is unique and can differ significantly from neighboring po-
sitions. Therefore, we present a feature conversion method
for transferring features between residual and Transformer
blocks in ResTNet. Figure 2d illustrates feature conversion
from residual to Transformer blocks. Note that the feature
conversion from Transformer to residual blocks simply mir-
ror Figure 2d left-right. The method converts the 2D feature
maps into 1D tokens through a one-to-one mapping to pre-
serve positional information, as described as follows.

The input/output representations of the residual block are
consistent with the board representation, which is defined by
dimensions C' x H x W, where C represents the number of
channels, and both H and W denote the height and width
respectively. Hence, the initial board representation can be
viewed as a specification of the residual block to the first con-
version. Conversely, for Transformer blocks, the representa-
tion needs to be converted into 1D tokens, ordered according
to the board positions, from the top-left to the bottom-right
in either row-major or column-major manner. The size of 1D
tokens is H x W, with each token encoding a board posi-
tion in a dimension of C. For a conversion from Transformer
to residual block, these 1D tokens can further be reorganized
into 2D feature maps, ensuring that each token is accurately
rearranged to match the original board layout.

4 Experiments

This section presents an in-depth analysis of ResTNet in Go
and Hex, selected for their reliance on global knowledge
to understand gameplay. Subsection 4.1 evaluates the play-
ing performance. Subsection 4.2 examines ResTNet’s ability
to process global information, focusing on two well-known
challenges in Go: recognizing circular patterns and ladder
patterns. Finally, Subsection 4.3 explores the attention maps
in RestNet, offering insights into its explainability.

4.1 Playing Performance of ResTNet

Given that the proposed ResTNet allows for various combina-
tions, we first evaluate different network architectures on 9x9
Go, which allows multiple evaluations under limited compu-
tational resources. Then, we apply the best-performing archi-
tecture discovered to 19x19 Go and 19x19 Hex.

Architecture Exploration on 9x9 Go

We use 6-block in 9x9 Go. Each residual block consists
of 256 filters, whereas each Transformer block comprises
81 (9 x 9) tokens with an embedding size of 256. Ta-
ble 1 lists the 6-block networks we evaluated, along with
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Figure 2: ResTNet consists of a sequence of blocks, each of which is either a residual block (R) or a Transformer block (T). The feature
conversion transfers the features between R and T. Subfigure (d) illustrates conversion from R to T. The one from T to R simply left-right
mirrors the network. The ones from R to R and T to T use an identical mapping, i.e., no conversion.

their inference time and the number of parameters. These
networks can be further categorized into four types. First,
the AlphaZero-like networks, comprising solely of convolu-
tional neural networks, i.e., 6R. Second, the ViT-like net-
works, consisting purely Transformer-based networks, i.e.,
6T. Third, the CoAtNet-like networks begin with a series
of residual blocks followed by Transformer blocks, such as
5R1T, 4R2T, etc. Finally, the networks with interleavings of
residual and Transformer blocks, such as RTRRRT, RRTRRT,
etc. Considering the inference time, we only explore permu-
tations that include two Transformer blocks and four resid-
ual blocks, with one Transformer block at the end to facili-
tate global information extraction'. Note that these four cate-
gories are all encompassed within our proposed ResTNet.

Unlike in computer vision, where accuracy is commonly
used as a benchmark to measure the performance of networks,
our evaluation focuses on the playing strength. Specifically,
we train each network using the Gumbel AlphaZero algo-
rithm [Danihelka et al., 2022] with 64 simulations based on
an open-sourced AlphaZero framework [Wu et al., 2025].
Each training generates a total of 1 million self-play games
and includes 100,000 network optimization steps, requiring
approximately 200 1080Ti GPU hours. For the evaluation,
we compare our models against four KataGo models? as ref-
erence opponents across a total of 2,000 games.

From Table 1, models with an equal or greater number
of Transformer blocks than residual blocks, i.e., 6T, 1R5T,

"We also try placing R at the end, but it leads to worse results,
similar to the finding in computer vision.

>These models are katal-b6c96-s115648256, katal-b10c128-
s41138688, katal-b10c128-s108710656, and katal-b15c192-
$798345984.

Models Time Parameters Win Rate
Convonly 6R 3.067 7.146 54.60% =+ 2.15%
ViT-like 6T 8.130 3.358 39.85% + 2.18%
5R1T 3.650 6.619 56.00% =+ 2.18%
4R2T 4.237 5.967 51.75% + 2.19%
CoAtNet-like 3R3T 5.000 5.314 47.85% + 2.19%
2RAT 5.882 4.662 37.40% + 2.12%
1R5T 6.329 4.001 31.15% + 2.03%
TRRRRT 4.566 5.967 43.90% + 2.18%
RTRRRT 4.566 5.967 54.35% + 2.18%
RRTRRT 4.566 5.967 60.80% + 2.14%
RRRTRT 4.566 5.967 49.10% =+ 2.19%

Table 1: Various 6-block ResTNet model configurations, including
inference time (in milliseconds), the number of parameters (in mil-
lions), and the win rate against KataGo under 2 seconds thinking
time, along with the 95% confidence interval.

2R4T, and 3R3T, obtain a win rate of under 50% against
KataGo. This is likely due to the lack of convolutional lay-
ers which are crucial for capturing local patterns in board
games. For CoAtNet-like models, as the number of con-
secutive Transformer blocks increases, we observe a corre-
sponding decrease in strength. This result suggests that us-
ing a long sequence of Transformer blocks does not neces-
sarily improve performance. Surprisingly, this contradicts
findings from CoAtNet in computer vision, where using con-
secutive Transformer blocks is suggested to yield better re-
sults. For networks that interleave residual and Transformer
blocks, starting with Transformer blocks, i.e., TRRRRT per-
forms the worst. This indicates the importance of initially
extracting local patterns before processing global patterns.
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19x19 Go

10R 53.60% £ 2.19%
R3(RRT)  60.90% + 2.14%

19x19 Hex

50.40% =+ 4.39%
58.00% + 4.33%

Table 2: The playing performance of 10R and R3 (RRT) in 19x19
Go and 19x19 Hex respectively. The results include 95% confidence
intervals.

On the other hand, RRTRRT achieves the highest win rate
of 60.80% against KataGo among all models. We conjecture
that this repeating pattern of RRT effectively balances the ex-
traction of global information while simultaneously preserv-
ing local patterns.

Performance on 19x19 Go and 19x19 Hex

We further evaluate the playing performance on 19x19 Go
and 19x19 Hex based on the experiments from the previous
subsection. We select two 10-block network models: 10R
and R3 (RRT). 10R serves as an AlphaZero-like baseline
model, while R3 (RRT), also denoted as RRRTRRTRRT, be-
gins with R and follows a repeating sequence of three RRT.

For 19x19 Go, to reduce the computational costs of train-
ing models from scratch, we trained these models using su-
pervised learning on a human game collection. The collection
contains a total of 1 million games played by 7 dan to 9 dan
human Go players on Tygem [Cho and Corporation, 2001], a
popular online Go platform. After training both models to a
total of 150,000 optimization steps, we evaluate their perfor-
mance against four KataGo models® under the same thinking
time of 5 seconds per move across a total of 2,000 games.
For 19x19 Hex, we train two 10-block models directly using
the Gumbel AlphaZero algorithm with 32 simulations. Each
model trains with 500,000 self-play games and 100,000 opti-
mization steps. Then, we evaluate the playing performance of
the models by playing 1,000 games against MoHex [Arneson
et al., 2010], a well-known Hex program that won champi-
onships in computer Olympiads.

The results in Table 2 show that R3 (RRT) outperforms
10R in both 19x19 Go and 19x19 Hex. In summary, these
experiments demonstrate that the discovered architecture, re-
peating RRT, efficiently integrates Transformers with residual
blocks and improves playing performance in board games.

4.2 Global Information Ability of ResTNet

This subsection investigates the ability of the two trained
19x19 Go models, 10R and R3 (RRT), as described in the
previous subsection, to process global information by evalu-
ating their performance on two well-known challenges in Go:
recognizing circular patterns and ladder patterns.

Recognition of Circular Patterns

Circular patterns refer to long sequences of blocks that form
a circular enclosure around the opponent’s stones, usually
spanning a wide area of the Go board, as shown in the top-
right corner of Figure 1a. These patterns present a specific

3These models are katal-b10c128-s41138688, katal-b10c128-
s108710656, katal-b10c128-s46989824, and katal-b10c128-
$56992512.
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Figure 3: The circular pattern, ground truth results, and board eval-
uation results for 10R and R3 (RRT) . The square in (c) and (d) in-
dicates the ownership predicted by each model, with larger sizes
representing higher confidence in ownership by black or white.

challenge for Go programs that require effective global in-
formation processing. Wang er al. [2023] developed an ad-
versarial Go program called cyclic-adversary, which effec-
tively induces circular patterns, causing most Go programs
to misjudge their life-and-death status due to an insufficient
understanding of global information. In addition, Wang et
al. [2023] provided a game collection containing 24 games,
each featuring circular patterns, played by cyclic-adversary
against KataGo.

We first evaluate whether ResTNet can correctly rec-
ognize the life-and-death status of circular patterns in the
game collection* provided by Wang et al. [2023]. Specifi-
cally, we incorporate a board evaluation head [Gilmer, 2016;
Wu et al., 2018] into ResTNet. The board evaluation head,
commonly used in current Go programs to assess a model’s
understanding of life-and-death status, is designed to predict
the ownership of each position on the board at the endgame.
The output values are bounded within the range of [-1, 1],
where 1 represents black ownership and -1 represents white
ownership. Figure 3a shows an example of circular pattern
games from the game collection. In this game, the cyclic-
adversary, playing as White, successfully establishes a cir-
cular pattern and deceives KataGo, resulting in the capture
of the marked black stones. The ownership of these marked
stones should be white, as shown in 3b. Interestingly, signifi-
cant differences are observed between the evaluations of 1 0R

“These games are available at

adversarial-policy-katago.

https://goattack.far.ai/
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and R3 (RRT), as depicted in Figure 3c and 3d. The 10R in-
correctly predicts the marked stones as belonging to the black
player. In contrast, the ownership predicted by R3 (RRT) ac-
curately aligns with the ground truth, demonstrating robust-
ness in recognizing circular patterns. We evaluate all games
and quantify model performance using the mean square error
(MSE) between the ground truth and board evaluation output,
as summarized in Table 3. The results show that R3 (RRT)
achieves a significantly lower MSE compared to 10R, indi-
cating a more accurate understanding of the life-and-death
status for circular patterns.

Moreover, since R3 (RRT) demonstrates a better under-
standing of circular patterns, it is worth investigating whether
R3 (RRT) can defend against the cyclic-adversary. Specif-
ically, both R3 (RRT) and 10R play against the cyclic-
adversary using the same openings from Wang er al. [2023]’s
game collection, with each opening beginning with a circu-
lar pattern. The model must recognize circular patterns and
play a correct sequence of moves to avoid being captured and
win the game; otherwise, it will lose. Given the inherent ran-
domness of the cyclic-adversary, each opening is played by
30 games, resulting in a total of 720 evaluation games. Table
3 shows the probability of each model being attacked by the
cyclic-adversary. Compared to 10R, R3 (RRT) significantly
reduces the being attacked rate from 70.44% to only 23.91%,
a reduction by a factor of 2.95. Overall, the results demon-
strate that using ResTNet enhances the ability to leverage
global knowledge for processing long sequences, addressing
challenging problems that most Go programs struggle to han-
dle.

Recognition of Ladder Patterns

We investigate whether ResTNet can effectively address an-
other long sequence challenge — recognizing the ladder pat-
tern in 19x19 Go. Unlike circular patterns, which can be gen-
erated using cyclic-adversary, there are no established strate-
gies to induce ladder patterns. Therefore, we collected a total
of 1,655,000 ladder patterns from the Tygem game collection.
Figure 4a and 4c show two examples of ladder patterns. The
stones marked with triangles indicate the player attempting
to escape, serving as the defender, while the opponent is the
attacker, trying to capture the marked stone. Note that the
ladder dataset includes an equal number of escape successes
and escape failures to ensure fairness.

Next, we use model probing [Alain and Bengio, 2017] to

(a) Escape success (b) Success result
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Figure 4: Two ladder patterns from the ladder dataset. (a) and (c) are
the original boards, while (b) and (d) show the respective solutions.

examine whether the trained models capture the ladder pat-
terns. Specifically, we incorporate a ladder head into the
network output, freezing the backbone parameters while al-
lowing only the ladder head to be trained. The ladder head
aims to predict whether the defender can escape: 1 for suc-
cess and -1 for failure, as shown in Figure 4b and 4d. This
provides a straightforward approach to determine whether the
backbone has learned ladder-related information, as the lad-
der head cannot recognize ladder patterns without this infor-
mation. During the evaluation, for each ladder pattern, the
model predicts escape success if the output of the ladder head
is greater than 0.5, and escape failure if the output is less than
-0.5. Values within the range of (—0.5,0.5) are classified as
unknown and are considered incorrect predictions.

‘We train the ladder head on both 1 0R and R3 (RRT) . After
training, we evaluate these models on a separate testing ladder
dataset consisting of 166,500 ladder patterns. Table 3 shows
the accuracy of 10R and R3 (RRT) in identifying ladder pat-
terns, where R3 (RRT) demonstrates a significant improve-
ment, increasing accuracy from 59.15% to 80.01%. This
aligns with the findings from ELF OpenGo [Tian er al., 20191,
which indicate that AlphaZero-like Go programs struggle to
fully recognize ladder patterns. In contrast, the inclusion of
Transformer blocks significantly enhances the model’s ability
to process long sequences and recognize ladder patterns.

4.3 Visualization of ResTNet

We visualize ResTNet by constructing attention maps using
the attention values from the Transformer block, where each
token corresponds to an attention map, and the values rep-
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(a) Alive Stones (b) Uncertain territory (c) Critical positions

Figure 5: Since different blocks and heads may capture different
types of knowledge, the attention values shown corresponding to the
position marked in green, taken from the fourth head of the first T
block for (a), the fourth head of the second T block for (b), and the
third head of the second T block for (c). All positions are Black’s
turn to move. We normalize the values to [0, 1] for better visualiza-
tion, with redder colors indicating higher values.

resent the relative importance of other tokens. By analyzing
these attention maps, we can explore patterns or strategies
utilized by ResTNet, offering insights into its behavior and
decision-making process. This analysis is conducted on both
19x19 Go and 19x19 Hex using R3 (RRT) , the same models
used in subsection 4.1.

Attention Maps in 19x19 Go

We select two 19x19 Go games, including a circular pattern
and a ladder pattern. Figure 5 illustrates the attention maps
for the position marked in green, with redder colors indicat-
ing higher levels of relative importance. Interestingly, these
attention maps correspond closely to Go knowledge concepts.
First, the attention map in Figure 5a focuses exclusively on
the white stones that remain alive until the end game, align-
ing with the life-and-death concept in Go. Notably, these
stones are spread across the entire board, making them ex-
tremely challenging for convolutional networks to recognize
effectively. Second, the attention map in Figure 5b high-
lights uncertain territory. The center area, not surrounded
by any player, shows high attention values, while the three
areas marked by blue rectangles, surrounded by one player,
show low attention values. Finally, the attention map in Fig-
ure Sc highlights important positions. The three black stones
can escape by following a sequence of moves starting with
the green-marked position and connecting to the middle left
black stone marked by the blue square. Interestingly, the at-
tention map focuses on three black stones as well as the mid-
dle left black stone, indicating that it captures the concept of
the ladder pattern.

Attention Maps in 19x19 Hex

Next, we examine the attention maps in 19x19 Hex, as shown
in Figure 6. Similar to 19x19 Go, the attention maps in Hex
show essential game concepts, particularly the fundamental
strategy of connection. The attention map in Figure 6a high-
lights the concept of basic connection, focusing only on the
black stones necessary to secure a win for Black, while irrel-
evant black stones, marked by blue hexagons, are excluded.
Identifying connection stones across the entire board from
left to right also demonstrates that ResTNet effectively cap-
tures global information. Moreover, in Figure 6b, the at-
tention map shows a critical and advanced strategy in Hex,

(b) Virtual connections

(a) Potential paths

Figure 6: The attention maps for 19x19 Hex from the third head of
the second and the third T block for (a) and (b), respectively. The
next moves of (a) and (b) are for White and Black, respectively.

known as virtual connections [Hayward et al., 2004], which
refer to sets of positions that enable one player to connect
two specified sets of stones, even if the opponent plays first.
In conclusion, the attention maps in both Go and Hex demon-
strate that ResTNet effectively learns global knowledge con-
cepts while also offering opportunities for interpretability and
explainability in board games.

5 Discussion

This paper proposes ResTNet, a network architecture specifi-
cally designed for AlphaZero algorithms in board games, in-
tegrating residual and Transformer blocks to bridge local and
global knowledge. Our experiments show that repeating RRT
blocks achieves the best performance, effectively balancing
inference time and model parameters. ResTNet not only im-
proves playing strength in both Go and Hex games, but also
significantly addresses two challenging long-sequence pat-
terns in 19x19 Go. For circular patterns, ResTNet reduces the
mean square error from 2.58 to 1.07 and lowers the average
probability of being attacked against cyclic-adversary from
70.44% to 23.91%, significantly reducing a factor of 2.95.
For ladder patterns, ResTNet improves the accuracy of cor-
rectly predicting the outcome of ladder patterns from 59.15%
to 80.01%. Furthermore, visualizing attention maps reveals
that ResTNet captures game-specific strategies, further con-
tributing to the interpretability of AlphaZero.

Due to computational constraints, this paper mainly ex-
plores ResTNet with repeating RRT in the main experiments.
However, even without a large-scale network architecture
search, RRT still achieves superior performance. Future work
can build on this direction using larger-scale architecture
search to further optimize ResTNet. Moreover, as ResT-
Net is game-independent, it can be seamlessly applied to
other board games, such as Chess or Shogi, without requiring
modifications. Future research could explore its robustness
by designing other adversarial strategies to further improve
its capabilities. While current board game programs have
generally achieved superhuman performance, understanding
their decision-making processes remains a critical challenge.
ResTNet’s attention maps open promising research directions
in explainable Al (XAI) for board games. In conclusion,
we believe the proposed ResTNet and our empirical findings
make a valuable contribution to the board game community,
offering a strong foundation for future research in this field.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgments

This research is partially supported by the National Science
and Technology Council (NSTC) of the Republic of China
(Taiwan) under Grant Number NSTC 113-2221-E-001-009-
MY3, NSTC 113-2634-F-A49-004, and NSTC 113-2221-E-
A49-127. The authors would also like to thank anonymous
reviewers for their valuable comments.

References

[Alain and Bengio, 2017] Guillaume Alain and Yoshua Ben-
gio. Understanding intermediate layers using linear classi-
fier probes. In International Conference on Learning Rep-
resentations, February 2017.

[Arneson et al., 2010] Broderick Arneson, Ryan B. Hay-
ward, and Philip Henderson. Monte Carlo Tree Search
in Hex. IEEE Transactions on Computational Intelligence
and Al in Games, 2(4):251-258, December 2010.

[Browne et al., 2012] Cameron B. Browne, Edward Pow-
ley, Daniel Whitehouse, Simon M. Lucas, Peter I. Cowl-
ing, Philipp Rohlfshagen, Stephen Tavener, Diego Perez,
Spyridon Samothrakis, and Simon Colton. A Survey of
Monte Carlo Tree Search Methods. IEEE Transactions on
Computational Intelligence and Al in Games, 4(1):1-43,
March 2012.

[Cho and Corporation, 2001] Hun-hyun Cho and TYGEM
Corporation. TYGEMGO. http://www.tygemgo.com/,
2001. Accessed: 2025-01.

[Ciolino et al., 2020] Matthew Ciolino, Josh Kalin, and
David Noever. The Go Transformer: Natural Language
Modeling for Game Play. In 2020 Third International
Conference on Artificial Intelligence for Industries (AI41),
pages 23-26, September 2020.

[Coulom, 2007] Rémi Coulom. Efficient Selectivity and
Backup Operators in Monte-Carlo Tree Search. In Com-
puters and Games, Lecture Notes in Computer Science,
pages 72-83, Berlin, Heidelberg, 2007. Springer.

[Czech et al., 2023] Johannes Czech, Jannis Bliiml, and
Kristian Kersting. Representation Matters: The Game of
Chess Poses a Challenge to Vision Transformers, April
2023.

[Dai et al., 2021] Zihang Dai, Hanxiao Liu, Quoc V Le, and
Mingxing Tan. CoAtNet: Marrying Convolution and At-
tention for All Data Sizes. In Advances in Neural Infor-
mation Processing Systems, volume 34, pages 3965-3977.
Curran Associates, Inc., 2021.

[Danihelka et al., 2022] Ivo Danihelka, Arthur Guez, Julian
Schrittwieser, and David Silver. Policy improvement by
planning with Gumbel. In International Conference on
Learning Representations, April 2022.

[Devlin et al., 2019] Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. BERT: Pre-training
of Deep Bidirectional Transformers for Language Under-
standing. In Proceedings of the 2019 Conference of the

North American Chapter of the Association for Compu-
tational Linguistics: Human Language Technologies, Vol-
ume 1 (Long and Short Papers), pages 4171-4186, Min-
neapolis, Minnesota, June 2019. Association for Compu-
tational Linguistics.

[Dosovitskiy er al., 2020] Alexey Dosovitskiy, Lucas Beyer,
Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Min-
derer, Georg Heigold, S. Gelly, Jakob Uszkoreit, and
N. Houlsby. An Image is Worth 16x16 Words: Trans-
formers for Image Recognition at Scale. In International
Conference on Learning Representations, October 2020.

[Feng et al., 2024] Xidong Feng, Yicheng Luo, Ziyan Wang,
Hongrui Tang, Mengyue Yang, Kun Shao, David Mguni,
Yali Du, and Jun Wang. ChessGPT: Bridging Policy
Learning and Language Modeling. Advances in Neural
Information Processing Systems, 36, February 2024.

[Gao et al., 2018] Chao Gao, Martin Miiller, and Ryan Hay-
ward. Three-Head Neural Network Architecture for Monte
Carlo Tree Search. In Proceedings of the Twenty-Seventh
International Joint Conference on Artificial Intelligence,
pages 3762-3768, Stockholm, Sweden, July 2018. Inter-
national Joint Conferences on Artificial Intelligence Orga-
nization.

[Gilmer, 2016] Justin Gilmer. Jmgilmer/GoCNN, 2016.

[Guo et al., 2022] Jianyuan Guo, Kai Han, Han Wu, Yehui
Tang, Xinghao Chen, Yunhe Wang, and Chang Xu. CMT:
Convolutional Neural Networks Meet Vision Transform-
ers. In 2022 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 12165-12175,
June 2022.

[Hayward et al., 2004] R. Hayward, Y. Bjornsson, M. Johan-
son, M. Kan, N. Po, and J. van Rijswijck. Solving 7x7
Hex: Virtual Connections and Game-State Reduction. In
Advances in Computer Games: Many Games, Many Chal-
lenges, IFIP — The International Federation for Infor-
mation Processing, pages 261-278, Boston, MA, 2004.
Springer US.

[Li e al., 2022a] Jiashi Li, Xin Xia, Wei Li, Huixia Li, Xing
Wang, Xuefeng Xiao, Rui Wang, Min Zheng, and Xin Pan.
Next-ViT: Next Generation Vision Transformer for Effi-

cient Deployment in Realistic Industrial Scenarios, August
2022.

[Li et al., 2022b] Yanyu Li, Geng Yuan, Yang Wen, Ju Hu,
Georgios Evangelidis, Sergey Tulyakov, Yanzhi Wang,
and Jian Ren. EfficientFormer: Vision Transformers at
MobileNet Speed. 36th Conference on Neural Informa-
tion Processing Systems, 2022.

[Liang et al., 2023] Wen Liang, Chao Yu, Brian Whiteaker,
Inyoung Huh, Hua Shao, and Youzhi Liang. AlphaZero
Gomoku, September 2023.

[Monroe and Chalmers, 2024] Daniel Monroe and Philip A.
Chalmers. Mastering Chess with a Transformer Model,
October 2024.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

[Romstad et al., 2023] Tord Romstad, Marco Costalba,
Joona Kiiski, Gary Linscott, and Stockfish Contributors.
Stockfish, 2023.

[Ruoss et al., 2024] Anian Ruoss, Gregoire Deletang,
Sourabh Medapati, Jordi Grau-Moya, Li Kevin Wenliang,
Elliot Catt, John Reid, Cannada A. Lewis, Joel Veness,
and Tim Genewein. Amortized Planning with Large-
Scale Transformers: A Case Study on Chess. In The
Thirty-eighth Annual Conference on Neural Information
Processing Systems, November 2024.

[Sagri et al., 2023] Amani Sagri, Tristan Cazenave, Jérome
Arjonilla, and Abdallah Saffidine. Vision Transformers
for Computer Go, September 2023.

[Sandler et al., 2018] Mark Sandler, Andrew Howard, Men-
glong Zhu, Andrey Zhmoginov, and Liang-Chieh Chen.
MobileNetV2: Inverted Residuals and Linear Bottlenecks.
2018 IEEE/CVF Conference on Computer Vision and Pat-
tern Recognition, pages 4510-4520, June 2018.

[Schultz et al., 2024] John Schultz, Jakub Adamek, Matej
Jusup, Marc Lanctot, Michael Kaisers, Sarah Perrin,
Daniel Hennes, Jeremy Shar, Cannada Lewis, Anian Ru-
oss, Tom Zahavy, Petar Velickovi¢, Laurel Prince, Satinder
Singh, Eric Malmi, and Nenad TomasSev. Mastering Board
Games by External and Internal Planning with Language
Models, December 2024.

[Shaw et al., 2018] Peter Shaw, Jakob Uszkoreit, and Ashish
Vaswani. Self-Attention with Relative Position Repre-
sentations. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for Com-
putational Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 464-468, New Orleans,
Louisiana, June 2018. Association for Computational Lin-
guistics.

[Silver et al., 2018] David Silver, Thomas Hubert, Julian
Schrittwieser, Ioannis Antonoglou, Matthew Lai, Arthur
Guez, Marc Lanctot, Laurent Sifre, Dharshan Kumaran,
Thore Graepel, Timothy Lillicrap, Karen Simonyan, and
Demis Hassabis. A general reinforcement learning algo-
rithm that masters chess, shogi, and Go through self-play.
Science, 362(6419):1140-1144, December 2018.

[Sutskever et al., 2014] Tlya Sutskever, Oriol Vinyals, and
Quoc Le. Sequence to Sequence Learning with Neural
Networks. Advances in Neural Information Processing
Systems, 4, September 2014.

[Tian ef al., 2019] Yuandong Tian, Jerry Ma, Qucheng
Gong, Shubho Sengupta, Zhuoyuan Chen, James Pinker-
ton, and Larry Zitnick. ELF OpenGo: An analysis and
open reimplementation of AlphaZero. In Proceedings of
the 36th International Conference on Machine Learning,

pages 6244-6253. PMLR, May 2019.

[Tseng et al., 2024] Tom Tseng, Euan McLean, Kellin Pel-
rine, Tony Tong Wang, and Adam Gleave. Can Go Als be
adversarially robust? In ICML 2024 Next Generation of
Al Safety Workshop, July 2024.

[Vaswani et al., 2017] Ashish Vaswani, Noam Shazeer, Niki
Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,

Lukasz Kaiser, and Illia Polosukhin. Attention is all you
need. In Proceedings of the 31st International Confer-
ence on Neural Information Processing Systems, NIPS 17,
pages 6000—-6010, Red Hook, NY, USA, December 2017.
Curran Associates Inc.

[Wang et al., 20211 Wenhai Wang, Enze Xie, Xiang Li,
Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping
Luo, and Ling Shao. Pyramid Vision Transformer: A
Versatile Backbone for Dense Prediction without Convo-
lutions. In 2021 IEEE/CVF International Conference on
Computer Vision (ICCV), pages 548-558, October 2021.

[Wang et al., 2023] Tony Tong Wang, Adam Gleave, Tom
Tseng, Kellin Pelrine, Nora Belrose, Joseph Miller,
Michael D. Dennis, Yawen Duan, Viktor Pogrebniak,
Sergey Levine, and Stuart Russell. Adversarial Policies
Beat Superhuman Go Als. In Proceedings of the 40th
International Conference on Machine Learning, pages
35655-35739. PMLR, July 2023.

[Wu et al., 2018] Ti-Rong Wu, I-Chen Wu, Guan-Wun
Chen, Ting-Han Wei, Hung-Chun Wu, Tung-Yi Lai, and
Li-Cheng Lan. Multilabeled Value Networks for Com-
puter Go. IEEE Transactions on Games, 10(4):378-389,
December 2018.

[Wu et al., 2021] Haiping Wu, Bin Xiao, Noel Codella,
Mengchen Liu, Xiyang Dai, Lu Yuan, and Lei Zhang.
CvT: Introducing Convolutions to Vision Transformers. In
2021 IEEE/CVF International Conference on Computer
Vision (ICCV), pages 22-31, October 2021.

[Wu et al., 2025] Ti-Rong Wu, Hung Guei, Pei-Chiun Peng,
Po-Wei Huang, Ting Han Wei, Chung-Chin Shih, and Yun-
Jui Tsai. Minizero: Comparative analysis of alphazero and
muzero on go, othello, and atari games. IEEFE Transactions
on Games, 17(1):125-137, 2025.

[Wu, 2020] David J. Wu. Accelerating Self-Play Learning in
Go. In Proceedings of the AAAI Workshop on Reinforce-
ment Learning in Games, November 2020.

[Xie et al., 2018] Zheng Xie, XingYu Fu, and JinYuan Yu.
AlphaGomoku: An AlphaGo-based Gomoku Artificial In-
telligence using Curriculum Learning, September 2018.



