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Abstract
Graph Neural Networks (GNNs) have become
powerful models for both node- and graph-level
tasks. While node-level learning focuses on in-
dividual nodes and their local structures, graph-
level learning encounters challenges in capturing
the global properties of graphs. In this paper, we
conduct a theoretical and experimental analysis of
existing graph-level learning frameworks and find
that these frameworks typically adopt a single-view
perspective based solely on node degree, which
limits their ability to capture comprehensive graph
characteristics. To address these issues, we pro-
pose a multi-view approach that leverages differ-
ent types of centrality measures to capture di-
verse aspects of graph structure. We design an
attention-based mechanism to adaptively integrate
these multiple views, and use it as a readout func-
tion to perform weighted summation of node em-
beddings, termed as Adaptive Centrality Readout
(ACRead). ACRead demonstrates enhanced flexi-
bility and effectiveness when integrated with vari-
ous GNN architectures, outperforming state-of-the-
art readout methods, including KerRead and Set
Transformer. Additionally, this multi-view cen-
trality approach can serve as a standalone graph-
level learning framework without relying on GNNs,
referred to as Adaptive Centrality-based Graph
Learning (ACGL), which achieves competitive per-
formance by effectively combining different cen-
trality perspectives.

1 Introduction
Graph Neural Networks (GNNs) [Welling and Kipf, 2017; Yu
and Jia, 2024; Yu and Jia, 2023; Wu et al., 2023] are a power-
ful class of machine learning models specifically designed to
work on graph-structured data. Their architecture effectively
leverages relationships between nodes, enabling their inter-
actions on graphs, making GNNs well-suited for application
in various domains like computer vision [Han et al., 2022;
Gao et al., 2020], natural language processing [Meng et al., ;

∗Corresponding author: haishuai.wang@zju.edu.cn.

Wu et al., 2021], and biological information [Yu et al., 2025;
Koh et al., 2024]. Currently, the most popular GNNs were
initially developed to learn node representations, demonstrat-
ing outstanding performance on a wide range of node-level
tasks. Among these, several notable GNNs have each con-
tributed unique advancements to the field: Graph Convolu-
tional Networks (GCN) [Welling and Kipf, 2017] extended
the concept of convolution to graph data, also bridging the
gap between spatial and spectral GNNs; Graph Attention
Networks (GAT) [Veličković et al., 2018] incorporate at-
tention mechanisms into GNN models, allowing the model
to weigh the importance of different neighbors dynamically;
GraphSAGE [Hamilton et al., 2017] was designed for more
scalable graph learning via sampling nodes’ local neighbor-
hood. Unlike node-level learning which targets specific nodes
and their local neighborhoods, graph-level learning addresses
tasks where the objective is to understand properties of the
entire graph. This distinction introduces unique challenges,
such as the graph isomorphism problem, and it is inevitable
to tackle global structural information and manage varying
graph sizes and topologies. Graph-level learning holds sig-
nificant importance in diverse fields like protein classifica-
tion [Réau et al., 2023], drug discovery [Koh et al., 2024],
molecular property prediction [Stärk et al., 2022]. These ap-
plications demonstrate its profound impact on scientific and
industrial advancements.

Inspired by the outstanding performance of GNNs in node-
level tasks, many recent graph-level learning frameworks
have extended GNN architectures with graph pooling or
called readout operations [Navarin et al., 2019]. Typically,
these frameworks first generate node representation matrices
for each graph using GNNs, and then a readout function ag-
gregates these node representations to produce a comprehen-
sive graph-level embedding that encapsulates the global in-
formation of the entire graph. A representative model in this
domain is the Graph Isomorphism Network (GIN) [Chen et
al., 2019], which employs a readout function to aggregate
node embeddings into a single graph-level vector, aiming
to summarize the entire graph’s information. However, this
framework of directly combining GNNs with readout func-
tions presents certain limitations. By not thoroughly analyz-
ing the inherent characteristics specific to graph-level learn-
ing, such approaches may inadvertently lead to information
loss during the aggregation process. For instance, GIN lever-
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ages the Weisfeiler-Lehman test [Shervashidze et al., 2011] to
analyze GNNs’ expressive power on graph-level learning but
is also constrained by this theory. This existing framework
can result in suboptimal performance, as it does not inher-
ently address the complexities unique to graph-level tasks.

In this paper, we step further to explore the essence of ex-
isting GNN-based graph-level learning pipelines. Through
theoretical analyses, we reveal that current approaches us-
ing GNNs paired with common readout functions essentially
adopt a single-view perspective based solely on degree-based
centrality. To address this limitation, we propose a multi-
view approach by introducing different types of graph cen-
trality measures, each capturing distinct and complementary
aspects of how nodes contribute to the overall graph structure.
These diverse centrality measures provide multiple views of
node importance, offering a more comprehensive understand-
ing of the graph than the traditional degree-based single view.
Building on this multi-view perspective, we propose a novel
method called Adaptive Centrality Readout (ACRead), which
employs an attention-based mechanism to adaptively inte-
grate information from multiple centrality views when ag-
gregating node representations into graph-level embeddings.
ACRead serves as a novel readout function that can be paired
with various GNNs. When compared with other state-of-
the-art readout functions, ACRead exhibits impressive perfor-
mance with a variety of supervised and unsupervised GNN
backbones. Moreover, we also propose a new graph-level
learning framework named Adaptive Centrality-based Graph
Learning (ACGL) that leverages these multiple centrality
views directly. ACGL is both simple and effective, which
is demonstrated by comprehensive experiments conducted on
real-world datasets. Without relying on traditional GNNs, it
achieves superior performance over other baselines by effec-
tively combining different centrality perspectives. The main
contributions of our paper are summarized as follows:

• We analyze existing graph-level learning frameworks
from a centrality perspective, revealing their limitations
in integrating only a single view of node degree.

• We propose a multi-view approach based on adaptive
centrality, which can be used as a readout function in
conjunction with GNNs and can also constitute a GNN-
free graph learning framework.

• Comprehensive experiments demonstrate the superior
performance of the proposed method, learning more in-
formative graph embeddings than existing frameworks
by incorporating diverse centrality perspectives.

2 Proposed Method
2.1 Notation and Problem Formulation
A graph Gi has ni nodes, and its adjacency matrix is de-
noted by AGi

∈ Rni×ni . The degree matrix of AGi
is

DGi
= diag(d1, . . . , dni

) ∈ Rni×ni . The initial node fea-
tures of the graph Gi are represented by XGi

∈ Rni×d. G
= {G1, ...,GN} is the graph set. We aim to learn the graph
representation vector zGi

for each graph Gi to support various
downstream tasks.

The general pipeline for graph classification using message
passing paradigm [Welling and Kipf, 2017] can be summa-
rized in two steps:

Graph Encoding. GNNs are primarily employed to en-
code graphs through a series of graph convolutional layers.
Each layer operates on a message-passing principle, which
involves two key steps for aggregating the neighborhood in-
formation of each target node:

HGi = GNN
(
Gi,XGi

)
, (1)

where a certain GNN model is adopted here and HGi ∈
Rni×dL is the output node representation of graph Gi.

Readout Function. To unify each size of the graph, fol-
lowing the convolution operation performed by the GNNs,
the node embedding matrix HGi is processed through a read-
out function. This function transforms HGi ∈ Rni×dL into
a graph vector zGi ∈ RdL , which is essential for the graph
classification task,:

zGi
= READOUT

(
{HGi

[j, :] | vj ∈ Gi}
)
, (2)

where HGi
[j, :] denotes the j-th row of the node embedding

matrix for graph Gi, i.e., the representation of node vj , and
HGi

[:, j] will refer the j-th column of the node representa-
tions for graph Gi.

2.2 Revisiting Graph-level Learning Paradigm
The aforementioned two steps represent the most common
frameworks in current graph-level learning, demonstrating
good performance in related tasks. However, some stud-
ies [Garg et al., 2020; Balcilar et al., 2021] have indicated
that the expressive capacity of this paradigm has significant
limitations. For instance, Chen et al. pointed out that this
approach is constrained by the Weisfeiler-Lehman test [Sher-
vashidze et al., 2011]. Therefore, we examine the essence
of existing graph-level learning frameworks from a new per-
spective and build a novel pipeline. Although current GNNs
are diverse, it has been discovered that similar performance
can be achieved by simplifying them and retaining core mech-
anisms. Therefore, we discuss the streamlined framework.
Following the assumptions in [Wu et al., 2019], where the
nonlinearity is removed and weights are collapsed, we have
the specified graph encoding process formulated as

HGi
= GNN

(
Gi,XGi

)
= Uk

Gi
XGi

W, (3)

where UGi
is the adjacency matrix, and a k-hop message

passing is performed here. Then the readout function is con-
ducted to extract the graph-level representation of each graph.
We find that common readout functions can be uniformly de-
scribed as

zGi = READOUT
(
{HGi [j, :] | vj ∈ Gi}

)
= r⊤Gi

HGi , (4)

where rGi is defined as a readout vector which is specified
by the adopted readout function. Existing GNN-based graph-
level learning frameworks follow this process of combining
node-level representation learning and graph-level readout.
However, this combination is crude, expecting to inherit the
excellent performance of GNNs on node-level tasks while ig-
noring the important question of what information should be
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learned for the graph-level prediction. We therefore proceed
to analyze the nature of the existing framework and the rea-
sons for its limitations.

Remark 1. The most common readout functions used in
graph-level learning can be reformulated as
SUM(HGi

)[j] = 1⊤
Gi
(HGi

[:, j]),

MEAN(HGi)[j] = e⊤Gi
HGi [:, j],

MAX(HGi
)[j] = [Imax(HGi

[:, j])]⊤HGi
[:, j],

ATTENTION(HGi
)[j] = [fatt

Ω (HGi
)]⊤HGi

[:, j],

(5)

where 1Gi
denotes an all-one vector, eGi

= [1/ni, · · · , 1/ni],
and Imax(x)i = I{i = argmax(x)}. That is, the read-
out functions can be described as the inner product over the
feature dimensions for a node representation and a particular
readout vector.

Remark 2. Combining Equations (3), (4), (5) and the
above analyses, the pipeline of existing GNN-based graph-
level learning can be further written as

zGi
= READOUT

(
GNN

(
Gi,XGi

))
= r⊤Gi

(
Uk

Gi
XGi

W
)
= c⊤Gi

(
XGi

W
)
,

(6)

where cGi =
(
r⊤Gi

Uk
Gi

)⊤
, which actually computes a certain

statistic related to degree for each node. Subsequently, the
vector cGi makes a weighted summation of the node features,
only depending on this statistic to obtain a representation of
the entire graph Gi. Our analysis reveals the nature of the
existing framework, which straightforwardly combines pow-
erful GNNs and readout functions, but is essentially just a
weighted degree-based summation. This pipeline struggles to
exploit the capabilities of GNNs and potentially undermines
the performance of downstream tasks.

To be specific, we take SUM as an example, the vector of
ones 1Gi

is selected to be the readout vector, then we have

zGi
= 1⊤

Gi

(
Uk

Gi
XGi

W
)
= c⊤Gi

(
XGi

W
)
. (7)

where the l-th value of cGi is

cGi [l] = 1⊤
Gi
Uk

Gi
[:, l] (8)

Based on these formulations, three well-known message
passing strategies are considered:

1. Message Passing of GIN: GIN adopts the message
passing mechanism with a non-normalized adjacency
matrix, i.e., UGi = AGi . Therefore each element in
cGi is calculated as

cGi
[l] =

∑
j

Ak
Gi
[j, l]. (9)

2. Message Passing of GCN (Random Walk): For the
widely used GCN, there are two strategies. One is to
adopt random walk normalized adjacency matrix UGi

=
AGiD

−1
Gi

, then we have the following vector cGi
:

cGi [l] =
∑
j

(
AGi

[j, l]

DGi
[l, l]

)k

, (10)

3. Message Passing of GCN (Symmetric): The more
popular message passing in GCN is with symmetrically
normalized adjacency matrix UGi

= D
− 1

2

Gi
AGi

D
− 1

2

Gi
:

cGi
[l] =

∑
j

(
AGi [j, l]√

DGi [j, j]
√

DGi [l, l]

)k

, (11)

Through the analyses above, we find that the existing
graph-level learning pipeline can be viewed as an aggregation
of node information based on a certain statistic of all nodes.
This statistic, like the node degree here, is used as a basis for
integrating node information.

2.3 Adaptive Centrality
It can be seen that existing methods are essentially based on
a single statistic–node degree and do not explicitly design the
learning mechanism of the overall framework. We first intro-
duce the concept of centrality [Sade, 1989]. The centrality
of nodes on a graph describes the importance of nodes in the
whole graph, and there are several critical centrality measures
beyond the degree-based ones:

Closeness Centrality of a node i is the reciprocal of the
average shortest path distance from node i to all other nodes:

cclo[i] =
1∑

j ̸=i d(i, j)
. (12)

d(i, j) is the shortest path distance between nodes i and j.
Betweenness Centrality of a node i is computed by the

shortest paths between all pairs of nodes s and t and counting
how many of these paths pass through node i:

cbet[i] =
∑

s̸=i̸=t

γst(i)

γst
, (13)

where γst is the number of shortest paths between nodes s
and t, and γst(i) is the number of paths through node i.

Bridge Centrality. For an edge (i, j) that is not part of any
bridge, node i has a bridge centrality of 1, otherwise 0, i.e.,

cbri[i] =

{
1 if node i is not part of any bridge
0 otherwise

. (14)

Building on the above analyses of the existing graph-
level learning paradigm and the concept of centrality, two
research questions for further experimental investigation are
(1) whether models based only on centrality are comparable
to existing graph-level learning frameworks? (2) how does
different centrality affect graph-level learning performance?
To answer these questions, we conducted an experiment on
the performance of two common GNN baselines as well as
GNN-free baselines based on different centrality. Note that
the centrality-based baselines utilize the MLP as a trainable
component, and then readout the graph representations by dif-
ferent centrality, respectively. As shown in Fig 1, it is obvious
that centrality-based models can achieve comparable or even
better performance without the well-known message passing
mechanism. This result corroborates our theoretical analy-
sis that a straightforward combination of GNNs and readout
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Figure 1: The graph classification performance of weight summa-
tion using different centrality combinations.

functions collapses into a simple model based on a single type
of centrality. In addition, it is observed that a single centrality
may not adapt to different types of graph data. These results
highlight the importance of selecting appropriate centrality
measures based on the nature of the dataset, as they can sig-
nificantly influence the graph-level tasks.

The results of this experiment inspired us to design
a centrality-based framework for graph-level tasks, which
touches on the essence more than existing pipelines, but also
poses challenges. Since the applicability of different central-
ity to different types of graph data varies, manually selecting
the most appropriate centrality can be very labor-intensive.
Thus we would like to learn an adaptive centrality to synthe-
size the information provided by different centrality.

First, we construct a centrality matrix CGi ∈ Rni×s col-
lecting various centrality measures for each graph Gi, where
s denotes the number of initial centrality measures. Sub-
sequently, a trainable weight vector w ∈ Rs is used to
measure the overall importance of each centrality. Specifi-
cally, we let each element in w weight each column in CGi

,
as CGi

= [w[1]CGi
[:, 1], ..., w[s]CGi

[:, s]]. This allows the
model to initially learn how much information each central-
ity should provide to the subsequent process. Then we ap-
ply normalization to the centrality matrix due to the different
scales of the centrality measures, which enhance model sta-
bility, i.e., ĈGi

=
CGi

−µGi

σGi
. This involves calculating the

mean µGi
and variance σGi

.
After this, to further extract the information in the central-

ity matrix as well as the importance of each centrality and the
interactions between them, we designed a centrality attention
mechanism:

ΞGi
= Softmax

(
Q⊤

Gi
KGi√
d

)
VGi

, (15)

where QGi = WqĈGi , KGi = WkĈGi , VGi = WvĈGi ,
and d is the dimension of the hidden layer. Through this
attention-based manner, we can better capture the data dis-
tribution among different centralities and effectively learn an
adaptive centrality that accommodates various datasets.

In practice, we also employ multi-head self-attention to en-
hance the model’s expressiveness, allowing the model to cap-
ture different aspects of node relationships:

Ξh
Gi

= Softmax

(
(Qh

Gi
)⊤Kh

Gi√
dh

)
Vh

Gi
, (16)

where Qh
Gi

= Wh
q ĈGi , K

h
Gi

= Wh
kĈGi , V

h
Gi

= Wh
v ĈGi ,

and dh is the dimension for head h. Finally, the outputs
from all heads are concatenated and projected through a linear
transformation to produce the final adaptive centrality repre-
sentation:

ΞGi = CONCAT(Ξ1
Gi
, . . . ,ΞH

Gi
)WO, (17)

where WO ∈ R
∑H

i=1 di×d is a learnable weight matrix for the
output transformation.

The adaptive centrality ΞGi
∈ RnGi

×d modulates the im-
portance of nodes in the final representation. The final graph
embedding zGi

is computed as the weighted sum of the adap-
tive centrality, expressed as follows:

zGi
= gΨ(ΞGi

,HGi
). (18)

The choice of HGi
offers considerable flexibility. It can be de-

rived from various approaches, such as the node embeddings
learned by a GNN or even the initial node feature vectors
themselves. The function gΨ also provides a flexible mecha-
nism for integrating the learned centrality ΞGi

with node em-
beddings to produce the final graph embedding. It can take
various forms: for instance, it could be a simple linear trans-
formation that directly converts ΞGi into a vector, which is
then used to perform a weighted summation over the node
embeddings. Alternatively, it could act as a mapping function
that applies the Hadamard product between ΞGi

and HGi
, fol-

lowed by a summation.
In summary, the flexibility in the choice of gΨ and HGi

allows for adapting the centrality-based method to differ-
ent scenarios, leveraging either learned representations from
GNN models or raw feature inputs, depending on the needs of
the task or the dataset characteristics. Moreover, our ACGL
framework can incorporate other graph learning strategies,
making it a highly adaptable and extensible method for a wide
range of graph-based tasks.

2.4 Overall Framework
For better understanding, we briefly describe our proposed
method in this subsection

HGi = fW(Gi,XGi),

Ξh
Gi

= MΦ(Gi),

zGi
= gΨ(ΞGi

,HGi
),

(19)

where MΦ denotes the adaptive centrality learning process,
which contains the initial construction of CGi , Equations (16)
and (17). Φ is the set of all trainable parameters, similarly we
have W and Ψ for corresponding processes. fW is an encoder
chosen from linear layer, MLP, and GNNs. When equipped
with GNNs, the model can be viewed as ACRead, while it
becomes ACGL when choosing a linear layer or an MLP.

For a comprehensive understanding of computational ef-
ficiency, we analyze the time complexity of our proposed
method for N graphs. The GNN encoder, responsible for
transforming initial node features into node embeddings, ex-
hibits a time complexity of O(N(nd+ |E|)(Ld+ d0)). Here,
n denotes the maximum number of nodes, |E| represents the
maximum number of edges, d0 is the dimension of initial
node features, d indicates the maximum hidden dimension,
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and L represents the number of GNN layers. This complex-
ity encompasses both propagation and aggregation operations
across all layers. In the adaptive centrality mechanism, the
query, key, and value mapping layers utilize a hidden di-
mension dh (where dh ≪ d), resulting in a complexity of
O(Nnsdh). The attention computations, including score cal-
culations and matrix multiplications, contribute a complexity
of O(Nhn2dh) (where s ≪ dh and h represents the num-
ber of attention heads). Given that the batch size n remains
smaller than the hidden dimension d during training, the over-
all time complexity maintains at O(N(nd+ |E|)(Ld+ d0)).
Notably, the computational overhead introduced by our ap-
proach is minimal in the context of the complete framework.
For the detailed training times, please refer to Appendix B.5.

3 Expreiments
This section presents experiments to evaluate our proposed
methods. We first introduce experimental settings, followed
by performance analysis on graph classification and repre-
sentation learning tasks. We also conduct ablation studies
and provide visualizations. Detailed experimental settings are
provided in the Appendix B.

3.1 Experiments Setting
Datasets. We utilize 8 graph-level datasets, comprising 2
social network datasets (IMDB-B and IMDB-M) and 6 small-
molecule chemical datasets (MUTAG, DD, PROTEINS,
NCI1, Mutagenicity and OGBG-Molhiv). All datasets were
collected from the TU datasets [Morris et al., 2020] and open
graph benchmark repositories [Hu et al., 2020].
Backbone and Baseline. This paper employed six com-
monly used supervised GNN frameworks: basic GNNs (GCN
[Welling and Kipf, 2017], GraphSAGE [Hamilton et al.,
2017], SGC [Wu et al., 2019]), and three more expressive
GNNs (GAT [Veličković et al., 2018], GIN [Xu et al., 2018],
and GUNet [Gao and Ji, 2019]). Besides, two unsupervised
GNNs (InfoGraph [Sun et al., 2019] and GraphCL [You et al.,
2020]) are also used in this article. Additionally, we selected
11 readout functions as baselines, including simple readouts
(Sum, Mean, Max), as well as learnable readouts (Attention
[Li et al., 2016], Set2Set [Vinyals et al., 2016], Deep Sets
[Zaheer et al., 2017], SRead [Lee et al., 2021], Janossy MLP
[Buterez et al., 2022]), sequence-based readouts (Set Trans-
former, and Janossy GRU [Buterez et al., 2022]), and kernel-
based methods (KerRead [Yu et al., 2024]).
Parameter Settings. In this paper, we utilized 9 differ-
ent centrality measures as the initial centrality features, in-
cluding: degree centrality, betweenness centrality, closeness
centrality, PageRank, hubs, authorities, load centrality, har-
monic centrality, and bridge centrality. These centrality mea-
sures offer varied insights into node importance and influence
within the graph, forming the foundation for our adaptive cen-
trality module. Additional experimental settings and imple-
mentation details can be found in the Appendix.

3.2 Experimental Results Analysis
Graph Classification. We conducted a comprehensive
graph classification task using 11 readout functions across 6
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Figure 2: The graph classification performance on four datasets us-
ing different numbers of heads.

backbone models. The results for 7 smaller datasets are com-
pared in Tables 1 and Appendix B.4, while the results for
a larger dataset are shown in Table 2 to ensure the reliabil-
ity of our findings. Based on these tables, we observed the
following phenomena: (i) ACRead exhibited superior per-
formance, outperforming the previously strongest baseline,
KerRead, by an average of 5.1%, 4.2%, and 5.5% on GAT,
GUNet, and SGC, respectively. (ii) ACRead demonstrated
strong stability. While other readouts performed poorly on
GAT and SGC, ACRead maintained consistent performance
across all backbones. Specifically, the largest performance
difference for ACRead across the 6 backbones was only
3.5%, whereas other readouts showed performance gaps as
large as 8.1%. (iii) ACRead’s effectiveness persisted even
on weaker models. For instance, even on the less expressive
SGC model, ACRead outperformed most readouts applied to
stronger backbones like GUNet. These results highlight the
robustness and effectiveness of ACRead across various mod-
els and datasets.

Graph Representation Learning. The graph clustering re-
sults are shown in Table 3, which provides a comparison of 11
readout functions across two unsupervised GNN backbones,
InfoGraph and GraphCL, and we can find that: (i) ACRead
consistently outperforms other readouts. It achieves the high-
est performance in terms of both ACC and NMI across mul-
tiple datasets, particularly on MUTAG, DD, and NCI1. (ii)
ACRead demonstrates strong adaptability across datasets. It
maintains robust performance across molecular datasets and
social network datasets, confirming its versatility. (iii) While
other readouts show significant performance variation de-
pending on the dataset and backbone, ACRead maintains sta-
ble results across both InfoGraph and GraphCL. For example,
with the InfoGraph backbone, ACRead’s NMI ranges from
19.2 to 36.9 across datasets, which is comparatively lower
than the fluctuations observed in other methods.

Selection of gΨ and HGi
. To validate the effectiveness of

our proposed ACGL framework, we experimented with var-
ious configurations of HGi

and gΨ to assess their perfor-
mance in graph classification. As shown in Table 4, we
conducted experiments on four datasets using three different
HGi

and two different gΨ. The operators ⊙ and Linear re-
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Backbone Method MUTAG DD PROTEINS NCI1 Mutagenicity IMDB-B IMDB-M Avg.

GCN
[Welling
and Kipf,

2017]

Sum 86.7 (5.5) 68.8 (4.7) 73.9 (3.5) 75.8 (2.3) 78.0 (1.8) 69.9 (4.3) 48.1 (4.1) 71.6
Max 81.8 (9.7) 72.8 (4.3) 66.0 (5.7) 72.4 (3.9) 79.6 (1.7) 71.2 (4.1) 46.7 (4.3) 70.1
Mean 87.2 (7.3) 71.1 (3.0) 68.1 (4.1) 73.6 (1.8) 78.5 (2.2) 71.1 (3.3) 48.7 (3.8) 71.2
Set2set 84.0 (4.2) 74.2 (4.9) 72.5 (4.0) 80.9 (1.9 82.0 (0.9) 69.3 (4.3) 48.5 (3.8) 73.1
Attention 87.2 (4.4) 71.4 (4.0) 70.5 (3.5) 74.5 (2.6) 80.2 (2.3) 72.0 (4.6) 47.1 (5.5) 71.8
Deep Sets 84.6 (4.9) 73.6 (3.3) 75.5 (5.3) 76.2 (1.9) 78.2 (1.1) 72.0 (2.9) 48.5 (2.8) 72.7
SRead 86.1 (5.6) 68.8 (3.2) 74.1 (5.0) 75.8 (2.0) 78.4 (1.9) 70.4 (4.7) 47.6 (3.9) 71.6
Set Transformer 84.6 (6.0) 69.7 (3.9) 71.7 (5.8) 80.7 (2.6) 82.0 (1.7) 72.1 (3.0) 48.3 (1.7) 72.7
Janossy MLP 76.7 (11.4) 54.0 (3.4) 65.6 (4.0) 71.8 (2.1) 74.6 (1.7) 67.8 (3.3) 48.3 (3.1) 65.5
Janossy GRU 84.6 (7.7) 58.6 (0.4) 59.5 (0.2) 80.2 (1.6) 73.5 (10.8) 69.3 (3.6) 46.1 (6.6) 67.4
KerRead 88.3 (6.1) 77.8 (3.0) 75.9 (2.8) 82.6 (2.0) 82.6 (2.0) 72.5 (2.4) 49.0 (2.9) 75.5
ACRead 89.9 (6.9) 78.2 (4.6) 76.1 (5.3) 83.2 (2.3) 82.0 (2.6) 72.9 (5.2) 49.7 (4.8) 76.0

GAT
[Veličković

et al.,
2018]

Sum 76.0 (8.8) 73.6 (3.9) 73.6 (3.1) 70.9 (3.0) 75.0 (2.1) 50.0 (0.0) 34.7 (2.3) 64.8
Max 75.5 (8.4) 74.3 (4.1) 66.9 (5.0) 62.0 (3.5) 73.3 (2.9) 50.0 (0.0) 33.3 (0.0) 62.2
Mean 74.9 (9.7) 70.3 (4.2) 70.0 (5.4) 69.1 (2.2) 75.8 (2.6) 50.0 (0.0) 33.7 (1.4) 63.4
Set2set 76.0 (10.9) 75.2 (5.4) 72.6 (4.1) 73.5 (1.6) 78.7 (2.4) 50.0 (0.0) 33.3 (0.0) 65.6
Attention 78.7 (8.1) 67.7 (4.2) 71.4 (5.4) 69.5 (2.2) 76.9 (1.8) 50.0 (0.0) 33.3 (0.0) 63.9
Deep Sets 74.0 (12.0) 72.8 (4.6) 74.2 (4.9) 72.0 (1.7) 74.7 (1.3) 50.0 (0.0) 33.3 (0.0) 64.4
SRead 74.4 (7.8) 70.0 (4.5) 73.8 (4.0) 70.2 (3.1) 74.1 (1.8) 50.2 (0.6) 34.4 (2.3) 63.9
Set Transformer 74.0 (8.6) 66.8 (4.0) 73.4 (5.2) 72.9 (2.3) 79.6 (1.8) 50.0 (0.0) 33.3 (0.0) 64.3
Janossy MLP 74.4 (7.4) 52.3 (3.9) 65.0 (4.7) 68.4 (1.8) 71.4 (1.7) 50.0 (0.0) 33.3 (0.0) 59.3
Janossy GRU 75.5 (9.1) 69.9 (5.0) 59.5 (0.3) 75.5 (3.1) 65.3 (11.2) 50.0 (0.0) 33.3 (0.0) 62.7
KerRead 79.1 (8.4) 76.4 (4.5) 77.4 (3.5) 76.0 (1.2) 80.2 (1.4) 51.4 (1.5) 34.2 (1.8) 67.4
ACRead 88.2 (5.3) 76.9 (3.5) 75.2 (4.1) 81.2 (2.4) 80.5 (2.3) 64.9 (4.8) 40.3 (3.3) 72.5

GIN
[Xu et al.,

2018]

Sum 85.1 (5.9) 70.6 (3.7) 69.4 (5.0) 73.5 (1.4) 76.0 (1.5) 67.0 (3.4) 48.2 (3.7) 71.0
Max 84.4 (5.6) 72.1 (4.1) 66.9 (4.9) 72.6 (2.3) 76.6 (1.2) 67.7 (3.8) 48.1 (4.2) 71.2
Mean 82.0 (8.6) 73.0 (4.0) 69.4 (5.5) 74.4 (1.8) 76.6 (1.7) 66.7 (3.6) 48.3 (3.9) 70.5
Set2set 86.1 (5.1) 72.0 (4.7) 73.0 (3.2) 73.9 (2.6) 76.9 (1.4) 67.0 (3.4) 49.1 (4.4) 72.6
Attention 85.4 (4.2) 72.8 (3.9) 73.5 (4.4) 74.2 (1.9) 77.0 (2.2) 66.7 (3.8) 49.3 (4.0) 72.8
Deep Sets 87.1 (6.2) 73.9 (4.0) 74.1 (4.3) 75.8 (1.5) 76.9 (1.8) 69.8 (3.2) 49.5 (3.8) 73.5
SRead 84.4 (7.0) 67.4 (4.3) 73.1 (5.5) 73.8 (2.4) 75.6 (1.6) 66.3 (2.8) 48.5 (3.1) 71.0
Set Transformer 85.1 (6.9) 70.5 (3.7) 72.4 (3.8) 72.6 (2.4) 78.2 (1.9) 68.2 (3.0) 48.4 (4.6) 72.2
Janossy MLP 75.6 (9.9) 55.5 (3.5) 64.9 (3.6) 73.6 (2.1) 75.0 (1.8) 65.5 (3.2) 47.4 (5.1) 65.1
Janossy GRU 82.1 (8.8) 57.4 (2.1) 67.5 (4.8) 72.9 (3.5) 72.8 (3.8) 65.2 (3.5) 47.8 (6.7) 66.8
KerRead 87.5 (5.2) 77.9 (4.3) 76.6 (3.7) 78.2 (2.8) 79.0 (1.5) 70.3 (2.0) 50.0 (4.1) 74.3
ACRead 87.8 (5.4) 76.8 (4.3) 76.9 (4.6) 82.4 (3.2) 82.2 (2.3) 71.5 (3.5) 50.6 (3.4) 75.5

Table 1: Performance comparison of various backbone architectures and readout methods across different datasets. The metrics are reported
as average accuracy with standard deviation. The bold values denote the best performances per dataset and underlining highlights the second-
best performance. Additional backbone architectures are shown in Appendix B.4

spectively represent the Hadamard product using the learned
Υ ∈ RnGi

×d directly, or a linear transformation into a vec-
tor of size nGi

× 1 followed by weighted summation. We
observed the following phenomena: (i) More complex HGi

typically leads to better results. Using the initial features XGi

as the starting vector already yields performance comparable
to Table 1. However, it’s clear that applying an MLP trans-
formation on XGi yields even better results, and the best per-
formance is achieved when HGi is learned using GNNs for
weighted summation, as evidenced in Tables 1. (ii) The ⊙
operator outperforms the simple linear summation, as it not
only applies weights to each node but also to each dimension,
enabling the capture of more information.

The Number of Heads. Figure 2 illustrates the relationship
between the number of heads and the accuracy across four
datasets. The x-axis represents the number of heads, scaled
exponentially (from 20 to 24), while the y-axis shows the cor-
responding accuracy for each dataset. In general, accuracy
tends to increase with a higher number of heads across all
datasets. This trend suggests that increasing the number of
attention heads in the model contributes positively to classifi-
cation performance, reflecting improved representation learn-

(a) ID 35 (b) ID 82

Figure 3: Visualize the use of adaptive centrality on the MUTAG.

ing. However, the performance improvement diminishes as
the number of heads increases from 23 to 24. While the ini-
tial increase in heads (from 20 to 23) leads to notable accu-
racy gains across all datasets, the jump from 23 to 24 shows
a much smaller improvement. This trend suggests that after a
certain point, adding more heads yields diminishing returns,
possibly because the model reaches a saturation point where
further splitting attention no longer substantially enhances the
representation learning.

Visiualization. The normalized adaptive centrality scores,
scaled between (0, 1), are visualized with darker colors rep-
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Dataset Readout GCN GIN GraphSAGE GAT GUNet SGC Avg

OGBG-Molhiv

# Graphs: 41,127
# Features: 9
# Classes: 2

Avg. # Nodes: 25.5
Avg. # Edges: 27.5

Sum 60.9 (2.9) 71.3 (1.7) 58.3 (2.3) 62.3 (2.1) 59.0 (1.7) 59.7 (2.1) 61.9
Max 58.4 (2.3) 71.8 (2.0) 66.9 (3.6) 67.7 (2.0) 66.7 (4.4) 66.1 (3.2) 66.3
Mean 57.4 (1.8) 70.9 (2.4) 51.0 (2.2) 60.4 (2.3) 50.3 (1.0) 50.3 (0.7) 56.7
Set2set 66.8 (1.8) 70.9 (1.3) 59.4 (1.8) 65.7 (2.0) 56.7 (2.1) 58.0 (1.1) 62.9
Attention 62.0 (1.7) 70.4 (1.5) 51.1 (1.9) 58.5 (3.0) 51.0 (1.6) 51.8 (2.2) 57.5
Deep Sets 63.3 (2.0) 52.9 (1.0) 53.1 (0.8) 62.2 (2.2) 53.4 (1.4) 52.7 (1.0) 56.3
SRead 63.0 (1.4) 70.9 (2.5) 57.2 (1.2) 63.2 (2.9) 59.1 (3.4) 51.8 (2.2) 60.9
Set Transformer 72.2 (1.6) 71.2 (1.3) 61.3 (1.4) 69.4 (1.5) 61.8 (2.2) 69.2 (2.1) 67.5
Janossy MLP 52.4 (0.6) 50.0 (0.1) 50.0 (0.1) 51.5 (1.2) 50.0 (0.0) 50.0 (0.0) 50.7
Janossy GRU 71.1 (1.4) 67.9 (2.6) 68.1 (2.4) 69.1 (1.2) 67.1 (1.9) 68.1 (2.2) 68.6
KerRead 72.5 (1.6) 72.2 (1.5) 67.1 (1.2) 70.4 (0.7) 67.9 (2.6) 68.9 (2.1) 69.8
ACRead 72.9 (1.4) 73.1 (1.9) 69.2 (1.4) 70.6 (1.9) 69.5 (1.6) 69.4 (1.8) 70.6

Table 2: Graph classification AUC (mean and std%) on OGBG-Molhiv dataset with six GNN backbones, where bold denotes the best
performance and underlining indicates the second-best performance.

Backbone Readout MUTAG DD PROTEINS NCI1 Mutagenicity IMDB-B IMDB-M
ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI ACC NMI

InfoGraph
[Sun et al.,

2019]

Sum 71.3 14.1 59.7 2.6 60.4 2.6 56.6 1.3 56.4 1.7 62.3 4.4 40.8 2.2
Max 80.9 25.6 60.8 4.7 61.7 2.8 60.4 3.3 57.2 1.6 61.1 4.7 38.9 2.2
Mean 71.3 14.1 56.5 2.2 62.4 3.4 56.8 1.4 60.0 3.5 63.1 5.2 41.0 2.4
Set2set 74.5 17.5 63.2 6.0 62.5 3.2 59.0 2.4 62.7 4.3 62.9 5.1 40.5 3.2
Attention 80.3 24.4 55.2 1.0 59.9 2.4 57.3 1.6 63.3 5.1 62.9 5.0 40.3 1.8
Deep Sets 76.1 33.5 60.9 3.2 62.3 3.2 57.8 1.9 60.5 3.7 62.4 4.6 41.3 2.2
SRead 79.3 31.7 60.4 3.6 59.5 2.0 58.3 2.0 61.1 4.2 62.6 4.6 41.5 2.5
Set Transformer 73.9 16.9 70.3 13.0 59.8 2.6 60.9 3.6 65.2 6.4 63.6 5.4 41.5 1.9
Janossy MLP 62.8 11.5 55.4 1.3 58.8 0.4 59.4 3.0 62.4 7.3 62.2 4.3 41.9 2.1
Janossy GRU 70.7 26.0 58.6 0.0 59.4 0.0 58.1 0.0 62.3 0.1 50.1 0.0 42.3 3.5
KerRead 83.5 36.4 74.8 20.5 63.4 6.3 61.8 3.8 65.7 7.0 63.5 5.3 42.8 2.6
ACRead 84.8 36.9 75.1 21.2 65.1 6.9 63.2 4.1 66.2 7.8 64.2 6.1 43.1 3.2

GraphCL
[You et al.,

2020]

Sum 73.9 16.9 66.0 8.3 64.8 4.7 57.2 1.6 61.5 3.7 57.6 2.4 42.5 3.0
Max 79.3 21.8 59.1 3.1 64.4 4.5 58.7 2.2 61.1 3.7 62.6 5.0 39.9 3.4
Mean 73.9 16.9 66.3 8.7 64.4 4.5 55.2 0.8 61.6 3.4 61.6 4.0 42.9 3.3
Set2set 70.7 17.5 60.7 2.5 63.4 3.2 58.3 2.6 63.6 6.6 64.8 6.4 43.8 3.8
Attention 76.1 24.3 55.8 0.5 62.0 2.1 57.6 2.3 61.1 3.1 60.9 4.5 39.9 3.5
Deep Sets 75.0 18.2 58.7 4.1 61.2 2.5 57.8 2.1 64.5 6.2 59.6 3.3 41.8 2.8
SRead 76.6 24.9 68.1 8.9 65.1 5.0 57.1 2.1 62.2 5.8 63.9 8.6 43.9 4.0
Set Transformer 79.8 32.2 53.7 0.3 58.3 1.7 55.7 1.0 61.4 4.0 59.6 4.2 41.9 2.5
Janossy MLP 72.3 9.8 52.0 0.2 62.1 2.3 54.3 0.7 64.1 6.0 60.7 3.4 42.3 2.9
Janossy GRU 81.4 33.8 55.4 0.6 65.1 4.7 56.2 1.2 56.6 1.3 57.7 2.3 44.7 3.0
KerRead 83.5 34.1 75.4 18.7 70.9 11.2 58.8 2.8 64.2 6.1 64.4 6.5 45.0 3.6
ACRead 84.1 35.8 76.2 19.2 71.0 11.3 61.3 4.1 66.2 7.9 65.1 6.9 46.0 4.1

Table 3: Graph clustering accuracy (ACC) and normalized mutual information (NMI) with two unsupervised GNN backbones (InfoGraph,
GraphCL). Bold indicates the best performance, and underlining highlights the second-best performance.

HGi
gΨ MUTAG DD PROTEINS IMDB-M

XGi
⊙ 84.1 (7.2) 75.2 (5.1) 74.1 (4.3) 46.3 (5.2)

Linear(XGi
) ⊙ 86.2 (8.5) 76.2 (5.3) 76.4 (4.5) 48.3 (5.1)

MLP (XGi
) ⊙ 87.7 (8.1) 78.4 (5.8) 76.2 (4.9) 49.3 (4.9)

XGi
Linear 85.1 (7.3) 74.1 (6.2) 75.3 (5.1) 45.9 (3.6)

Linear(XGi
) Linear 86.1 (7.2) 75.3 (5.5) 76.1 (4.5) 47.1 (4.9)

MLP (XGi
) Linear 87.5 (6.1) 77.5 (5.7) 75.9 (4.6) 48.1 (4.2)

Table 4: The graph classification performance on four datasets using
different gΨ and HGi .

resenting nodes of greater influence on the graph embedding.
We randomly selected two samples from the MUTAG dataset,
as shown in Figure 3, where the goal is to predict muta-
genicity in Salmonella typhimurium. Both samples activate
the mutagenic gene. Adaptive centrality identified functional
groups like F and Cl as important, while carbon atoms in the
benzene ring were less significant. This highlights adaptive
centrality’s ability to capture node importance, offering in-
sights for future graph-level tasks.

Supplementary Experiment Due to space constraints, ad-
ditional crucial experiments are included in the appendices,

including graph classification performance with GUNet,
GraphSAGE, and SGC backbones (Appendix B.4), as well
as training time analysis (Appendix B.5).

4 Conclusion
In this paper, we revisited the essence of message passing
in graph-level tasks through the perspective of centrality, un-
covering that it primarily operates as a weighted summation
with degree-based centrality, which represents a single-view
of node centrality. Building on this insight, we introduced
a novel graph-level learning method with a more generaliz-
able form of centrality–adaptive centrality, which integrates
multiple views of node centrality and is utilized to build
a novel readout function, called Adaptive Centrality-based
Readout (ACRead). ACRead was applied to six supervised
and two unsupervised GNN backbones, consistently outper-
forming existing readout methods across eight graph datasets.
Furthermore, the approach could also perform as an indi-
vidual graph-level learning framework without GNNs, called
Adaptive Centrality-based Graph Learning (ACGL), which
still achieved competitive performance by effectively com-
bining different views of node centrality.
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