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Abstract
Source localization, the inverse problem of infor-
mation diffusion, shows fundamental importance
for understanding social dynamics. While achiev-
ing notable progress, existing solutions are typi-
cally exposed to the risk of error accumulation, and
require a large number of observations for effec-
tive inference. However, it is often impractical to
obtain quantities of observations in real scenarios,
highlighting the need for a transferable model with
broad applicability. Recently, Riemannian geome-
try has demonstrated its effectiveness in informa-
tion diffusion and offers guidance in knowledge
transfer, but has yet to be explored in source lo-
calization. In light of the issues above, we pro-
pose to study transferable source localization from
a fresh geometric perspective, and present a novel
approach (Trace) on the Riemannian manifold.
Concretely, we establish a structural Schrödinger
bridge to directly model the map between source
and final distributions, where a functional curva-
ture, encapsulating the graph structure, is formu-
lated to govern the Schrödinger bridge and facili-
tate domain adaptation. Furthermore, we design a
simple yet effective learning algorithm for Rieman-
nian Schrödinger bridges (geodesic bridge match-
ing) in which we prove the optimal projection holds
for Riemannian measures so that the expensive iter-
ative procedure is avoided. Extensive experiments
demonstrate the effectiveness and transferability of
Trace on both synthetic and real datasets.

1 Introduction
Information diffusion is a classic problem, predicting the in-
fected nodes in the future according to the propagation pat-
tern. Source localization, as the inverse problem of informa-
tion diffusion, seeks to identify the source nodes responsible
for the final diffusion observations [Yan et al., 2023]. It not

∗Corresponding Author: Li Sun.

only facilitates a deeper understanding of social dynamics but
also enables the vital applications such as information prop-
agation intervention and rumor source detection. In recent
years, researchers have visited the advanced models includ-
ing invertible graph neural network and variational autoen-
coder [Wang et al., 2022; Ling et al., 2022]. While achieving
notable progress, source localization still presents several im-
portant issues as follows.

Error Accumulation. Existing methods typically follow a
step-by-step backward procedure [Yan et al., 2023; Huang et
al., 2023] or model the round trip with forward information
diffusion [Ling et al., 2022; Wang et al., 2022]. They are
vulnerable to error accumulation especially in the absence of
intermediate supervision. Instead, it is preferable to directly
model the source and final distributions. Recent generative
models achieve notable success in modeling data distributions
[Song et al., 2021; Lipman et al., 2023], but they primar-
ily focus on generating distribution from a Gaussian. So far,
the transformation between arbitrary distributions, account-
ing for graph structure, remains under-investigated.

Transferability. Recent efforts leverage deep learning on
graphs, which usually requires a large quantity of observa-
tions for effective inference [Ling et al., 2024; Dong et al.,
2019]. However, acquiring observations is often laborious or
expensive, limiting their widespread use in real scenarios. It
calls for a transferable model that leverages the knowledge
learned from previous observations to enhance the localiza-
tion in new graphs. We emphasize that, given the underlying
social dynamics, graph structures significantly influence in-
formation propagation, making domain adaptation essential.

Geometry. Riemannian geometry not only demonstrates
superior expressiveness compared to its Euclidean counter-
parts [Sun et al., 2022b], but also introduces the concept
of curvature to describe graph structure [Sun et al., 2023b],
shedding light on quantifying the difference among social
networks and enabling domain adaptation. Also, we note that
recent efforts report the effectiveness of Riemannian geome-
try in information diffusion [Sun et al., 2024a]. However, its
application to the inverse problem of source localization has
not yet been explored. Nevertheless, calculating Riemannian
divergence or heat kernel is computationally expensive [Sun
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et al., 2024b], and training models on the manifold remains
challenging.

In light of the aforementioned issues, we are motivated to
propose the problem of Transferable Source Localization, en-
abling the knowledge transfer to new graphs, and to approach
this problem from a fresh geometric perspective.

In this paper, we present a novel structural Riemannian
bridge matching model (termed as Trace) for transferable
source localization. The key innovation is that we leverage
the unified construction of Riemannian manifold to explore
the transferability, and formulate a structural Schrödinger
Bridge on the manifold along with a new learning algorithm.
Specifically, to address the first issue of error accumulation,
we make the first attempt, to the best of our knowledge, to
introduce the Schrödinger Bridge [Bortoli et al., 2021] to
source localization. It directly models the map between the
source and final distributions via a Stochastic Differential
Equation (SDE), and we establish a structural Schrödinger
bridge with a Wiener process on the manifold. In particu-
lar, the proposed bridge is governed by the functional curva-
ture, which is designed to encapsulate the structural informa-
tion and is learnable with given structure, addressing the sec-
ond issue of transferability. Note that, learning Schrödinger
bridges on the manifold is challenging (the third issue). To
fill this gap, we propose a simple yet effective algorithm,
geodesic bridge matching. Concretely, we discover the op-
timal projection for Riemannian measures with theoretical
guarantees, so that the Schrödinger bridge is learned through
geodesic bridge matching, avoiding the calculation of Rie-
mannian heat kernel. Finally, Trace integrates the advan-
tages of Schrödinger bridge and Riemannian geometry to di-
rectly infer the sources. We emphasize that the Riemannian
manifold endows our model with the transferability. With the
underlying dynamics learned from previous observations, we
fine-tune the functional curvature on the new graph to conduct
knowledge transfer, taking the graph structure into account.
Contribution Highlights. Main contributions are four-fold:

• Problem. We consider the geometric effect on source
localization and for the first time pose the transferable
source localization problem, emphasizing its transfer-
ability for practical usage, to the best of our knowledge.

• Riemannian Model. We propose a novel approach,
Trace, in which the structural Riemannian Schrödinger
bridge is established for the initial-terminal distribu-
tion map, equipped with functional curvature to enhance
knowledge transfer through domain adaptation.

• Learning Algorithm. We design a new learning al-
gorithm for Riemannian Schrödinger bridges, called
geodesic bridge matching, in which we prove the opti-
mal projection holds for Riemannian measures, thereby
avoiding the need for the expensive iterative procedure.

• Extensive Experiments. We evaluate the superiority of
Trace on both synthetic and real datasets, analyze each
proposed component with ablation study, and examine
its transferability among different datasets.

2 Preliminaries and Notations
Manifold and Curvature. In Riemannian geometry, a
graph structure is related to certain Riemannian manifold
(M, g), a smooth manifoldM attached to a Riemannian met-
ric g. Each point on the manifold x ∈ M is associated with
a tangent space TxM where the metric g is defined. Given
two points and g, geodesic is the curve that connects them
with minimal integral length. The exponential and logarith-
mic map are inherited from the Lie algebra for the projection
between tangent space and the manifold. Riemannian mea-
sure is defined over the infinitesimal on the manifold. The
notion of curvature κ describes how a smooth manifold de-
viates from being flat and, accordingly, it offers a geometric
perspective to quantify graph structures. There exist three
types of constant curvature spaces: negative curvature hyper-
bolic space, positive curvature hyperbolic space, and the flat
Euclidean space, a special case of Riemannian geometry.

Source Localization and Generative Models. In this pa-
per, we recast source localization as a generative task and the
idea is that we leverage the distribution of final observations
to generate the initial source distribution, while capturing the
social dynamics in the generative model. Recently, score-
based (diffusion-based) models formulate Stochastic Differ-
ential Equations (SDEs) to generate data distribution from a
simple one such as Gaussian [Song et al., 2021], while flow-
based models use Ordinary Differential Equations (ODEs) to
perform such probability pushforward [Lipman et al., 2023].
Though both models achieve notable success, we highlight
that they fall short in transforming arbitrary distributions,
i.e., source and final distributions, or require auxiliary time
information to complete source localization [Huang et al.,
2023]. In other words, a promising generative localizer re-
mains largely under-explored.

Problem Statement of Transferable Source Localization.
We consider a graph G(V , E) defined over node set V and
edge set E ⊆ V × V . The adjacency matrix is denoted as A
and graph Laplacian is given asL = I−D−

1
2AD−

1
2 , where

D is the diagonal degree matrix. For source localization, only
the final snapshot is accessible and the status of each node is
described in y ∈ {0, 1}|V|, where yi = 1 indicates that node
i is infected, otherwise, yi = 0. The sources are collected
in s ∈ {0, 1}|V|, and si = 1 iff node i is one of the sources
responsible for y. Given the graph and the final snapshot, the
problem of source localization aims to seek F(G,y) that is
able to infer the sources s. Different from previous works, in
Transferable Source Localization, we are dedicated to design
F that offers the transferability among different graphs.

3 Methodology: Trace
We present a novel structural Riemannian bridge matching
model (termed as Trace) for transferable source localiza-
tion. The key novelty lies in that we formulate the Structural
Riemannian Schrödinger Bridge along with a New Learn-
ing Algorithm, while exploring the advantage of Rieman-
nian manifold for Transferability. The overall architecture is
sketched in Fig. 1, and we start with the Schrödinger bridge
in the heart of our model.
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𝒑𝟏∗

𝒑𝟏

Curvature-preserving

Uninfected node
Infected node

Source node

𝑑𝑥!=𝑔 𝑥! , 𝑡 𝑑𝑡 + 𝜖𝑑𝑊!
"

𝑑𝑥!= 𝜖𝑑𝑊!
"

Minimize 
KL divergence 

Wiener process

𝒑𝟎

Schrödinger Bridge

Time reversal of Wiener process

Figure 1: Overall architecture of structural Riemannian Schrödinger bridge and its training algorithm with the optimal projection.

3.1 Structural Riemannian Schrödinger Bridge
To the best of our knowledge, we for the first time introduce
the Schrödinger bridge to the problem of source localization.
The advantage is that we can directly model the distribution
map between source and final states, thereby mitigating er-
ror accumulation. In a nutshell, we establish the Riemannian
Schrödinger bridge that is equipped with a functional curva-
ture depicting the structural information of the graph.
Schrödinger Bridge. It connects two arbitrary distributions
with a Stochastic Differential Equation (SDE). To be specific,
we consider a measure space P(C[0, 1],Rd), which collects
the continuous and finite density pt, where t ∈ [0, 1].1 The
density at point x ∈ Rd of time t is denoted as pt(x), and d
denotes the dimensionality. For a process T in measure space
P , the joint distribution at t = 0, 1 is πT ∈ P(Rd × Rd),
and T|x0,x1

denotes the distribution conditioned on T ’s value
x0,x1 at t = 0, 1, respectively. We select a reference process
W ∈ P(C[0, 1],Rd) which is typically set as the Wiener pro-
cess of Brownian motion. In particular, it satisfies the SDE
of dxt =

√
εdWt, where ε > 0 is the volatility. Given two

arbitrary distributions p0, p1 ∈ P , the (dynamic) Schrödinger
bridge problem is formulated as the optimization,

T ? = arg min{KL(T‖W ) : T0 = p0, T1 = p1}. (1)
The optimal process T ? is referred to as the Schrödinger
bridge [Schrödinger, 1932; Föllmer, 1988]. In other words,
Schrödinger bridge is the process that admits the distribution
p0, p1 at t = 0, 1 and is closest to the reference process in
term of Kullback-Leibler divergence.
Structure-aware Bridge in Riemannian manifold. Here,
we formulate the optimal process T ? on the manifold with
the Riemannian Wiener process. We consider a smooth man-
ifold Mκ,d whose curvature encapsulates the structural in-
formation of graph G. Let PM(C[0, 1],Mκ,d) denote the

1In this paper, we utilize t = 0 to refer to the initial of the pro-
cess, while t = 1 stands for its terminal.

Riemannian measure space, and its Wiener process is written
as dxt =

√
εdWMt . The Riemannian Schrödinger bridge is

to find the minimizer of Eq. 2 in PM pinned down at p0 and
p1. Different from the Euclidean version, a process on the
manifold is described as dxt = f(xt, t)dt+

√
εdWMt ,xt ∈

Mκ,d, and its time reversal is derived as

dyt =
(
−f(yt, t) + ε∇yt log p1−t(yt)

)
dt+

√
εdWMt , (2)

where (yt)t>0 = (x1−t)t∈[0,1] is the time reversal of xt.
∀f over Mκ,d, ∇xtf ∈ TxtMκ,d is Riemannian gradient.
g(yt, t) = −f(yt, t) + ε∇yt log p1−t(yt) is known as drift.

In fact, the optimal T ? is unique and can be expressed as
T ? =

∫
Rd×RdW|x0,x1

dπ?(x0,x1), where the joint marginal
distribution π? is the solution of the Entropic Optimal Trans-
port (EOT) problem [Léonard, 2014] as follows,

min
π∈Π(p0,p1)

∫
M×M

‖x0−x1‖2g
2 π(x0,x1)dx0dx1 − εH(π). (3)

Π(p0, p1) is the set of transport plan over the joint P(Rd ×
Rd) whose marginals are p0 and p1, and π? is named as EOT
plan. dg is the metric on the manifold, and H(π) is the
entropy over π. However, the EOT plan π? is unavailable.
Hence, we are interested in learning the optimal drift g? of
Riemannian Schrödinger bridge T ?.
Functional Curvature. Distinguishing from the existing
Schrödinger bridges [Jo and Hwang, 2024; Thornton et al.,
2022], the proposed Riemannian Schrödinger bridge T ? is
governed by the functional curvature κθ , a key ingredient in
our design. As the curvature summarizes the graph structure,
we propose to parametrize κθ with Laplacian L. Denote the
tuple of L’s dominant eigenvalues as l. The functional curva-
ture is given as κθ = l>θ. In Trace, we learn its parameter
in the self-supervised fashion, and the supervision is given by
the Parallelogram Law in Riemannian geometry [Gu et al.,
2019]. Concretely, given a geodesic triangle abc on the mani-
fold, we have γabc = dg(a,m)2+

dg(b,c)2

4 − dg(a,b)2+dg(a,c)2

2 ,
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where dg is the distance metric, and m is the midpoint of bc.
Accordingly, the objective of curvature learning is derived as

Lmanifold = ‖κθ − Em∈V [γma|bc]‖2, γma|bc = γabc
dg(a,m) , (4)

where a, b, c and m in the manifold, and their encodings are
introduced in Sec. 3.2.

3.2 Graph Encoding with Functional Curvature
Having the bridge between the initial and terminal distribu-
tions at hand, we specify its two ends in this part. As in Fig.
1, the initial distribution is defined as the final observation
while the sources are resided in the terminal. This allows us
to utilize the final observation to generate the sources in line
with the setting of source localization. We first elaborate on
the model space of Riemannian geometry.
Unified Construction of Riemannian Manifold. Rieman-
nian manifold offers an elegant unified construction for the
constant curvature space of different curvatures. We intro-
duce a model space Mκ,d to unify hyperbolic and hyper-
spherical spaces. Specifically, a d−dimensional manifold
Mκ,d with curvature κ is embedded in Rd+1 space,

Mκ,d = {x = [xt x
>
s ]>|〈x,x〉κ = 1/κ, xt > 0, κ 6= 0}, (5)

where xt ∈ R and xs ∈ Rd are the time and space dimension,
respectively. The curvature-aware inner product is given as,

〈x,y〉κ = xRy, R = diag(sgn(κ), 1, · · · , 1), (6)

where sgn is the sign function, and the diagonal R gives the
Riemannian metric in Rd+1 space. Note that,Mκ,d recovers
the Lorentz model of hyperbolic space with κ < 0, and shifts
to Spherical model of hyperspherical space when κ > 0.
Curvature-preserving Encoding. The samples are given
by the proposed curvature-preserving encoding, where we
adopt the operations without coupling logarithmic and expo-
nential maps as in [Sun et al., 2025a], and the advantage is
investigated in Ablation Study. Specifically, dimension trans-
formation is done by matrix-left-multiplication written as,

Transformκ(W ,x) =

[√
−sgn(κ)‖Wx‖2 + 1/|κ|

Wx

]
, (7)

parameterized by W . ‖·‖ denotes the L2 norm. We formu-
late the graph convolution as the geometric midpoint on the
manifold. Given a set of points {(xi, wi)}i∈Ω each attached
a weight wi, the graph convolution over Ω takes the form of

Convκ({(xi, wi)}i∈Ω) = 1√
|κ|

∑|Ω|
i=1

wi
|‖
∑|Ω|
j=1 wjxj‖κ|

xi, (8)

where |‖a‖κ| =
√
−〈a,a〉κ is the modulus of the imaginary.

Note that, both operations preserve the curvature.

Theorem 1 (Curvature-preserving). ∀x ∈ Mκ,d1 and any
w ∈ R, W ∈ Rd2×d1 , we have Convκ({(xi, wi)}i∈Ω) ∈
Mκ,d1 and Transformκ(W ,x) ∈ Mκ,d2 hold for either
positive or negative value of κ.

We perform dimension transformation and graph convolution
to obtain the node encodings. With the curvature-preserving
encoding, the structural information is delivered to the mani-
fold where the proposed Schrödinger bridge is established.

3.3 Learning Schrödinger Bridge on Manifolds
Challenges. Popular learning algorithms, such as Iterative
Proportional Fitting (IPF) [Bortoli et al., 2021] and Iterative
Markovian Fitting (IMF) [Shi et al., 2023], adopt an itera-
tive procedure, which tends to result in the optimization error
in each iteration [Gushchin et al., 2024]. In addition, calcu-
lating the divergence or heat kernel on the manifold is rather
expensive, and the estimators are typically applied [Sun et al.,
2024b]. Therefore, learning Riemannian Schrödinger bridges
largely remains open.

Theoretical Results on Riemannian Optimal Projection.
To fill this gap, we design a new learning algorithm built upon
Riemannian optimal projection. The core contribution is that
we discover the optimal projection for Riemannian measures.

We start with IMF algorithm in Euclidean space, a widely
used successor of the IPF. Concretely, IMF first introduces
the reciprocal projection projR(T ) that gives the reciprocal
process Tπ which is equal to a mixture of Wiener processes
with given coupling π. Second, the Markovian projection
projM (T ) is defined by the SDE in [Shi et al., 2023]. Given
p1 and p0, IMF alternates between the projections iteratively,
and the sequence of {T 2n+1 = projM (T 2n), T 2n+2 =
projR(T 2n+1)} is shown to converge to T ?. Note that, the
Markovian projection is problematic, which requires to solve
the optimization over P(Rd × Rd) in every odd iteration.

Instead of the Markovian projection, we propose a novel
Riemannian optimal projection, generalizing the Euclidean
one [Gushchin et al., 2024], and prove its optimality for
Riemannian measures. To be specific, we first introduce
the concept of Riemannian Schrödinger family S , collect-
ing the stochastic process of Schrödinger bridge S pinned
down at ps0 and ps1 in the Riemannian measure space
PM(C[0, 1],Mκ,d). Second, for any given π ∈ Π(p0, p1)
and process T , the Riemannian reciprocal process is writ-
ten as Tπ = projRM(T ) =

∫
M×MWM|x0,x1

dπ(x0,x1) with
Riemannian Wiener process. Third, the proposed optimal
projection is given as the solution to the following equation,

projSM(Tπ) = argS∈S minKL(Tπ||S). (9)

The intuition behind this is to find the Schrödinger bridge S
which is closest to the Riemannian reciprocal process Tπ in
terms of KL divergence.

Interestingly, we discover that the result of Riemannian op-
timal projection is the Riemannian Schrödinger bridge con-
necting p0, p1 ∈ PM. We show the following theorem holds
for Riemannian measures. (The proof is in Appendix B.)

Theorem 2 (Optimality). Given the initial and terminal dis-
tributions p0, p1 ∈ PM, a joint distribution π ∈ Π(p0, p1),
Riemannian reciprocal process Tπ is given accordingly. Rie-
mannian optimal projection of Tπ leads to Riemannian
Schrödinger Bridge T ∗ between the distributions p0 and p1,
projSM(Tπ) = argS∈S minKL(Tπ||S) = T ∗.

In light of the optimization in Eq. 9, we construct the Rie-
mannian Schrödinger family S with tractable KL divergence.
With the adjusted potential v, we consider the joint distribu-
tion πv(x0,x1) = p0(x0)πv(x1|x0), where πv(x1|x0) =
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Algorithm 1 Geodesic Random Walk
Input: length N , initial value x, curvature κ, drift f , volatility σ.
Output: samples {xγi }

N
i=0

1: Set step size γ ← T/N .
2: for i = 0 to N − 1 do
3: z̄i+1 ∼ N (0, Id), zi+1 ← Transportκxγi

(z̄i+1);
4: wi+1 ← γf(iγ,xγi ) +

√
γσ(iγ,xγi )zi+1;

5: xγi+1 ← Expκxγi
(wi+1);

6: end for

exp(〈x0,x1〉κ/ε)v(x1)∫
M exp(〈x0,x1〉κ/ε)v(x1)dx1

. Then, the process S|x0,x1
=

WM|x0,x1
is the Schrödinger bridge between p0 and pv(x1) =∫

M πv(x0,x1)dx0 on the manifold. The corresponding KL
divergence exists closed-form expression regarding Rieman-
nian reciprocal process Tπ , detailed in Appendix B. Note that,
the advantage is that we no longer need the iterative proce-
dure but conduct only one step of the proposed projection.

Algorithm. Consequently, it enables a new objective func-
tion for learning Riemannian Schrödinger bridges. Rieman-
nian Wiener process (also known as Brownian motion) can
be simulated by geodesic random walk [Bortoli et al., 2022],
whose procedure is described in Algo. 1. Transport, Exp
and Log denote the parallel transport, exponential map and
logarithmic map, respectively. With the time reversal process
described in the SDE, dxt =

Logxt
(x1)

1−t dt +
√
εdWMt , we

derive the objective function as follows.

Theorem 3 (Objective Function). Given p0, p1 ∈ PM and
Riemannian Wiener process, we have T ? described in dxt =
gθ(xt, t)dt+

√
εdWMt is the Riemannian Schrödinger bridge

connecting p0 and p1, if the drift gθ is the minimzer of the
following objective,

Lbridge = E(x0,x1)∼π,t∼U[0,1]

xt∼W|x0,x1

[∥∥∥gθ(xt, t)−
Logκxt (x1)

1−t

∥∥∥2

κ

]
, (10)

where U[0,1] denotes the uniform distribution over [0, 1].

The strength lies in that Eq. 10 offers a simple yet effective
mean squared error objective, avoiding the expensive Rie-
mannian divergence or heat kernel. Next, we develop the
geometric understanding with the notion of geodesic.

Geodesic. Given x0,x1 in the geodesically complete man-
ifold (Mκ, g), the geodesics xt = Expκx0

(tLogκx0
(x1)) is

the shortest curve connecting them under g.

The intuition behind is that the initial and terminal distribu-
tions approach each other along the shortest path. The re-
maining issue is on the form of gθ . We parameterize the ad-
justed potential v with a mixture of wrapped Gaussian on the
manifoldNM(x|µ,Σ). Accordingly, the drift takes the form
of gθ(xt, t) = ε∇xt log (NM(xt|0, ε(1− t)Id)v(xt, t)),
where v(xt, t) is given by the aforementioned mixture. Note
that, g is easy to compute with the closed form and diago-
nal covariance. In summary, the overall training procedure is
given in Algo. 2. Finally, Trace integrates the advantages

Algorithm 2 Training Trace.
Input: Graph G, The set of the sources and final infection pairs.
Output: Learned parameters of the transferable localizer.

1: Perform normalization in light of transferability;
2: repeat
3: Sample triangles over G for the functional curvature;
4: Sample batch {x0,x1} ∼ π and {tn} ∼ U[0,1];
5: Sample batch {xt} ∼W[x0,x1] by Algo. 1;
6: Compute the overall lossJ = αLmanifold+(1−α)Lbridge;
7: Update parameters via the gradient descent method;
8: until converged

of Schrödinger bridge and Riemannian geometry to directly
infer the sources without any iterative procedure.
Connection with Recent Advances. In Riemannian geom-
etry, [Thornton et al., 2022] and [Jo and Hwang, 2024] follow
the iterative procedure in spirit of IPF and IMF, respectively,
while we conduct the one step projection. [Chen and Lipman,
2024] discusses the pushforward from a Gaussian but we are
interested in a map of arbitrary distributions. In Euclidean
space, [Liu et al., 2023] conducts such map without random-
ness, while we consider the randomness in the social dynamic
process. LightSB-M [Gushchin et al., 2024] can be regarded
as a special case of ours, given that Logxt(x1) converges to
x1 − xt in the limit at zero curvature.
On Transferability. It is the Riemannian manifold that en-
dows Trace with transferability, as it offers a unified con-
struction for different curvatures, corresponding to diverse
graph structures. In the transfer setting, we leverage the pre-
trained parameters of Schrödinger bridge to capture underly-
ing social dynamics. Its functional curvature is fine-tuned on
the new graph, so that we adapt the knowledge according to
the structural information encapsulated in the curvature.

4 Experiment
4.1 Experimental Settings
Datasets and Baselines. The experiments are conducted on
both synthetic and real datasets. The synthetic datasets con-
sist of Jazz, Network Science, Cora-ML, and Facebook [Ling
et al., 2022]. We follow [Ling et al., 2022] for diffusion
simulation, and the ratio of the sources is set as 10%. The
four real datasets include Android, Christianity, Douban, and
Twitter of real information cascades [Huang et al., 2023]. We
follow [Huang et al., 2023] to define the sources and final
observations, and the time ratio of the sources is 5%. The 7
baselines are Netsleuth [Prakash et al., 2012], LPSI [Wang et
al., 2017], DDMSL [Yan et al., 2023], TGASI [Hou et al.,
2023], SLVAE [Ling et al., 2022], IVGD [Wang et al., 2022]
and GCNSI [Dong et al., 2019]. Transferability in source lo-
calization is under-explored, and our Trace is proposed to
bridge this gap. (Datasets and baselines are detailed in Ap-
pendix D.)
Evaluation Metrics. We evaluate the comparison methods
with three popular metrics, i.e., AUC, PR and F1 score [Ling
et al., 2022; Hou et al., 2023]. Each case undergoes 10 in-
dependent runs for statistical robustness. We report the mean
value with the standard deviation.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Jazz Network Science Cora-ML Facebook

Method AUC PR F1 AUC PR F1 AUC PR F1 AUC PR F1

SLVAE 0.9447 0.8040 0.7701 0.9711 0.6541 0.6099 0.8686 0.6695 0.6112 0.5010 0.2000 0.3300
IVGD 0.9375 0.8094 0.7877 0.9606 0.7540 0.7583 0.8280 0.9381 0.8233 OOM OOM OOM

DDMSL 0.9101 0.8028 0.7506 0.9227 0.7353 0.6198 0.8980 0.8670 0.8225 0.8531 0.8192 0.7931
TGASI 0.9212 0.7821 0.7156 0.9448 0.6397 0.6288 0.8962 0.7631 0.7497 0.9312 0.8223 0.7367
GCNSI 0.6834 0.5622 0.3701 0.5433 0.1613 0.1047 0.5321 0.1725 0.1158 0.6671 0.6654 0.6021
LPSI 0.5553 0.2500 0.2819 0.5614 0.1362 0.2072 0.4986 0.1072 0.1752 0.2710 0.0561 0.1050

Netsleuth 0.5043 0.4351 0.4001 0.5432 0.2642 0.1625 0.5521 0.1627 0.1635 0.5841 0.3753 0.1642
Trace 0.9454 0.8131 0.8012 0.9612 0.7846 0.7656 0.9053 0.8789 0.8256 0.9731 0.8742 0.8550

Table 1: Performance on synthetic datasets of Jazz, Network Science, Cora-ML and Facebook. Best results are in boldfaced.

Android Christianity Douban Twitter

Method AUC PR F1 AUC PR F1 AUC PR F1 AUC PR F1

SLVAE 0.5532 0.4235 0.4563 0.6024 0.4375 0.4162 0.5323 0.4863 0.4632 0.5235 0.4582 0.4132
IVGD 0.5462 0.4542 0.4375 0.5143 0.4213 0.4798 0.4532 0.4163 0.3630 0.4736 0.4113 0.3812

DDMSL 0.5485 0.4790 0.4438 0.5194 0.4727 0.4389 0.4483 0.4232 0.3891 0.4823 0.4076 0.3893
TGASI 0.5033 0.3512 0.2976 0.4723 0.3433 0.2512 0.5102 0.4621 0.3622 0.3813 0.2672 0.2048
GCNSI 0.4458 0.0222 0.0417 0.4193 0.0265 0.0411 0.4503 0.0201 0.0363 0.4771 0.0130 0.0270
LPSI 0.4382 0.0181 0.0387 0.4192 0.0305 0.0455 0.4468 0.0128 0.0309 0.4790 0.0189 0.0250

Netsleuth 0.4531 0.0392 0.0367 0.4241 0.0182 0.0351 0.4444 0.0106 0.0101 0.4640 0.0423 0.0204
Trace 0.5732 0.5011 0.4651 0.6057 0.5012 0.4851 0.5815 0.4997 0.4864 0.5622 0.4712 0.4432

Table 2: Performance on real-world datasets of Android, Christianity, Douban and Twitter. Best results are in boldfaced.

Model Configuration and Reproducibility. In light of
transferability, Trace performs a graph normalization pro-
cess. Concretely, the input features are given by the eigen-
vectors of K largest eigenvalues in graph Laplacian, so that
the feature dimension of different datasets is normalized to
the predefined K. Correspondingly, the functional curvature
κθ is fed by the tuple of K largest eigenvalues. Then, we use
the exponential map with κθ to obtain the initial encoding on
the manifold.

4.2 Empirical Results & Discussion
Main Results on Real and Synthetic Datasets. The per-
formance on synthetic and real datasets are collected in Table
1 and Table 2, respectively. On synthetic datasets, we gener-
ally obtain the best performance except two cases of runner
up. On the real datasets, infection observations are fed into
the localization methods and the infection simulation process
is disabled. IVGD runs into Out-Of-Memory (OOM) error
on Facebook dataset. Comparing to the synthetic datasets,
all models have experienced the significant decline on real
datasets given the complex dynamics in reality. The pro-
posed Trace consistently achieves the best results in terms
of AUC, PR and F1 score in Table 2. In addition, to evalu-
ate the efficiency, we show the training time in each epoch
in Fig. 3. Trace exhibits satisfactory efficiency compared
to the baselines. The following part demonstrates how the
proposed components contribute to Trace.
Ablation Study. We study the effectiveness of (a) structure-
awareness of Schrödinger bridge, (b) fully Riemannian op-
erations, and (c) the new learning algorithm. In Trace, the
Schrödinger bridge is governed by κθ that describes the graph
structure. Accordingly, w/oFCurv variant gives a counter-
part regardless of structural information. Concretely, we con-
duct logarithmic map on the encoding and replace our de-
sign with the usual Euclidean Schrödinger bridge [Thornton

Facebook Android
Variant AUC F1 AUC F1

w/oFCurv 83.13±1.78 77.57±1.27 43.42±0.57 37.21±0.67

w/oFRiem 90.32±0.44 83.21±0.61 54.21±0.72 44.32±0.92

w/oMPara 93.44±0.29 83.81±0.48 56.81±0.86 46.03±1.32

Trace 97.31±0.23 85.50±0.45 57.32±0.69 46.51±1.03

Table 3: Ablation study in terms of AUC (%) and F1(%).

et al., 2022]. As for Riemannian operations, w/oFRiem
variant leverages an additional tangent space with logarithmic
and exponential maps. To evaluate the proposed learning al-
gorithm, w/oMPara variant utilizes a usual parameterized
drift of [Thornton et al., 2022] and employs the traditional
IMF procedure. The results are summarized in Table 3, and
the main findings are listed as follows: 1) Trace consis-
tently outperforms w/oFCurv, and it suggests the impor-
tance of structural information in modeling the distribution
map for source localization. 2) Comparing to w/oFRiem,
we receive performance gain with the proposed operations. 3)
w/oMPara exhibits inferior accuracy. It is due to the opti-
mization error in IMF procedure, and a similar result has been
reported in Euclidean space [Gushchin et al., 2024]. More
importantly, the proposed algorithm demonstrates impressive
efficiency, e.g., its training time is less than 1/12 of IMF on
Douban as in Fig. 2.

On Geometry. Trace is presented as a Riemannian
model, while existing methods perform localization in the
Euclidean geometry. This part evaluates the impact of rep-
resentation space with geometric ablation. Hyperbolic and
hyperspherical Trace are created by setting the functional
curvature as −1 and 1, respectively. Without loss of general-
ity, the Euclidean counterpart is instantiated with correspond-
ing operations. The comparison results are given in Fig. 4. It
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Figure 2: IMF/IPF
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Figure 4: Geometry

Testing Datasets
Pre-training Android Christianity Douban Twitter

Android 46.51±0.56 46.81±0.75 45.33±0.33 42.45±0.58

Christianity 44.56±0.67 48.51±0.42 45.87±0.43 41.89±0.92

Douban 45.11±0.27 47.31±0.59 48.64±0.51 43.17±0.37

Twitter 45.23±0.63 46.78±0.54 47.51±0.53 44.32±0.74

Table 4: Performance in the transfer setting with different pre-
training datasets in terms of F1 score (%).

shows that the geometry plays a significant role in source lo-
calization, as evidenced by the performance across different
geometries. Note that, the learnable curvature potentially en-
hances accuracy through improved geometric matching and
offers the advantage for transferability, as in the next part.

Transferability and Impact of Pre-training Dataset. We
demonstrate the transferability of the proposed model. Ta-
bles 1 and 2 collect the results of training and testing models
on the same dataset. Here, Trace is first pre-trained on one
dataset, and then the model is fine-tuned and tested on an-
other. We do experiments on different pre-training datasets
for comprehensive evaluation. F1 scores are reported in Ta-
ble 4, which shows the effectiveness of transferring the pre-
trained model to new graphs. Additionally, Trace exhibits
robustness over different pre-training datasets. We argue that
the Schrödinger bridge on the manifold captures the under-
lying social dynamics, while the learnable curvature adapts
knowledge according to the graph structure.

Case Study & Visualization. We conduct a case study on
Karate dataset, and visualize the inference results in Fig. 5,
where the inferred sources are marked in red color. Com-
pared to TGASI in Fig. 5(c), Trace shows a more precise
alignment with the actual source nodes in Fig. 5(a).

5 Related Work
Source Localization. Early practices leverage statistic met-
rics, e.g., Jordan centrality, to infer the sources [Zhu et
al., 2017]. Nowadays, the deep localization models can be
roughly categorized into two groups. The first group primar-
ily focuses on static or temporal characteristics of the sources
[Cheng et al., 2024; Hou et al., 2023; Wang et al., 2023;
Hou et al., 2024], while the second group models the back-
ward dynamics along with the forward information diffusion
[Wang et al., 2022; Ling et al., 2022; Huang et al., 2023;
Yan et al., 2023; Zhang et al., 2024]. We are in line with
the latter, and the Schrödinger bridge presents the duality
via forward and backward SDEs. Recently, [Wang et al.,

(a) Ground truth (b) Trace (c) TGASI

Figure 5: Visualization on Karate dataset.

2024] jointly exploits co-related networks to improve local-
ization accuracy, while [Ling et al., 2024] studies a different
problem of source localization from one network to another.
Distinguishing from prior Euclidean models, our Riemannian
Trace is endowed with the transferability.

Generative Models & Schrödinger Bridge. Diffusion-
and flow-based models emerge as popular generative models,
described as SDEs [Song et al., 2021] and probability ODEs
[Lipman et al., 2023], respectively. Both of them conduct
data generation from a simple distribution, e.g., Gaussian,
while we are devoted to bridge the source and final distri-
butions. We notice that rectified flow [Liu et al., 2023] builds
such distribution map without randomness. However, the ran-
domness is often nested in the information propagation pro-
cess. Hence, we consider the Schrödinger bridge that models
the map between two arbitrary distributions [Shi et al., 2023;
Gushchin et al., 2024; Liu et al., 2024]. It is noteworthy that
structural information has not yet been encapsulated into the
Schrödinger bridge, and we offer an alternative to fill this gap.

Riemannian Graph Learning. Compared to the tradi-
tional Euclidean space, Riemannian manifolds show superi-
ority in graph clustering [Sun et al., 2024c; Sun et al., 2024b;
Sun et al., 2023b], node classification [Sun et al., 2022b;
Sun et al., 2024d; Sun et al., 2024e; Sun et al., 2025a;
Fu et al., 2023; Li et al., 2022; Wei et al., 2024], graph
structural learning [Sun et al., 2023a] as well as modeling
graph dynamics [Sun et al., 2023c; Sun et al., 2022a; Sun et
al., 2021]. Recently, ODEs and SDEs are extended to Rie-
mannian manifolds for graph generation [Sun et al., 2025b;
Sun et al., 2024a; Fu et al., 2024]. We notice that [Jo and
Hwang, 2024] build a Riemannian Schrödinger bridge. Be-
sides the different designs on curvature, another key contribu-
tion is that we design a new learning algorithm more efficient
than previous ones.

6 Conclusion
This paper presents the Riemannian source localizer named
Trace with the transferability to different graphs. Specif-
ically, the structural Schrödinger bridge governed by func-
tional curvature is established to model the direct transforma-
tion between source and final distributions. Furthermore, we
design a new learning algorithm that conducts the efficient
geodesic bridge matching with the provable optimal projec-
tion for Riemannian measures. Extensive experiments show
the effectiveness and transferability of the proposed model.
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Sirui Li, Andreas Züfle, and Liang Zhao. Source local-
ization for cross network information diffusion. In Pro-
ceedings of the 30th SIGKDD, pages 5419–5429. ACM,
2024.

[Lipman et al., 2023] Yaron Lipman, Ricky T. Q. Chen, Heli
Ben-Hamu, Maximilian Nickel, and Matthew Le. Flow
matching for generative modeling. In Proceedings of the
11th ICLR. OpenReview.net, 2023.

[Liu et al., 2023] Xingchao Liu, Chengyue Gong, and Qiang
Liu. Flow straight and fast: Learning to generate and trans-
fer data with rectified flow. In Proceedings of the 11th
ICLR, 2023.

[Liu et al., 2024] Guan-Horng Liu, Yaron Lipman, Maxim-
ilian Nickel, Brian Karrer, Evangelos A. Theodorou, and
Ricky T. Q. Chen. Generalized schrödinger bridge match-
ing. In Proceedings of the 12th ICLR. OpenReview.net,
2024.

[Prakash et al., 2012] B. Aditya Prakash, Jilles Vreeken, and
Christos Faloutsos. Spotting culprits in epidemics: How
many and which ones? In Proceedings of the 12th ICDM,
pages 11–20. IEEE, 2012.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Schrödinger, 1932] E. Schrödinger. Sur la théorie relativiste
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