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for Decision-making Tasks

Dong Chen1,2,3, Shilin Zhang1, Fei Gao1, Yueting Zhuang4, Siliang Tang4, Qidong Liu1,2,3 ∗,
Mingliang Xu1,2,3 †

1The School of Computer and Artificial Intelligence of Zhengzhou University
2Engineering Research Center of Intelligent Swarm Systems, Ministry of Education

3National Supercomputing Center In Zhengzhou
4Zhejiang University

{chendongai,ieqdliu,iexumingliang}@zzu.edu.cn, {iszhangshilin1024,gaofei0191}@gs.zzu.edu.cn,
{yzhuang,siliang}@zju.edu.cn

Abstract
Large language models (LLMs) have garnered in-
creasing attention owing to their powerful com-
prehension and generation capabilities. Gener-
ally, larger LLMs (L-LLMs) that require paid in-
terfaces exhibit significantly superior performance
compared to smaller LLMs (S-LLMs) that can
be deployed on a variety of devices. Knowl-
edge distillation (KD) aims to empower S-LLMs
with the capabilities of L-LLMs, while S-LLMs
merely mimic the outputs of L-LLMs, failing to
get the powerful decision-making capability for
new situations. Consequently, S-LLMs are help-
less when it comes to continuous decision-making
tasks that require logical reasoning. To tackle the
identified challenges, we propose a novel frame-
work called Logic Distillation (LD). Initially, LD
employs L-LLMs to instantiate complex instruc-
tions into discrete functions and illustrates their
usage to establish a function base. Subsequently,
LD fine-tunes S-LLMs based on the function
base to learn the logic employed by L-LLMs in
decision-making. During testing, S-LLMs will
yield decision-making outcomes, function by func-
tion, based on current states. Experiments demon-
strate that with the assistance of LD, S-LLMs can
achieve outstanding results in continuous decision-
making tasks, comparable to, or even surpassing,
those of L-LLMs. The code and data for the pro-
posed method are provided for research purposes
https://github.com/Anfeather/Logic-Distillation.

1 Introduction
Large language models (LLMs) [Ouyang et al., 2022], such
as GPT-4 [Achiam et al., 2023] and GLM-4 [GLM et al.,
2024], have been extensively applied owing to their powerful
capabilities like comprehension and generation. Particularly,
∗Corresponding Author
†Corresponding Author

(a) Initial Position (b) 1 step of L-LLM

(c) 1 step of S-LLM (d) 1 step of S-LLM(KD)

Figure 1: The outcome of one step in the pursuit game.

LLMs demonstrate superior performance in autonomous em-
bodied agents, showcasing advanced decision-making capa-
bilities grounded in comprehending instructions and logical
reasoning [Xi et al., 2023].

Despite the remarkable capabilities of LLMs, such as GPT-
4 and GLM-4, their substantial computational requirements
render them impractical for deployment on most devices
[Chen et al., 2024b; Chen et al., 2024a; Chen et al., 2025]. On
the other hand, numerous companies have attempted to de-
velop relatively smaller open-source LLMs, including GLM-
4-9B [GLM et al., 2024] and LLaMA-7B [Touvron et al.,
2023], which are compatible with consumer-grade GPUs
like RTX 3090 Ti. In this paper, we refer to LLMs that
cannot be deployed on most devices and require invocation
through a paid interface as larger LLMs (L-LLMs), in con-
trast to smaller LLMs (S-LLMs) deployable on consumer-
grade GPUs. Generally, L-LLMs exhibit significantly supe-
rior performance across various domains, particularly in logi-
cal reasoning. Nonetheless, S-LLMs have garnered extensive
attention owing to their convenient deployment and cost-free
nature. Consequently, an increasing number of researchers
are focusing on Knowledge Distillation (KD) of LLMs [Gou
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et al., 2021], where L-LLMs act as teachers imparting knowl-
edge, while S-LLMs serve as students, mimicking the outputs
of teachers [Xu et al., 2024].

While KD has been demonstrated to effectively enhance
the capabilities of S-LLMs in numerous tasks [Dai et al.,
2023], endowing S-LLMs with the decision-making capabil-
ity of L-LLMs continues to pose a significant challenge. As
shown in Figure 1, we present the decision-making outcome
of a single step in a pursuit game, where LLMs control three
blue dots chase an orange dot. Figure 1(a) displays the initial
positions of four dots. Meanwhile, in Figure 1(b), the L-LLM
(GLM-4) effectively comprehends the game rules, enabling
informed decision-making based on the position of the orange
dot. In contrast, Figure 1(c) reveals that the S-LLM (GLM-4-
9B) lacks proficiency in following rules as the points enclosed
by the red dashed line violate the rules of movement. Addi-
tionally, Figure 1(d) highlights the issue with KD, where the
student merely mimics the output of the teacher without com-
prehending the logic behind the teacher’s decision-making.
Specifically, in Figure 1(d), the orange dot moved one unit
to the right, while the point enclosed by the purple dashed
line moved one unit to the left. Such results stem from the
KD process, where the S-LLM remembers the outputs the
L-LLM has had in the past. Based on the aforementioned
analysis, we summarize the limitations of S-LLMs and KD in
decision-making tasks as follows: 1. Ineffectiveness in fol-
lowing complex instructions: Despite extensive fine-tuning,
S-LLMs continue to struggle with following intricate rules in
decision-making tasks. 2. Failure to comprehend the logic
of L-LLMs: Fine-tuned S-LLMs merely mimic the outputs
of L-LLMs and lose their decision-making capabilities when
encountering unknown scenarios.

Recently, there has been considerable work aimed at es-
tablishing the translation between natural language and code,
where a sentence is a logical code line [Feng et al., 2020;
Chen et al., 2021]. Drawing inspiration from this, we sug-
gest breaking down the decision-making logic of L-LLMs
into multiple stages, with each stage being represented by
a specific code function. Subsequently, S-LLMs engage in
decision-making by learning and applying the pertinent func-
tions. More specifically, we propose Logic Distillation (LD).
First, we leverage the powerful comprehension and logical
reasoning capabilities of L-LLMs to decompose the rules
governing decision-making tasks into multiple stages, form-
ing different functions. Subsequently, we integrate these
functions along with their comments, usage examples, etc.,
into a function base, and use it to fine-tune S-LLMs to en-
hance their ability to invoke relevant functions. Besides, to
alleviate the issue of S-LLMs struggling to follow complex
instructions, we propose transforming generation into selec-
tion. During each stage of decision-making, S-LLMs will
select and invoke functions based on the current state.

As depicted in Figure 2, both KD and LD require guidance
from a teacher with superior capabilities. KD emphasizes the
imparting of content, which involves students mimicking the
teacher’s output. In contrast, the proposed LD concentrates
on the underlying logic of task execution. The teacher decom-
poses a complex task into multiple basic logics, represented
by functions, enabling the student to make decision function

Mice have short 
limbs, long tails,
and gray fur…

Catching mice requires the
cat to adjust its direction based
on the position of the mouse…

Mimicking 
the teacher‘s 

output.

Employing 
the teacher’s 

logic.

Knowledge 
Distillation

Logic 
Distillation

Figure 2: KD vs LD. KD aims to have smaller models mimic the
output of larger models, while LD tries to enable smaller models to
understand how larger models accomplish a task.

by function.
The main contributions of this paper can be summarized as

follows:
• We analyzed the issues of Knowledge Distillation in the

context of decision-making in the LLMs era.
• We propose Logic Distillation to enable S-LLMs to ac-

complish decision-making tasks akin to L-LLMs.
• We conducted experiments in different scenarios to val-

idate the effectiveness of the proposed method.

2 Related Work
Large language models (LLMs) [Ouyang et al., 2022;
Chowdhery et al., 2022; Thoppilan et al., 2022; Zhao et
al., 2023; Koundinya Gundavarapu et al., 2024] are trained
on broad data and can be easily adapted to a wide range
of tasks [Bommasani et al., 2021], which have been ap-
plied to education [Biswas, 2023; Kasneci et al., 2023],
healthcare [Thirunavukarasu et al., 2023; Peng et al., 2023;
Guo et al., 2024], finance [Wu et al., 2023], etc. However,
LLMs with impressive capabilities often suffer from size lim-
itations, making them impractical to run on most devices and
costly for invoking their interfaces [Chen et al., 2024b].

In order to endow S-LLMs with the superior capabilities
of L-LLMs, Knowledge Distillation (KD) of LLMs has be-
come a focal point of related research [Xu et al., 2024]. In
this context, L-LLMs like GPT-4 or GLM-4 are highly skilled
teachers, while S-LLMs are students that learn to mimic the
outputs of teachers [He et al., 2023; Gu et al., 2024; Agarwal
et al., 2024; Liu et al., 2023]. Besides, numerous works have
also focused on the reasoning steps of LLMs. Distilling step-
by-step [Hsieh et al., 2023] extracts L-LLM rationales as ad-
ditional supervision for training S-LLMs within a multi-task
framework. The Orca framework [Mukherjee et al., 2023]
augments the prompt-response data pairs by incorporating a
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L-LLM Function 1

Function 2

Function 3

…
…

Please represent the following rules 
in Python code: 

……

S-LLM

Let us play a game on a 
20x20 two-dimensional 
coordinate plane……

Let's solve this problem 
function by function. First, 

call function 3……

Function base

F E

F 4

F 2 Candidate 
functions

retriever

select

User
manual

refer

add

Instructions,
states

Generation

Selection

E
m

ergencies
F

add

States update

external input

Figure 3: Illustration of the proposed Logic Distillation (LD). LD consists of three components: L-LLMs, retriever, and S-LLMs. L-LLMs are
responsible for decomposing human-provided rules and instantiating them as basic functions to construct a function base. Besides, L-LLMs
offer a user manual that explains the usage of these functions, including details such as rule descriptions and code comments. The retriever is
in charge of retrieving the top-K functions based on the insturctions and states. S-LLMs select the appropriate functions for different stages
of the task. Subsequently, S-LLMs will systematically make decisions function by function.

system message designed to facilitate student models’ com-
prehension of the reasoning process. Subsequently, Orca 2
[Mitra et al., 2023] advances this approach by training the
student model to discern the most efficacious solution strat-
egy for individual tasks, guided by the performance metrics
established by Orca. However, these methods are essentially
still making S-LLMs mimic the outputs of L-LLMs, rather
than comprehending the reasoning logic.

3 Methodology
This paper investigates interactive decision-making tasks,
where interactions can be divided into multiple steps (each
interaction counts as one step), and each step can be further
divided into multiple stages (several stages collectively com-
plete one decision-making process).

As illustrated in Figure 3, we explore the Logic Distilla-
tion (LD) to empower S-LLMs to engage in decision-making
akin to L-LLMs. LD first decomposes rules (instructions) x
into multiple stages with L-LLMs and converts the decision-
making logic into the corresponding code functions (such as
calculating the distance between points). Then, LD will con-
struct a function base containing functions and user manual of
these functions. Besides, LD employs a retriever to find the
top-K functions that most relevant to the current states and x.
Subsequently, S-LLMs will select functions f one by one to
make decisions. Overall, LD consists of three components:
(i) L-LLMs, (ii) retriever, (iii) S-LLMs.

3.1 L-LLMs
L-LLMs exhibit exceptional capabilities in decision-making.
To distill these capabilities into the S-LLMs, we propose in-
stantiating the logic of L-LLMs through functions:

pθL(f, u|x) =
∏
i

pθL(yi|x, y1:i−1) (1)

where L-LLMs pθL parametrized by θL that generates a cur-
rent token yi based on a context of the previous i− 1 tokens,
multiple y constitute a function f and user manual (includes
rule explanations, code comments, corresponding invocation
stages, and so on). In addition, a collection of f and u forms
the function base Df .

3.2 Retriever
For the retriever pθR(f |x, s), we have proposed two solutions
tailored for function base of different scales. When the scale
of the function base is large, we follow prior work [Lewis et
al., 2020] to implement retrieval component based on DPR
[Karpukhin et al., 2020], and retriever pθR(f |x, s) follows:

pθR(f |x, s) ∝ exp(d(f)>, q(x, s))→ fc = [f1, · · · , fK ]
(2)

where s is current states, d(f) is a dense representation of
functions (including code comments and rule descriptions),
and q(x, s) is a query representation. Retriever pθR(f |x, s)
will return a top-K list fc, where the K functions with high-
est prior probability. As for small-scale function base, we
will fine-tune S-LLMs so that S-LLMs can directly select and
utilize the appropriate functions from base Df to make deci-
sions.

3.3 S-LLMs
We fine-tune S-LLMs to enable them to comprehend the
functionality and the appropriate invocation timing of differ-
ent functions. S-LLMs first select a function fj from Df or
fc for stage j:

pθS (fj |x, s) = max([pθS (f1|x, s), · · · , pθS (fK |x, s)]) (3)

Then, function fj will be executed to obtain the intermedi-
ate result of the j-th stage:

oj = fj(x, s), s = oj−1 (4)
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If there are J stages in a step of the task, S-LLMs will
select J functions, and the decision-making outputs for that
step will be:

O = oJ = fJ(x, s), s = oJ−1 (5)

If O meets the requirements of the task, the decision-
making process will be halted. Otherwise, O will be regarded
as input for the next step.

3.4 Emergency handling of S-LLMs in LD
An advantage of LLMs is their ability to respond to various
situations. When using LLMs to control embodied agents,
they can respond to unforeseen circumstances. For instance,
when LLMs control unmanned vessels for maritime explo-
ration, they might navigate from the open sea to archipela-
gos, and LLMs can analyze the specific terrain, enabling swift
traversal of the archipelago.

Typically, actions required in an emergency situation (such
as avoiding whirlpools when controlling unmanned vessels)
are simpler compared to the initial various instructions and
rules. Therefore, in the LD framework, S-LLMs will trans-
form emergency xE into functions and add them to the func-
tion candidate list fc:

pθS (fE , u|xE , s) =
∏
i

pθS (yi|xE , s, y1:i−1), fE , u =
∏
i

yi

(6)
Through Equation 6, S-LLMs will possess stronger general
capabilities.

It should be noted that, in contrast to KD, which neces-
sitates S-LLMs to memorize massive L-LLMs’ outputs, LD
merely requires S-LLMs to remember the usage of func-
tions. Consequently, LD preserves more general capabilities
of LLMs, including function generation. The proposed LD is
summarized in Algorithm 1.

3.5 Why Selection Is Better
For the aforementioned limitation of S-LLMs, ineffectiveness
in following complex instructions, we propose change the
function of S-LLMs from generation to selection. Specifi-
cally, S-LLMs are required to select the appropriate functions
from a provided set, which are to be employed at various
stages when confronting a particular problem. This section
theoretically analyzes the advantages of selection over gener-
ation.

Assuming that the token list of LLMs contains a total ofM
types of tokens, the retriever provides K types of functions.
For generation, the entropy of the prediction is:

Hgeneration = −
M∑
i=1

p
′

θS (ti) log p
′

θS (ti),

M∑
i=1

p
′

θS (ti) = 1

(7)

where ti is a token in the token list.

Algorithm 1 Logic Distillation
Input: rules (instructions) x.
Parameter: L-LLMs pθL , S-LLMs pθS , retriever pθR .
Output: the decision-making outcome [o1, o2, · · · ]
.

1: Generate functions f and corresponding user manual u
with L-LLMs by Equation 1.

2: Building function base Df with f and u.
3: Initialize O, s.
4: while Decision-making output O of one step does not

meet the task requirements do
5: while j in 1, 2, · · · , J do
6: Retrieve top-K functions [f1, · · · , fK ] with pθR , x

and s by Equation 2.
7: S-LLMs select the most suitable function fj from

[f1, · · · , fK ] for stage j.
8: Obtaining intermediate results oj by Equation 4.
9: end while

10: O, s = oJ
11: if emergencies then
12: Generate functions fE by Equation 6 and add fE

into [f1, · · · , fK ].
13: end if
14: end while

With Lagrange multiplier method [Liu, 1972], we get:

Q
(
p

′

θS (t1), p
′

θS (t2), . . . , p
′

θS (tM ), λ
)

= −
M∑
i=1

p
′

θS (ti) log p
′

θS (ti) + λ

(
M∑
i=1

p
′

θS (ti)− 1

) (8)

then partially differentiating Q in Equation 8 with respect to
p

′

θS
(ti) and λ,

∂Q

∂p
′
θS
(ti)

= − log p
′

θS (ti)− 1 + λ

∂Q

∂λ
=

M∑
i=1

p
′

θS (ti)− 1

(9)

Let Equation 9 be 0, we can get:

p
′

θS (t1) = p
′

θS (t2) = . . . = p
′

θS (tM ) =
1

M
,

Hgeneration = logM
(10)

which is the maximum value of Hgeneration.
When we perform selection, the number of candidates will

be K, and the maximum value of Hselection will be logK.
As K << M , logK << logM , the maximum value of
Hselection will be much smaller than that ofHgeneration, and
the lower bound of selection will be much higher. Therefore,
compared to generation, selection is more effective in main-
taining stable outputs for S-LLMs.

4 Experiments
Our experiments aim to: (1) verify the effectiveness of LD
in decision-making tasks, (2) explore the reasons for the ef-
fectiveness of LD (3) verify that LD has a stronger ability
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>>> caption: Generate all possible move options based on the current position of the police car and the 
suspect car.
>>> input: police_positions: Initial positions of police cars [(x1, y1), (x2, y2), (x3, y3)]   suspect_position: 
Initial position of the suspect car (x, y)
>>> output: Game state dictionary {'police_positions': police_positions, 'suspect_position': suspect_position}

generate_options
>>> caption: Generate all possible move options based on the current position of the police car and the 
suspect car.        
>>> input: police_position: Current position of the police car (x, y)        
>>> output: List of all possible move options [(x1, y1), (x2, y2), ...]

filter_valid_moves
>>> caption: Filter out invalid move options (e.g., moves that go out of bounds).        
>>> input: moves: List of all possible move options [(x1, y1), (x2, y2), ...] police_positions: Current positions 
of police cars [(x1, y1), (x2, y2), (x3, y3)]  suspect_position: Current position of the suspect car (x, y)        
>>> output: List of valid move options [(x1, y1), (x2, y2), ...]

initialize_game

select_best_move
……

User manual

Stage 1: Call initialize_game to 
initialize the game:……

Stage 2: Call generate_options
to generate all possible move 

options:……

Stage 3: Call 
filter_valid_moves to filter 

valid move options:

……
Planning &

decision-making
function by function

Figure 4: Function base. The L-LLM decomposes the rules and instantiates the decision-making logic into multiple functions (each function
performs a specific task, such as calculating distance, etc.). In addition, the L-LLM enables the S-LLM to accurately invoke relevant func-
tions by creating a user manual (including explanations, function comments, corresponding invocation stages, etc.), thereby completing the
decision-making process.

(a) S-LLM with KD (Failure) (b) L-LLM (18 steps) (c) S-LLM with LD (15 steps)

Figure 5: The global perspective of the pursuit game based on GLM4 and GLM4-9B. The trajectories of the three blue dots are represented
by green, red, and grey dashed lines, respectively, with the darker colors indicating a higher number of passages.

to respond to emergencies. In our experiments, the L-LLMs
are GLM-4, LLaMA3-70B and Qwen2.5-72B , while the S-
LLMs are GLM4-9B, LLaMA3-7B and Qwen2.5-7B.

4.1 Better Performance in Pursuit Game
We first conduct experiments based on the pursuit game to
demonstrate that the proposed method can effectively en-
hance the decision-making capabilities of S-LLMs. More
specifically, the pursuit game involves two sides, each con-
trolled by a different LLM. One LLM manages three blue
dots, while the other one controls an orange dot. Each in-
teraction between the two sides constitutes a step. In each
iteration, the blue dots are constrained to move by two units,
while the orange dot is restricted to a single unit of movement.
The game concludes when the Manhattan distance between
all three blue dots and the orange dot is less than 2 units.

Specifically, the orange dot is consistently controlled by

the original S-LLM, while the blue dots are managed by the
L-LLM, S-LLM, S-LLM with KD, and S-LLM with LD, re-
spectively. Additional selection and judgment rules have been
introduced to improve the success rate of the baselines. For
selection, LLMs are provided with the next decision coor-
dinates to choose from. Regarding judgment, if LLMs make
more than seven illegal choices, the game is considered a fail-
ure. The upper limit for the number of moves in the game
is capped at 100. To perform KD, we initialize 221 sets of
starting positions randomly and produce 103,355 sets of out-
puts with the L-LLM. Subsequently, we fine-tune the S-LLM
with LoRA [Hu et al., 2021] based on these outputs. For
LD, as depicted in Figure 4, we initially establish a func-
tion base with the L-LLM, where L-LLM decomposes the
rules and instantiating the decision-making logic into multi-
ple functions. Moreover, to assist the S-LLM in learning how
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Methods Success Failure without Violation Failure with Violation Average Steps of Success
GLM4 (Large) 96.00% 4.00% 0.00% 14.22 steps

GLM4-9B (Small) 0.00% 0.00% 100.00% —
GLM4-9B-KD 88.50% 10.50% 1.00% 15.23 steps
GLM4-9B-LD 100.00% 0.00% 0.00% 13.26 steps

LLaMA3-70B (Large) 94.00% 2.00% 2.00% 16.37 steps
LLaMA3-7B (Small) 0.00% 2.00% 98.00% —

LLaMA3-7B-KD 80.50% 11.50% 8.00% 18.74 steps
LLaMA3-7B-LD 100.00% 0.00% 0.00% 15.28 steps

Qwen2.5-72B (Large) 95.50% 4.00% 0.50% 13.92 steps
Qwen2.5-7B (Small) 1.00% 0.00% 99.00% 56.85 steps

Qwen2.5-7B-KD 89.00% 6.00% 5.00% 14.99 steps
Qwen2.5-7B-LD 100.00% 0.00% 0.00% 13.23 steps

Table 1: Results of pursuit game. In this context, “Success” refers to the successful conclusion of the game, where the blue dot captures the
orange dot. “Failure without Violation” indicates an unsuccessful outcome due to the inability to capture the orange dot within the specified
number of moves. On the other hand, “Failure with Violation” signifies an unsuccessful outcome resulting from a violation of the game rules.
Lastly, “Average Steps of Success” quantifies the average number of moves required for successful completion of the game. All methods are
tested on 200 sets of starting positions.

to utilize various functions and decide when to invoke them,
L-LLM creates a user manual for these functions. By fine-
tuning S-LLM with the user manual, it can comprehend the
logic of the L-LLM and execute decision-making processes
function by function.

The results of the pursuit game are presented in Table 1.
It is evident that S-LLM struggles to comprehend complex
instructions, as its failures mainly stem from rule violations.
Conversely, the “Failure with Violation” rates of L-LLMs are
close to zero., demonstrating its superior comprehension and
capability to follow instructions. By employing KD to mimic
L-LLMs’ outputs, S-LLMs’ decision-making capabilities sig-
nificantly improve. Nonetheless, their success rates are still
notably lower than that of L-LLMs, and the number of steps
in successful instances are higher. As for LD, the game’s
success rates have reached 100%, and the average number of
steps taken by S-LLMs is fewer than that of L-LLMs. These
results comprehensively demonstrate the effectiveness of LD
in enhancing S-LLMs’ decision-making capabilities.

4.2 Why LD is Better
In Figure 5, we initialize different LLMs from identical start-
ing positions: blue dots at (3, 8), (14, 19), (17, 2), and the
orange dot at (20, 18) to enable a global comparison of the
overall decision-making capabilities among different LLMs.

In Figure 5(a), as S-LLM with KD merely mimics the out-
puts of L-LLM, blue dots may represent outputs from the
L-LLM in different scenarios, resulting in behaviors such as
repetitive circling. For instance, the point along the grey tra-
jectory continuously shuttle back and forth, making it impos-
sible to catch up with the orange point. In Figure 5(b), the
point controlled by L-LLM appears to backtrack, mainly be-
cause of the orange point’s continuous back-and-forth move-
ments in an attempt to escape encirclement. Besides, from
Figure 5(c), it can be observed that S-LLM with LD enables
the blue dots to approach the orange dot in a more direct man-
ner. Thus, contrasting with L-LLM, S-LLM with LD requires
fewer steps to successfully capture the target. Such results
stem from different emphases: For LD, L-LLM employs a

global perspective to design functions, causing the S-LLM
to pay more attention to the overall distance from the orange
dot. However, during one decision-making step, L-LLM is
more susceptible to the influence of the current state, conse-
quently neglecting the global planning. This is also why the
performance of LD in Table 1 is superior to that of L-LLM.

4.3 Pursuit Game with Emergencies
In order to assess the capacity of different LLMs to handle
emergencies, we introduced a 5× 5 restricted area within the
game plane. Related results based on GLM4 and GLM4-9B
are presented in Table 2.

In the more intricate scenario, L-LLM can still grasp the
rules through simple textual descriptions and implement ef-
fective decision-making, as the success rate achieve 90%.
Conversely, S-LLM with KD achieves a success rate of 52%,
with failures resulting from rule violations (accounting for
45.5%), indicating an inability of S-LLM with KD to com-
prehend the new rules. As for S-LLM with LD, the process
involves S-LLM initially abstracting the restricted area as a
coordinate filtering function. Then, this function will handle
the output of filter valid moves from Figure 4, producing a
list that excludes the coordinates of the restricted area. Subse-
quently, this list is utilized by select best move to generate a
suitable coordinate. The success rate of S-LLM with LD ex-
ceeds that of L-LLM by 10%, and its average number of steps
is approximately 4 steps fewer than the baselines, demonstrat-
ing the powerful general capabilities of LD. It should be noted
that, compared to KD, LD only uses a few functional exam-
ples to fine-tune the S-LLM, enabling S-LLM to retain more
general capabilities.

In Figure 6, we illustrate the comprehensive decision-
making processes of L-LLM and S-LLM with LD, which
further validates LD has a stronger ability to respond to emer-
gencies.

This experiment also highlights the advantages of control-
ling embodied agents through LLMs. Traditional reinforce-
ment learning methods for controlling embodied agents re-
quire retraining the model from scratch when encountering
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Methods Success Failure without Violation Failure with Violation Average Steps of Success
GLM4 (Large) 90.00% 7.50% 2.50% 18.98 steps

GLM4-9B (Small) 0.00% 0.00% 100.00% —
GLM4-9B-KD 52.00% 2.50% 45.50% 18.5 steps
GLM4-9B-LD 100.00% 0.00% 0.00% 14.65 steps

Table 2: Results of pursuit game with emergencies.

(a) L-LLM (22 steps) (b) S-LLM with LD (16 steps)

Figure 6: The process of the pursuit game with emergencies.

Methods Victory Loss Draw
GLM4 (Large) 55.50% 42.00% 2.50%

GLM4-9B (Small) 36.50% 62.00% 1.50%
GLM4-9B-KD 48.00% 49.00% 3.00%
GLM4-9B-LD 59.50% 38.50% 2.00%

LLaMA3-70B (Large) 57.00% 42.00% 1.00%
LLaMA3-7B (Small) 39.50% 60.00% 0.50%

LLaMA3-7B-KD 48.50% 58.00% 3.50%
LLaMA3-7B-LD 58.50% 38.50% 3.00%

Qwen2.5-72B (Large) 50.50% 46.50% 3.00%
Qwen2.5-7B (Small) 34.00% 65.50% 0.50%

Qwen2.5-7B-KD 44.50% 54.50% 0.00%
Qwen2.5-7B-LD 55.00% 43.00% 2.00%

Table 3: The victories, losses, and draws of each LLM in 200 times
of 21 points.

new influencing factors. In contrast, under the LD frame-
work, S-LLMs can directly accept new rules and add them to
the function library, enabling the agent to address new chal-
lenges by combining different functions.

4.4 Better Performance in 21 Ponits
To further validate the improvement in S-LLM’s decision-
making capabilities with LD, we engage LLMs in a modi-
fied version of the game “21 points.” As depicted in Figure 7,
during each round, the two participating LLMs must decide
whether to “stand” or “hit”, with the objective of surpass-
ing their opponent’s total score without exceeding 21 points.
Notably, cards “10”, “J”, “Q”, and “K” are each assigned a
value of 10, and card “A” can be used as either 1 or 11. Fur-
thermore, we streamline the game by reducing the deck to
26 cards of two suits, thereby enabling the LLMs to deduce
the likelihood of exceeding 21 points after requesting a card,
based on the available information.

Related results are presented in Table 3. It can be observed

stand hit

Figure 7: KD vs LD. KD aims to have smaller models mimic the
output of larger models, while LD tries to enable smaller models to
understand how larger models accomplish a task.

that L-LLMs demonstrate significant advantages in decision-
making, as their win rates substantially exceed their rates of
losses and draws. As for S-LLMs with KD, we first fine-tune
S-LLMs with the outputs of L-LLMs. Although KD enhances
S-LLMs’ decision-making capabilities, the improvement is
not significant, and there is still a gap between S-LLMs and
L-LLMs. In contrast, S-LLMs with LD achieve comparable
or even superior results compaed to L-LLMs. This is because
L-LLMs teach the logic of decision-making to S-LLMs in the
form of functions, enabling S-LLMs to maintain a global per-
spective. However, L-LLMs are susceptible to the influence
of the current state in the decision-making process at each
step, thereby losing its ability for global planning.

5 Conclusion
LLMs have been widely applied across many different fields.
However, larger LLMs (L-LLMs) with powerful capabilities
are difficult to deploy on the vast majority of devices due to
their parameter scale. In contrast to L-LLMs, smaller open-
source LLMs (S-LLMs) are easier to deploy but fall signifi-
cantly short in performance compared to their larger counter-
parts. To improve the performance of S-LLMs, researchers
have proposed various Knowledge Distillation (KD) meth-
ods. Nevertheless, KD merely enables S-LLMs to mimic
the outputs of L-LLMs, which is insufficient for addressing
decision-making problems. Thus, we propose Logic Distil-
lation (LD), a method that instantiates the logic of L-LLMs
by converting instructions into functions, thereby establish-
ing a function base. Subsequently, through fine-tuning, S-
LLMs will comprehend the usage of each function, enabling
S-LLMs to make decisions. Experimental results demon-
strate that the proposed method, with a small amount of ex-
ample fine-tuning, can enable S-LLMs to match or even sur-
pass the decision-making capabilities of L-LLMs.
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Rocktäschel, et al. Retrieval-augmented generation for
knowledge-intensive nlp tasks. Advances in Neural Infor-
mation Processing Systems, 33:9459–9474, 2020.

[Liu et al., 2023] Zechun Liu, Barlas Oguz, Changsheng
Zhao, Ernie Chang, Pierre Stock, Yashar Mehdad,
Yangyang Shi, Raghuraman Krishnamoorthi, and Vikas
Chandra. Llm-qat: Data-free quantization aware
training for large language models. arXiv preprint
arXiv:2305.17888, 2023.

[Liu, 1972] I-Shih Liu. Method of lagrange multipliers for
exploitation of the entropy principle. Archive for Rational
Mechanics and Analysis, 46:131–148, 1972.

[Mitra et al., 2023] Arindam Mitra, Luciano Del Corro,
Shweti Mahajan, Andres Codas, Clarisse Simoes, Sa-
haj Agarwal, Xuxi Chen, Anastasia Razdaibiedina, Erik
Jones, Kriti Aggarwal, et al. Orca 2: Teaching
small language models how to reason. arXiv preprint
arXiv:2311.11045, 2023.

[Mukherjee et al., 2023] Subhabrata Mukherjee, Arindam
Mitra, Ganesh Jawahar, Sahaj Agarwal, Hamid Palangi,
and Ahmed Awadallah. Orca: Progressive learning from
complex explanation traces of gpt-4. arXiv preprint
arXiv:2306.02707, 2023.

[Ouyang et al., 2022] Long Ouyang, Jeffrey Wu, Xu Jiang,
Diogo Almeida, Carroll Wainwright, Pamela Mishkin,
Chong Zhang, Sandhini Agarwal, Katarina Slama, Alex
Ray, et al. Training language models to follow instruc-
tions with human feedback. Advances in neural informa-
tion processing systems, 35:27730–27744, 2022.

[Peng et al., 2023] Cheng Peng, Xi Yang, Aokun Chen,
Kaleb E Smith, Nima PourNejatian, Anthony B Costa,

Cheryl Martin, Mona G Flores, Ying Zhang, Tanja Magoc,
et al. A study of generative large language model for
medical research and healthcare. NPJ digital medicine,
6(1):210, 2023.

[Thirunavukarasu et al., 2023] Arun James
Thirunavukarasu, Darren Shu Jeng Ting, Kabilan
Elangovan, Laura Gutierrez, Ting Fang Tan, and Daniel
Shu Wei Ting. Large language models in medicine.
Nature medicine, 29(8):1930–1940, 2023.

[Thoppilan et al., 2022] Romal Thoppilan, Daniel De Fre-
itas, Jamie Hall, Noam Shazeer, Apoorv Kulshreshtha,
Heng-Tze Cheng, Alicia Jin, Taylor Bos, Leslie Baker,
Yu Du, et al. Lamda: Language models for dialog ap-
plications. arXiv preprint arXiv:2201.08239, 2022.

[Touvron et al., 2023] Hugo Touvron, Louis Martin, Kevin
Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava,
Shruti Bhosale, et al. Llama 2: Open foundation and
fine-tuned chat models. arXiv preprint arXiv:2307.09288,
2023.

[Wu et al., 2023] Shijie Wu, Ozan Irsoy, Steven Lu, Vadim
Dabravolski, Mark Dredze, Sebastian Gehrmann, Prab-
hanjan Kambadur, David Rosenberg, and Gideon Mann.
Bloomberggpt: A large language model for finance. arXiv
preprint arXiv:2303.17564, 2023.

[Xi et al., 2023] Zhiheng Xi, Wenxiang Chen, Xin Guo, Wei
He, Yiwen Ding, Boyang Hong, Ming Zhang, Junzhe
Wang, Senjie Jin, Enyu Zhou, et al. The rise and poten-
tial of large language model based agents: A survey. arXiv
preprint arXiv:2309.07864, 2023.

[Xu et al., 2024] Xiaohan Xu, Ming Li, Chongyang Tao, Tao
Shen, Reynold Cheng, Jinyang Li, Can Xu, Dacheng Tao,
and Tianyi Zhou. A survey on knowledge distillation of
large language models. arXiv preprint arXiv:2402.13116,
2024.

[Zhao et al., 2023] Wayne Xin Zhao, Kun Zhou, Junyi Li,
Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian
Min, Beichen Zhang, Junjie Zhang, Zican Dong, et al.
A survey of large language models. arXiv preprint
arXiv:2303.18223, 2023.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.


