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Abstract
3D part assembly aims to understand part relation-
ships and predict their 6-DoF poses to construct
realistic 3D shapes, addressing the growing de-
mand for autonomous assembly, which is crucial
for robots. Existing methods mainly estimate the
transformation of each part by training neural net-
works under supervision, which requires a substan-
tial quantity of manually labeled data. However,
the high cost of data collection and the immense
variability of real-world shapes and parts make tra-
ditional methods impractical for large-scale appli-
cations. In this paper, we propose first a zero-shot
part assembly method that utilizes pre-trained point
cloud diffusion models as discriminators in the as-
sembly process, guiding the manipulation of parts
to form realistic shapes. Specifically, we theoret-
ically demonstrate that utilizing a diffusion model
for zero-shot part assembly can be transformed into
an Iterative Closest Point (ICP) process. Then,
we propose a novel pushing-away strategy to ad-
dress the overlap parts, thereby further enhancing
the robustness of the method. To verify our work,
we conduct extensive experiments and quantitative
comparisons to several strong baseline methods,
demonstrating the effectiveness of the proposed ap-
proach, which even surpasses the supervised learn-
ing method. The code has been released on https://
github.com/Ruiyuan-Zhang/Zero-Shot-Assembly.

1 Introduction
3D part assembly autonomously assembles unordered 3D
pieces into a realistic, complete object by predicting the rota-
tions and translations of each piece. This research topic has
drawn great attention in the field of robots in recent years, as it
plays a crucial role in advancing robotic manipulation and au-
tomation [Chervinskii et al., 2023; Ghasemipour et al., 2022;
Zhan et al., 2020; Zhang et al., 2022; Gao et al., 2024].

3D part assembly is challenging because of the intricate
geometries and various possible assembly combinations. The
existing approach to 3D part assembly relies on training ma-
chine learning models with extensive manually annotated
data, including rotations and scalings. However, the high cost

of data collection makes it impractical to create datasets for
each task, limiting supervised methods to well-resourced do-
mains like common datasets. This question drove us to search
for new methods to reduce reliance on manual labeling.

Diffusion models are a recent class of likelihood-based
generative models that model data distributions through an
iterative noising and denoising process [Ho et al., 2020]. Fol-
lowing this, diffusion-based distillation models [Wang et al.,
2024b] have demonstrated significant high-fidelity 3D con-
tent generation capabilities, highlighting both their theoreti-
cal robustness and practical applicability in generating a large
amount of complex 3D contents. Meanwhile, some studies
have also demonstrated that a pre-trained diffusion model,
leveraging its density estimates, can be transferred to han-
dle various zero-shot tasks, including classification [Li et al.,
2023; Zhang et al., 2024a], vision-language modeling [Liu et
al., 2025; Liu et al., 2024; Liu et al., 2023b], and singing
voice synthesis [Zhang et al., 2024d; Guo et al., 2025;
Zhang et al., 2024c; Zhang et al., 2024e]. Density estimation
refers to the distribution of particles in space as they evolve
over time during a diffusion process. These works further
inspire us to explore how to distill the necessary pose trans-
formations in assembly tasks using existing diffusion models.

In this paper, we propose a new algorithm for aligning den-
sity estimates to pose transformations. Specifically, we first
introduce noise to a shape that has not been correctly posi-
tioned. This perturbed shape is then input into the diffusion
model. The objective at this stage is to transform the disor-
dered components into a distribution that is suitable for the
diffusion model. By utilizing the denoising process, we can
obtain a new point cloud that is closer to an accurate chair
shape. However, it is important to note that this new point
cloud does not represent a rigid transformation compared to
the previous point cloud. To address this issue, we employ
the ICP algorithm to align each part as closely as possible.
By iteratively repeating this process, we can utilize the diffu-
sion model to convert disordered parts into a complete shape,
thereby accomplishing the entire assembly process. Since
this process is performed explicitly, it allows us to apply di-
rect pull-in or push-away operations for overlapping or dis-
tant parts, which is nearly impossible to achieve with other
methods. To validate our method, we employed four network
architectures to predict rotational and translational transfor-
mations of parts. These baselines rely on the Shape Chamfer
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Figure 1: The overall architecture of our algorithm. Given the misaligned input clouds Pt, we introduce noise to the shape, which helps
the diffusion model recognize the data. The diffusion process then refines the input, generating a point cloud closer to the target chair shape.
To achieve rigid transformation, we apply the ICP method for alignment, producing updated pose vectors. By iterating this process over T
steps, the algorithm effectively assembles the disordered parts into the final coherent structure.

Distance (SCD) for supervised learning, aiming to approxi-
mate ground truth derived from reference samples generated
by the diffusion model. Quantitative and qualitative results
indicate that our method not only outperforms all baseline
approaches in zero-shot settings but also surpasses some su-
pervised techniques, underscoring its potential for practical
applications.

The contributions of our paper can be summarized as fol-
lows:

• We propose the first zero-shot assembly method that uti-
lizes density estimates from a diffusion model to achieve
continuous and smooth transformations of parts, thereby
coherently assembling multiple parts. Theoretical anal-
ysis within the paper supports the efficacy of this ap-
proach.

• We additionally introduce a push-away strategy to miti-
gate collisions between parts.

• Results show that our method outperforms all base-
lines in zero-shot settings and even some supervised ap-
proaches, highlighting its practical potential.

2 Related Works
2.1 3D Assembly Modeling
Estimating object pose has been a key research focus for
decades. In the early research, Yoon et al. [2003] used vi-
sual sensors and neural networks for robotic assembly. Later,
graph models were employed to capture semantic and geo-
metric relationships among shape components, enabling ad-
vancements in assembly-based shape modeling [Zhan et al.,
2020; Jaiswal et al., 2016], while a progressive strategy lever-
aging the recurrent graph learning framework was explored
in [Narayan et al., 2022]. To explore the diversity of assem-
bly outcomes, several authors propose treating parts’ poses
as a distribution and achieving part assembly through a diffu-
sion process involving noising and denoising [Xu et al., 2024;
Cheng et al., 2023]. Furthermore, innovations in network

architecture have been advancing concurrently. For in-
stance, Zhang et al. [2024b; 2025] leverage the Transformer
framework [Vaswani, 2017] to model structural relationships.
Building on this, Gao et al. [2024] introduces hierarchical as-
sembly to tackle the challenges associated with managing nu-
merous parts. Unlike the aforementioned works that rely on
manual annotations of each part’s rotation and translation, our
study aims to explore a novel approach to extracting the nec-
essary pose transformations for assembly tasks. Specifically,
we investigate how existing diffusion models can be lever-
aged to achieve this goal, thereby reducing the dependency
on labour-intensive manual labelling.

2.2 Diffusion Model
Diffusion models operate in two steps: adding noise to de-
stroy data structure and reversing this noise to reconstruct it.
This enables them to model target distributions and gener-
ate diverse content, including images [Saharia et al., 2022],
videos [Wang et al., 2024a], 3D objects [Peebles and Xie,
2023], and audio [Liu et al., 2023a]. Recent studies suggest
that diffusion models encode semantic and grouping infor-
mation, leading to two main research directions. The first
research direction leverages the internal representations of
diffusion models for various discriminative tasks, requiring
minimal additional training. These tasks include zero-shot
classification [Li et al., 2023], label-efficient segmentation
[Baranchuk et al., 2021], and open-vocabulary segmentation
[Karazija et al., 2023]. The second research direction fo-
cuses on generative tasks, such as bridging 2D diffusion mod-
els and 3D generation through Score Distillation Sampling
(SDS). Methods like DreamFusion [Poole et al., 2022] align
3D representations with text prompts, while later works en-
hance visual fidelity using strategies like coarse-to-fine opti-
mization [Lin et al., 2023] and multi-view consistency [Hu et
al., 2024]. These advances highlight the versatility of diffu-
sion models in blending discriminative and generative capa-
bilities. Our work builds upon the generative approach, in-
troducing a theoretically sound and interpretable method to
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tackle the zero-shot assembly problem effectively.

3 Methodology
In this section, we will first provide a formal symbolic defi-
nition of diffusion models (Sec. 3.1). Next, we will introduce
the zero-shot method proposed in this paper (Sec. 3.2). Fi-
nally, based on our method, we will present a new approach
to mitigate part overlap (Sec. 3.3).

3.1 Diffusion Model Preliminaries
The diffusion model [Song and Ermon, 2019; Luo and Hu,
2021] is a likelihood-based generative model, designed to
learn the data distributions. Starting from an underlying
data distribution q(x), the model applies a forward process
that progressively adds noise to a data sample x, creating
a sequence of latent variables {xz}Zz=1 governed by Gaus-
sian transition kernels q(xz|xz−1). At each time step z, the
marginal distribution of xz is defined as:

xz ∼ q(xz|x) = N (αzx, σ
2
zI), (1)

where σ2
z + α2

z = 1, with σz gradually increasing from 0 to
1. This ensures that q(xz) converges to a Gaussian prior dis-
tribution N (0, I) as z approaches Z. Thus, q(xz) converges
to a Gaussian prior distribution N (0, I).

The reverse process, which corresponds to the generative
process, is designed to reconstruct the original data from a
sequence of noisy observations. The conditional distribution
pϕ(xz−1|xz) at each time step z is modeled as a Gaussian
with mean µϕ(xz, z) and covariance variance Σϕ(xz, z):

pϕ(xz−1|xz) := N (xz−1;µϕ(xz, z),Σϕ(xz, z)) (2)

To ensure that the model can accurately reconstruct the
original signal as it approaches the end of the generation
process, Σϕ(xz, z) is typically designed to decrease as z de-
creases. This reflects the intuition that the model’s confidence
in predicting the next state should increase as it gets closer to
the original data point.

Specifically, Σϕ(xz, z) can be parameterized or fixed ac-
cording to a schedule that depends on the time step z. In
practice, this variance term may be simplified to depend only
on z, for instance, by setting it proportional to the pre-defined
noise scale σ2

z :

Σϕ(xz, z) = σ2
zI (3)

where σ2
z is part of a predefined noise schedule that in-

creases over time during the forward diffusion process and
consequently decreases during the reverse generative process.
A linear noise schedule could be defined as:

σ2
z =

σ2
Z

Z
z (4)

As such, when z is small, indicating that we are close to
the final generation step, σ2

z is also small, leading to a smaller
Σϕ(xz, z). This design choice ensures that the model exhibits
higher certainty in its predictions as it nears the reconstruc-
tion of the original data, thereby enhancing the stability and
quality of the generated samples.

3.2 Diffusion Based Iterative Zero-Shot Assembler
Denote the input point clouds as P = {Pi | i = 1, . . . , N},
where Pi ∈ Rd×3 corresponds to the i-th part of the 3D
shape, consisting of d points in the 3D space. In zero-shot
task, each part of the point cloud Pi has a corresponding rigid
transformation, described by a quaternion quati ∈ R4 and a
translation vector transi ∈ R3, which represent the rotation
and translation of the part. The goal of this task is to predict
the pose parameters (quaternion quat and translation vector
trans) of the test samples without pose information during
training.

To match the current shape to the diffusion models’s re-
quirements, we introduce Gaussian noise to the current shape:

Pt,z = N (αzPt, σ
2
zI), (5)

where t is the iterative step of our method, z is the time step
in diffusion model ϵ.

By utilizing the denoising process, we can obtain a new
point cloud that is closer to the shape’s distribution:

P∗
t = Pt,z − ϵθ(Pt,z, c), (6)

where c corresponds to the prompt label associated with the
input sample. Subsequently, to satisfy the requirements of
rigid transformations, we employ ICP to obtain the vector of
rotation and translation. We then apply the transformations to
the input point cloud Pt to obtain the updated poses, which
are then utilized as the input for the next iteration.

The theoretical justification for using ICP is detailed in
Section 4. By iterating the above process, we can utilize the
diffusion model ϵ to convert disordered parts into a complete
shape, thereby accomplishing the entire assembly process.

3.3 Collision detection and handling
Given the explicit nature of our method, it facilitates the direct
application of pull-in or push-away operations for either over-
lapping or distant parts. This strategy is very difficult to im-
plement in existing methods due to their poses being implic-
itly generated by the model. To describe the pushing behavior
of Pi in a point cloud P to reduce overlap with Pj (i ̸= j), the
overlap is quantified using C(Pi,Pj), which counts coinci-
dent points. The indicator function I(C(Pi,Pj) < threshold)
determines whether the overlap is below a predefined thresh-
old. The centroids of Pi and their intersection region are de-
noted as C̄Pi

and C̄intersect, respectively. The displacement
required to separate Pi is given by:

∆i = I(C(Pi,Pj) < threshold) ·
(
C̄Pi

− C̄intersect
)
· s.

Here, s specifies the sign of the movement. This approach
computes the necessary displacement direction and distance
to reduce the overlap between Pi and Pj .

4 The Theory of Zero-Shot Assembly
As mentioned previously, part assembly seeks to optimize the
rotation qi and translation ti of each part Pi to transform the
unordered input into a coherent realistic object. Let the qi and
ti be represented by an optimizable transformation matrix Ai,
then the assembly process can be formulated as:

Pout = g(A), (7)
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Figure 2: Visual comparisons demonstrating our superior assembly performance over baseline methods on PartNet. The first column
shows our input at the Excessive level, while the last column presents reference samples obtained through diffusion sampling.

z = 2 z = 4 z = 8 z = 16 z = 32 z = 64 z = 99

Figure 3: Different z in our experiments.

where A = {Ai | i = 1, ..., N}, g(∗) denotes the matrix
multiplication with the unordered point cloud. For previously
supervised part assemblers, the optimization of A is quite
straightforward:

argmin
A

E [g(A)− Pgt] , (8)

where E denotes a set of distance functions and Pgt is the
ground truth. However, optimizing A is non-trivial in our
case, where no supervised data is available. Therefore, in-
stead of forcing g(A) to fit a determined object, we tend to
make the generation of g(A) looks like a realistic object,
i.e. a sample from the distribution of the real object. In-
spired by Poole et al. [2022], we leverage a pre-trained dif-

fusion model for 3D point cloud generation, which implicitly
captures the distribution of point clouds in real-world objects.
Then we optimize over A so that g(A) looks like a sample
from this frozen diffusion model. This is achieved through a
Score Distillation Sampling (SDS) loss [Poole et al., 2022]:

∇ALSDS(θ, g(A)) ≜ Ez,ϵ

[
w(z) (ϵθ (Pt,z; c, z)

−ϵ)
∂Pout

∂A

]
.

(9)

As shown in Fig.1:

ϵθ (Pt,z; c, z) = Pt,z − P∗, (10)
ϵ = Pt,z − Pt. (11)

Substituting Eq. 10 and Eq. 11 into Eq. 9, we get:

∇ALSDS(θ, g(A)) ≜ Ez

[
w(z) (Pt − P∗)

∂Pout

∂A

]
. (12)

In the equation above (Eq. 12), since g(∗) represents ma-
trix multiplication, ∂Pout

∂A corresponds to the coordinates of
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Figure 4: Different Views from Baseline-Simple and Ours.
Baseline-Simple utilizes supervised learning on point clouds gen-
erated by a diffusion model, while our method employs density es-
timates. The results of the Simple are similar to set of point clouds
from reference, but do not correspond to a chair shape.

the points in Pt, which are constant three-dimensional vec-
tors; w(z) is a constant scalar in practice, which will be ex-
plained in the following section. Therefore, the remaining
term Pt −P∗ governs the descent process of the LSDS. If we
can accurately estimate the transformation from Pt to P∗, the
optimization process will converge directly.

In practice, we utilize the ICP algorithm to estimate the
transformation between Pt and P∗, as shown in Fig. 1. It
is worth noting that the smaller the change in the shape of
each part in Pt and P∗, the more accurate the transforma-
tion obtained by the ICP algorithm. We minimize the shape
variation between Pt and P∗ by controlling the magnitude of
noise added and removed during the forward and generation
processes. Recall that the step size determines the noise (Eq.
1 and 3): (1) In the forward process, smaller step sizes reduce
the Gaussian noise variance, bringing Pt closer to Pt,z; (2)
In the generation process, smaller step sizes reduce denoising
variance, making Pt,z closer to P∗. Therefore, we fixed the
time step z to a small value, typically 2 or 4, to obtain more
accurate ICP estimates. Fig. 3 shows the assembly result
under different z with the same iterations, a smaller z signif-
icantly improves the realism of the results. We finally apply
the transformations obtained from the ICP algorithm to Pt to
generate the result of this iteration Pt−1 and use it as the in-
put for the next iteration. With each iteration, the diffusion
model helps bring our results closer to real-world objects.

5 Experiments
5.1 Datasets, Baselines, and Metrics
Dataset. We conduct experiments on the Chair subset of Part-
Net [2019], a large-scale dataset with fine-grained part-level
annotations. We follow the official train/val/test splits: the
training set is used to train a diffusion model for 3D point
cloud generation, and the test set is used for zero-shot assem-
bly. Part counts range from 2 to 20. To evaluate robustness,
we introduce four noise levels: slight, moderate, substantial,
and excessive (see Fig. 6). The diffusion model is adopted
from [Luo and Hu, 2021].
Baselines. We compared our approach with Complement
[2017], DGL [2020], IET [2022], HPA [2024], and Simple.
Among them, Simple is the Baseline we designed, which uti-
lizes seven trainable parameters to represent the rotational

and translational transformations of parts. Simple usually
outperforms other baseline methods in practice.
Metrics. We evaluate using Part Accuracy (PA) and Shape
Chamfer Distance (SCD) from Zhan et al.[2020], as well as
Rotation and Translation RMSE (RMSE(R), RMSE(T)) from
Sellán et al.[2022]. PA assesses per-part precision, SCD mea-
sures overall shape quality, and RMSE(R/T) quantify rotation
and translation accuracy.
Fair Part Accuracy (fPA). Vanilla PA is determined by the
Chamfer Distance between components with identical ten-
sor indices. This metric serves as a criterion for evaluat-
ing assembly precision. However, certain components, such
as stool legs, are permitted to be positioned in regions with
inconsistent indices, as illustrated by GT and Ours in Fig-
ure. Therefore, we propose the concept of Fair Part Ac-
curacy (fPA). Given two point clouds Ppred = {p[i], i ∈
{1, 2, . . . , N}} and Pgt = {g[i], i ∈ {1, 2, . . . , N}}, CD rep-
resents Chamfer Distance calculation. we formally define:

j∗ = argminj CD(Ppred[i],Pgt[j]).

Next, we use Pfair gt to replace Pgt.

Pfair gt[i] = Pgt[j
∗], where i ∈ {1, 2, . . . , N}.

We define the accuracy as:

fPA =
1

N

N∑
p=1

1

(
1

N

∑
p

CD(Ppred[p],Pfair gt[p]) < thre

)
,

where thre = 0.01, which is a parameter inherited from previ-
ous work [2020]. 1 denotes an indicator function that equals
1 if the condition inside is met, and 0 otherwise.

5.2 Experiments Results and Analysis
As demonstrated in the first four rows of Table 1, assembly
performance declines with increasing noise intensity, thereby
validating our noise level designations. The slight noise level
evaluates the ability of our method to converge close to the
ground truth. Conversely, the excessive noise level, character-
ized by randomly dispersed point clouds, tests the extremes
of performance for both baselines and our method. The inter-
mediate moderate and substantial levels further substantiate
the efficacy and rationality of our noise addition strategy.

We evaluated our method against various baselines, as
shown in Table 1, Fig. 2, and the Appendix. Our ap-
proach outperforms current methods in addressing the zero-
shot challenge. All of our metrics outperform existing meth-
ods, except for SCD. This is expected since our method em-
phasizes density estimates from a diffusion model rather than
sampling complete shapes. Therefore, our assembled outputs
conceptually resemble chairs instead of precisely replicating
chair-shaped point clouds. This distinction is illustrated in
Fig. 4, which visualizes samples generated by Simple under
two different random seeds. Furthermore, compared to IET,
Simple performs worse on the SCD, highlighting the advan-
tage of Transformer models in encoding complex structures.
Additionally, we tested a carefully designed model, HPA,
whose performance is significantly impaired when trained ex-
clusively with the SCD. Without any prior information on part
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Methods Noise Level SCD ↓ ×10−3 PA ↑ % RMSE(Trans) ↓ ×10−2 RMSE(Rot) ↓ fPA ↑ %

Ours Slight 7.7 68.59 7.56 7.18 68.91

Ours Moderate 17.0 36.53 27.19 27.16 37.43

Ours Substantial 34.8 15.54 26.89 32.70 17.90

Ours Excessive 45.0 9.0 28.52 31.02 12.3
Simple Excessive 31.7 2.49 48.13 57.13 6.26

HPA Excessive 156.2 0.02 42.69 72.41 0.06

IET Excessive 12.94 0.05 56.75 93.12 0.18

DGL Excessive 165.2 0.03 66.80 69.35 0.08

Random Initial Excessive 203.4 0.0 61.48 89.97 0.0

Table 1: Quantitative evaluation on zero-shot scenario. Underline/bold fonts highlight the suboptimal/best approach. Our approach
outperforms current methods in addressing the zero-shot challenge.

Slight Moderate Substantial Excessive

Ours w/o Push Action 

Ours  w/  Push Action 

Figure 5: Ablation Study of Push Action. Based on our method,
we can clearly separate overlapping parts, which helps reduce the
overlap problem.

Slight Moderate Substantial Excessive

Ours w/o Push Action 

Ours  w/  Push Action 

Figure 6: Different noise levels in our experiments. Illustra-
tions of input under various noise conditions, including slight,
moderate, substantial, and excessive noise.

poses, all baselines demonstrate notably poor performance,
as further analysis of their training loss functions reveals why
they fail in zero-shot scenarios (details in the Appendix). In
the Appendix, we also present an experiment designed to il-
lustrate both the effectiveness of the proposed method and its
limitations on challenging samples. To evaluate the proposed
method under varying levels of task complexity, we con-
ducted experiments with different numbers of components in
the Appendix. As well as more visual results and the details
of our experiments.

5.3 Comparisons with supervised scenario

As indicated in Table 2, our work achieves comparable re-
sults by the early supervised learning method: Complement.
This finding underscores that our method can deliver compet-
itive outcomes even compared to pose-accessible supervised
learning. While our work may not yet achieve the perfor-
mance of existing well-designed supervised learning meth-
ods, we hope it offers insights that may contribute to future
research in zero-shot learning.

Scenario Methods SCD ↓ PA ↑ fPA ↑
Zero-Shot Ours 45.0 9.0 12.3

Zero-Shot Simple 31.7 2.49 6.26

Supervised Complement 24.1 8.78 -

Supervised DGL 9.1 39.0 -

Table 2: Comparisons with methods on Supervised scenario. PA
is a metric used to evaluate the accuracy of each part. Our zero-shot
method can surpass the Complement with supervised learning.

5.4 Ablation Study

In this work, we propose an improved approach to address the
collision issue that arises when identical parts are placed in
the same position. To mitigate this issue, we introduce an ex-
plicit pushing-apart operation. Traditional model-based train-
ing methods struggle to achieve this directly, as the model
generates the predicted poses of parts, and adjustments can
only be made by tuning the model parameters, which lim-
its operational flexibility. However, in this study, we innova-
tively incorporate an explicit pushing-apart operation into the
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Input 2x2 Image 3x3 Image 4x4 Image 4x4 Image

Figure 7: Visual results of 2D Image Reassembly. This figure showcases the effectiveness of the 2D diffusion model in reassembling
fragmented images without simplifying the problem, achieving near-perfect reconstruction for 3×3 image puzzles.

1                  2                   3                  4                  5                   6

7                  8                   9                 10                  11               12

Figure 8: The process of step-by-step assembly with 2D Stable
Diffusion. By simplifying the experiments’ complexity, the 3D part
assembly can also be achieved using 2D stable diffusion.

original method. This operation effectively separates parts,
thereby reducing collision issues. The experimental results,
as shown in Fig. 5, demonstrate the effectiveness of the pro-
posed method.

5.5 Tranfer our work to 2D Diffusion Model
As analyzed in Section 4, our method is not limited to specific
types of diffusion models. A pretrained 2D image diffusion
model, in theory, can also evaluate the quality of assembly
results by differentiably rendering 3D components into 2D
space and feeding them into the model. However, in practice,
this approach is challenging due to the difficulty of propagat-
ing 2D signals back to 3D point clouds and pose parameters.
To test this potential, we conducted a simplified experiment
where all parts shared a common rotational perturbation. This
perturbation was optimized using Eq. 9. We utilized sta-
ble diffusion 2.1 [Rombach et al., 2022] with the prompt ”a
picture of colorful chair” to generate a realistic chair shape.
As shown in Fig. 8, we demonstrate the visualization of the
assembly process. These images are processed through mi-
crorendering, serving as inputs for the diffusion model to ob-
tain SDS loss. This experiment demonstrates that 2D diffu-
sion models have inherent assembly potential, though sophis-
ticated methods are required to fully utilize it. More details
in the Appendix.

5.6 Transfer our work to 2D Image Reassembly
In addition to exploring the potential of 2D diffusion mod-
els for 3D part assembly tasks, we also examined their ca-
pability in 2D image reassembly. Our model can almost
perfectly reconstruct 3×3 image fragments without oversim-
plifying the challenge. 2D Image Reassembly involves re-

assembling cropped segments of a 2D image [Scarpellini et
al., 2024]. In this experiment, no special architecture was
designed; instead, we implemented a classifier utilizing two
CNN layers. An MLP was implemented to predict the correct
position of each sub-image within the whole picture. Train-
ing followed the method outlined in Eq. 9, using stable dif-
fusion 2.1 [Rombach et al., 2022] with the prompt ”a picture
of chair”. As illustrated in Fig. 7, our approach successfully
handles 2D image reassembly challenges up to a complexity
of 4×4. More details in the Appendix.

6 Conclusion
In this work, we introduced a novel zero-shot assembly
method that leverages the inherent assembly capabilities
of general-purpose diffusion models to generate continuous
rigid transformations for object assembly without prior train-
ing on specific shapes or configurations. It uncovers the im-
plicit assembly abilities of general models, enabling assem-
bly tasks even with previously unseen data. Our work is the
first zero-shot part assembly framework, which aims to har-
ness existing extensive work on diffusion models to achieve
assembly at virtually no additional cost, which represents a
meaningful and valuable contribution.

7 Limitation and Future Work
The bottom row of Fig. 2 exemplifies a failure case, reveal-
ing challenges in accurately placing overlapping parts. Es-
pecially when they are far from their GT positions, using
the push operation cannot accurately place overlapping parts.
Adjusting random inputs can mitigate this issue, but it is not
robust enough. In the future, we plan to investigate an inter-
pretable approach to reposition misplaced parts. This requires
us to better explore the underutilized assembly knowledge in-
herent in general models and to be able to identify which po-
sitions have vacancies, thus allowing for the effective transfer
of parts. Our goal is to improve the model’s performance in
assembly tasks without extensive additional costs or exten-
sive supervised learning.
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