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Abstract
Machine unlearning aims to eliminate the influ-
ence of a subset of training samples (i.e., unlearn-
ing samples) from a trained model. Effectively and
efficiently removing the unlearning samples with-
out negatively impacting the overall model perfor-
mance is challenging. Existing works mainly ex-
ploit input and output space and classification loss,
which can result in ineffective unlearning or per-
formance loss. In addition, they utilize unlearn-
ing or remaining samples ineffectively, sacrificing
either unlearning efficacy or efficiency. Our main
insight is that the direct optimization on the rep-
resentation space utilizing both unlearning and re-
maining samples can effectively remove influence
of unlearning samples while maintaining represen-
tations learned from remaining samples. We pro-
pose a contrastive unlearning framework, leverag-
ing the concept of representation learning for more
effective unlearning. It removes the influence of
unlearning samples by contrasting their embed-
dings against the remaining samples’ embeddings
so that their embeddings are closer to the embed-
dings of unseen samples. Experiments on a variety
of datasets and models on both class unlearning and
sample unlearning showed that contrastive unlearn-
ing achieves the best unlearning effects and effi-
ciency with the lowest performance loss compared
with the state-of-the-art algorithms. In addition, it
is generalizable to different contrastive frameworks
and other models such as vision-language models.
Our main code is available on github.com/Emory-
AIMS/Contrastive-Unlearning

1 Introduction
Machine unlearning [Cao and Yang, 2015] aims to remove
a subset of data (i.e., unlearning samples) from a trained
machine learning (ML) model without retraining the model
from scratch and has received increasing attention due to var-
ious privacy regulations. Notably, “the right to be forgot-
ten” from the General Data Protection Requirement (GDPR)
gives individuals the right to request their data to be removed
from databases, which extends to models trained on such

data [Mantelero, 2024]. Since models can remember training
data within their parameters [Arpit et al., 2017], it is neces-
sary to “unlearn” these data from a trained model. The goals
and evaluation metrics for unlearning typically include: 1)
unlearning efficacy, which measures how well the algorithm
removes the influence of unlearning samples. This can be
assessed by the model’s performance on the unlearning sam-
ples, or by its robustness against membership inference at-
tacks [Shokri et al., 2017; Carlini et al., 2022; Ye et al., 2022;
Sablayrolles et al., 2019]; 2) model performance on its orig-
inal tasks, which ensures that the unlearning does not sig-
nificantly degrade its overall accuracy; and 3) computational
efficiency, which assesses the time and resources required for
the unlearning.
While many promising approaches are proposed, existing

works present several limitations: 1) They exploit input and
output space and classification loss. As a result, it may lead to
significant shift in decision boundaries, affecting model util-
ity. 2) They either utilizes unlearning or remaining samples
alone or use both but in an ineffectively and hence sacrifice ei-
ther unlearning efficacy or efficiency. For example, Gradient
Ascent [Golatkar et al., 2020] only uses unlearning samples
and attempts to reverse their impact by applying gradient as-
cent using the classification loss. Finetune [Golatkar et al.,
2020] only uses remaining samples to iteratively retrain the
model to gradually remove the influence of unlearning sam-
ples leveraging the catastrophic forgetting effect [Goodfellow
et al., 2013]. SCRUB [Kurmanji et al., 2023] uses both un-
learning and remaining samples for unlearning, but requires
multiple iterations over the entire remaining samples, leading
to excessive computations.
Our Contributions. To address these deficiencies, we
present a novel contrastive approach for machine unlearn-
ing, or contrastive unlearning. We rethink the problem
of machine unlearning in the perspective of representation
space. We re-purpose the idea of supervised contrastive learn-
ing [Khosla et al., 2020], a widely used representation learn-
ing approach, for more effective unlearning of general classi-
fication models.
The goal for unlearning is rooted in the fundamental differ-

ence between how a model perceives training and test sam-
ples. The model optimizes the representations of the train-
ing samples during the learning process, resulting in em-
beddings that are deeply aligned within the correct decision
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boundaries, often with high confidence. Test samples, in con-
trast, are unseen during training and typically produce embed-
dings within the correct decision boundary but closer to the
boundary, reflecting the model’s generalization to new data.
This distinction is also the basis for privacy vulnerabilities,
such as membership inference attacks [Shokri et al., 2017;
Yeom et al., 2018], where adversaries exploit the model’s
higher confidence or distinctive embeddings for training sam-
ples to infer their membership in the training dataset.
Based on the rationale, our main idea is to simultaneously

contrast an unlearning sample with 1) Positive samples (re-
maining samples from the same class as the unlearning sam-
ple) and push their embeddings apart from each other, and 2)
Negative samples (remaining samples from different classes
as the unlearning sample) and pull their embeddings close to
each other. This results in embeddings of unlearning sam-
ples away from remaining training samples and closer to the
decision boundaries and test samples’ embeddings. It has
two main insights. First, directly optimizing the embeddings
of unlearning samples facilitates more effective unlearning.
Second, by contrasting embeddings of unlearning samples, it
can effectively unlearn while minimizing any change of the
decision boundaries. Additionally we introduce an auxiliary
classification loss on the contrasted remaining samples to fur-
ther maintain model accuracy.

Figure 1: Visualization of Representation Spaces for Contrastive
Unlearning, Gradient Ascent, and Finetuuning

Figure 1 illustrate the intuition of contrastive unlearning
compared to existing approaches in a normalized represen-
tation space. Circles, squares, and triangles are embeddings
of unlearning, remaining samples, and test samples, respec-
tively. Colors represent different classes. Dotted lines show
decision boundaries. We assume the model has been trained,
so the embeddings of training samples are clustered to their
respective classes [Das and Chaudhuri, 2024].
Given an embedding of sample zi, contrastive unlearning

pushes zi away from its own class (positive pairs) and pulls
zi towards the samples with different classes (negative pairs).
This results in the unlearned embedding z→i to be distant from
remaining samples and closer to the decision boundaries,
where test samples’ embeddings (triangles) are located. In
comparison, Gradient ascent [Golatkar et al., 2020] pushes
zi away in the representation space from its own class but
may either apply insufficient change (ineffective unlearning),
or significantly affect embeddings of remaining samples of

the same class and the decision boundary (model utility loss).
Finetune indirectly pushes the unlearning samples away from
its class (ineffective unlearning) and is susceptible to overfit-
ting to the remaining samples (model utility loss).
Our contrastive unlearning is fundamentally different from

contrastive learning. The goal of contrastive learning is to
learn representations to distinguish different samples, while
our goal is to modify embeddings of unlearning samples and
maintain model’s general classification performance. It fea-
tures several novel algorithm designs and new findings: 1) we
construct contrasting pairs different from conventional con-
trastive learning to serve the unlearning purpose and design
new contrastive unlearning losses for both sample unlearn-
ing (unlearning randomly selected training samples) and sin-
gle class unlearning (unlearning every sample of a class); 2)
while it is common to add a classification loss on the remain-
ing samples to maintain the performance of the unlearning
model, we find that the classification loss helps keep the em-
beddings of the remaining samples in place and reciprocally
improves unlearning effectiveness, validated by our empirical
analysis followed by in-depth analysis.
In addition, contrastive unlearning is highly scalable as it

can leverage other existing contrastive learning algorithms as
a backbone. While our main experiments and analysis uti-
lize supervised contrastive learning (SupCon) [Khosla et al.,
2020], we also demonstrate the scalability using MoCo [He et
al., 2020]-based contrastive framework. Finally, while exist-
ing approaches focus on standard classifiers, contrastive un-
learning is highly generalizable, capable of unlearning a va-
riety of models. We empirically demonstrate its effectiveness
in unlearning a class from a finetuned vision-language model
CLIP [Radford et al., 2021].
In summary, our contributions are as follows:
(1) We propose contrastive unlearning, a novel unlearning

framework utilizing the concept of the representation learn-
ing and contrastive loss. Instead of analyzing inputs and out-
puts of the model, we formulate the unlearning framework as
modifying embeddings of unlearning samples to be similar
to the embeddings of test samples (unseen samples) without
directly using them, hence effectively removing the influence
of unlearning samples.
(2) To achieve the unlearning goal, we customize the con-

trastive unlearning loss for two different unlearning tasks:
single class unlearning and random sample unlearning. We
design an effective termination condition for each task,
achieving effective and efficient unlearning.
(3) We conduct comprehensive experiments comparing

contrastive unlearning with various state-of-the-art methods
on two unlearning tasks, single class and sample unlearning,
to demonstrate the effectiveness, efficiency, and versatility of
our approach. We also conduct a membership inference at-
tack to verify the unlearning efficacy of sample unlearning.
The results show that contrastive unlearning has the best ef-
ficacy while maintaining model utility with high computa-
tional efficiency. In addition, we demonstrate generalizability
of contrastive unlearning across various models by unlearn-
ing an vision-language model. We show scalability of our
approach by leveraging more advanced contrastive learning
algorithms.
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2 Related Works

Machine unlearning was introduced by [Cao and Yang, 2015]
with three goals: 1) completeness, suggesting an unlearning
algorithm should reverse the influence of unlearning sam-
ples and the unlearned model should be consistent with a
retrained model with the remaining samples; and 2) timeli-
ness, the unlearning algorithm should be be faster than re-
training; and 3) The unlearned model should maintain high
utility after unlearning. Exact unlearning ensures the com-
pleteness of unlearning. SISA is an exact unlearning frame-
work that splits the dataset into partitions and retrains sub-
models whose shard has the unlearning sample [Bourtoule et
al., 2021]. These require partitioned training and still costly
retraining, and model performance is highly dependent on
partitioning strategy [Koch and Soll, 2023].
Approximate unlearning allows approximate complete-

ness. Certified unlearning provides a mathematical guarantee
on unlearning. [Guo et al., 2020] proposed unlearning using
newton-type hessian update with (ω, ε)-indistinguishability.
[Neel et al., 2024] utilized projected gradient descent on the
partitioned dataset with a probabilistic bound. [Gupta et al.,
2021] proposed adaptive unlearning streams. Fisher unlearn-
ing uses fisher information matrix [Golatkar et al., 2020]
to identify optimal noise to remove the unlearning samples.
Drawbacks of certified unlearning algorithms include the dif-
ficulty to scale, and most of them require convexity for the
mathematical guarantee. Moreover, [Thudi et al., 2022]
questioned validity of certified unlearning. Recently, some
works tried to address limitations of certified unlearning, in-
cluding LCODEC [Mehta et al., 2022], which reduced the
computation cost by selectively generating hessian matrices
and certified unlearning for non-convex setting [Zhang et al.,
2024]. While both are promising, experimental results show
suboptimal unlearn efficacy.
Another body of approximate unlearning shows the un-

learning effect through empirical evaluations. Usually, these
works target class unlearning, which is to unlearn every sam-
ple of a class. UNSIR [Tarun et al., 2023] conducts noisy
gradient updates. Boundary unlearning unlearns an entire
class [Chen et al., 2023] by changing decision boundaries.
ERM-KTP uses a special model architecture known as an en-
tanglement reduce mask [Lin et al., 2023]. SCRUB [Kur-
manji et al., 2023] is based on the knowledge distillation,
where the teacher or the original model transfers knowledge
to the unlearned model in every class except the unlearn-
ing class. [Bui et al., 2024] proposed more robust second-
order unlearning. The authors proposed cubic-regularizer to
prevent hessian degeneration. [Nguyen et al., 2022] pro-
posed markov-chain monte carlo algorithm for unlearning,
and [Nguyen et al., 2020] proposed unlearning for bayesian
models. Recently, [Cha et al., 2024] proposed instance-wise
unlearning with analysis on decision boundaries. However, it
assumes that remaining samples are unavailable, and defined
the unlearning goal as to incorrectly classify all unlearning
samples, which are different from most unlearning works. As
most works, we assume that remaining samples are available
and our goal of unlearning is to make the model to perceive
unlearning samples as unseen samples, not to completely mis-

classify them. We do not compare with [Cha et al., 2024] due
to its different assumption and unlearning goal.

3 Problem Definition
We define a classification model F = H (Eω (·)) where Eω (·)
is a neural network based encoder parameterized by ϑ and
H (·) is a classification head. Eω produces embeddings z
given a sample x. H receives z and yields a prediction. Let F
be trained using datasetDtr = {(x1, y1) · · · (xn, yn)}, where
each data point is a tuple (xi, yi) including feature set xi and
label yi → {0 · · ·C} where C is the number of classes. We
suppose F was trained with cross-entropy loss. Let Dts be a
test dataset sampled from an analogous distribution withDtr,
satisfying Dts ↑Dtr = ↓.
Let Du

tr ↔ Dtr be a set of samples to be forgotten (i.e.,
unlearning samples). The remaining set is Dr

tr = Dtr \ D
u
tr.

Let a retrained model FR be trained only with D
r
tr. An un-

learning algorithm M receives Dr
tr,D

u
tr, ϑ and produces ϑ→.

An unlearned model F → = H (Eω→) should resemble FR.

3.1 Single Class Unlearning
For single class unlearning, Du

tr consists of all samples of an
unlearning class c. The test set Dts can be split into D

u
ts and

D
r
ts, whereDu

ts includes all test samples of class c, andDr
ts =

Dts \ D
u
ts includes all test samples of remaining classes. A

retrained model FR will have zero accuracy on Du
tr and Du

ts,
the training and test samples of class c, since it was retrained
without class c. So given an accuracy function Acc, the goal
of single class unlearning is for the unlearned model F → to
achieve near-zero accuracy on both training and test samples
of class c (unlearning efficacy) and similar accuracy as the
retrained model FR for remaining classes (model utility).

Acc
(
F →,Du

tr

)
→ 0, Acc

(
F →,Du

ts

)
→ 0, (1)

Acc
(
F →,Dr

ts

)
→ Acc

(
FR,Dr

ts

)
. (2)

Single-class unlearning can be potentially implemented us-
ing simple rules such as assigning random labels from re-
maining classes to the samples classified as the unlearning
class. However, such rule-based unlearning has fundamen-
tal flaws: (1) Insufficient Unlearning: the patterns or influ-
ence of samples from the unlearning class remain within the
model (weights). If the model is released or leaked, an ad-
versary can potentially recover knowledge of the unlearning
class. (2) Model Utility: the random class assignment can
degrade the performance of all remaining classes. Hence our
goal is to unlearn the model itself to remove the influence of
the class.

3.2 Sample Unlearning
For sample unlearning, the unlearning samples Du

tr can be-
long to different classes. A retrained model FR has similar
accuracy on unlearning samples D

u
tr and test samples Dts.

So the goal of sample unlearning is for the unlearned model
F

→ to achieve similar accuracy as the retrained model FR on
both unlearning samples (unlearning efficacy) and test sam-
ples (model utility).
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Acc
(
F →,Du

tr

)
→ Acc

(
FR,Dts

)
, (3)

Acc
(
F →,Dts

)
→ Acc

(
FR,Dts

)
. (4)

As we discussed earlier, a model’s generalization capa-
bility is intrinsically related to unlearning. A model with
stronger generalization can be easier for sample unlearning
because it relies on broader patterns rather than memorizing
individual data points, and its test and train accuracy is al-
ready similar. (Equation 3). However, generalization alone is
insufficient and even a generalized model can still memorize
unique pattern of training samples and requires full unlearn-
ing [Long et al., 2018].

4 Contrastive Unlearning
Contrastive unlearning utilizes representation space for un-
learning purposes and leverages the contrast between remain-
ing and unlearning samples. If a sample x had been used
as a training example, information extracted from x by Eω

would be geometrically expressed in the representation space.
Specifically, we hypothesize that samples of a class have sim-
ilar embeddings and samples from different classes have dis-
similar embeddings even when the model was not explicitly
trained with representation learning. Existing literature sup-
ports this by mathematically and empirically showing that a
model optimized with cross-entropy loss produces higher ge-
ometric similarity among embeddings of samples of the same
class and lower similarity among different classes [Das and
Chaudhuri, 2024; Graf et al., 2021].
From this intuition, we aim to isolate the representations

or embeddings of unlearning samples away from remaining
samples up to the point where the model perceives them as
unseen samples. To effectively achieve this, we contrast each
unlearning sample with 1) remaining samples from the same
class (positive pairs) and push their representations apart from
each other, and 2) remaining samples from different classes
(negative pairs) and pull their representations closer to each
other. To this end, the embeddings of unlearning samples ap-
proach to the decision boundaries of the classes. This has
some relation with existing literature of contrastive learning,
however, our approach is fundamentally different as it con-
trasts pairs of unlearning and remaining samples while con-
trastive learning contrasts samples simply by their classes.
Contrastive Unlearning Loss: Sample Unlearning. Con-
trastive unlearning uses a batched process. In each round, an
unlearning batch Xu = {xu

1 , · · ·x
u
B} with size B is sam-

pled from the unlearning data D
u
tr, and a remaining batch

Xr = {xr
1 · · ·x

r
B} is sampled from the remaining set Dr

tr.
We denote xi, the i-th sample of Xu, as an anchor. Based
on xi, positives and negatives are chosen from Xr. Posi-
tives are Px (xi) = {xj |xj → Xr, yj = yi}, or remaining
samples with the same class as xi; negatives are Nx (xi) =
{xj |xj → Xr, yj ↗= yi}, or remaining samples with different
class as xi. Correspondingly, let embeddings of positives and
negatives be Pz (xi) = {zj |zj = Eω (xj) , xj → Px (xi)} and
Nz (xi) = {zj |zj = Eω (xj) , xj → Nx (xi)}. The contrastive
unlearning loss aims to minimize the similarity of positive

pairs and maximizes the similarity of negative pairs (the op-
posite of contrastive learning).

LUL =
∑

xi↑Xu

↑1
|Nz (xi)|

∑

za↑Nz

log
exp (zi · za/ω)∑

zp↑Pz(xi)

exp (zi · zp/ω)
.

(5)

where ϖ → R
+ is a scalar temperature parameter. In our final

algorithm, we contrast each Xu, with ϱ randomly sampled
batches of Xr. Thus within a single unlearning round, our
algorithm computes every batch of Du

tr for ϱ times. Refer to
appendix B for more details.
Contrastive Unlearning Loss: Single Class Unlearning.
For single class unlearning, the unlearning set D

u
tr =

{(xi, yi) |yi = c} and remaining set Dr
tr = {(xi, yi) |yi ↗=

c}. This makes the positive set Pz = ↓ as none of remaining
samples belong to class c. In short, there are no positive re-
maining samples to push away the unlearning samples. Thus
we change equation 5 as follows.

LUL =
∑

xi↑Xu

↑1
|Nz (xi)|

∑

za↑Nz

log
exp (zi · za/ω)

|Nz (xi)|
. (6)

We replaced the previous denominator to |Nz (xi)|. This is
because equation 5 requires both directions to push and pull
unlearning samples. Lacking one of the directions increases
the instability, as it can lead to representation collapse [Chen
and He, 2021]. Since Pz = ↓, we replace the denominator
to |Nz (xi)| to introduce damping effects against excessively
pulling unlearning samples to negative samples.
Classification Loss of Remaining Samples. A novel chal-
lenge of contrastive unlearning is to preserve embeddings of
remaining samples. Optimizing equation 5 not only alters
embeddings of the anchor unlearning sample but also recip-
rocally alters embeddings of all samples in Px and Nx. All
positive samples are slightly pushed away from and all neg-
atives are slightly pulled toward the anchor. A similar effect
arises in contrastive learning, but it is not problematic as it
reinforces the consolidation of embeddings of the same class.
However, for unlearning purposes, embeddings ofXr have to
be preserved, because: 1) not preserving them directly leads
to a loss in model performance, and 2) it also reciprocally
affects unlearning effectiveness as magnitude of pulling and
pushing decreases. In short, embeddings ofXr are also mod-
ified as a byproduct of optimization and it is necessary to re-
store them back. We utilize cross-entropy loss for restoring
embeddings of Xr, because it derives maximum likelihood
independently to each sample [Shore and Johnson, 1981].
This ensures obtaining directions very close to the original
embeddings. Combining the unlearning loss, the final loss
for our proposed contrastive unlearning is as follows,

L = εULLUL + εCELCE (F (Xr) , Y r) (7)

whereXr and Y r are the sampled batches of remaining sam-
ples and their corresponding labels. ςCE and ςUL are hyper-
parameters to determine influence of the two loss terms. The
full algorithm is in Appendix B.
Termination Condition. Pinpointing the right moment to
terminate the unlearning process is crucial, as terminating too
early or too late will lead to insufficient unlearning or poor
model utility. None of existing works explicitly discuss the
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termination condition. We design explicit termination condi-
tions for both class and sample unlearning based on our un-
learning goals. We assume a small dataset Deval is available
for determining the termination condition. We evaluate the
conditions every unlearning round.
For class unlearning, recall our problem definition in 3.1

and the goal in equation 1. We can set Deval = Du
ts, the

test data of the unlearning class. Ideally, we want F → to have
close to 0 accuracy for the unlearning class. However, this
can be too strict for termination. We loosen the condition and
terminate the algorithm when the accuracy of F → on the un-
learning class falls below a threshold. We set the threshold
to be 1/C where C is the total number of classes in the train-
ing data and 1/C corresponds to the accuracy of a random
guess, which suggests knowledge about the unlearning class
is sufficiently removed from the model.

Acc
(
F →,Deval

)
↓ 1

C
. (8)

For sample unlearning, recall our problem definition of 3.2
and the goal in equation 3. Ideally, we want the accuracy of
unlearning samples by the unlearned model to be similar to
the accuracy of the test samples by the retrained model. Since
we do not have access to the retrained model, we use a proxy
criteria which requires the accuracy of the unlearning samples
to be similar to the test samples by the same unlearned model.
Specifically, we set Deval = {D

u
eval,D

ts
eval} where Du

eval ↔

D
u
tr and D

ts
eval ↔ Dts. The algorithm terminates when the

accuracy of F → on Du
eval drops below the accuracy on Dts

eval.

Acc
(
F →,Du

eval

)
↓ Acc

(
F →,Dts

eval

)
. (9)

Intuitively, it is not desired to terminate the algorithm before
satisfying the condition in 9 because it implies that the model
still retains information regarding D

u
tr. It is also not desired

to continue running the algorithm to further reduce accuracy
onDu

tr much lower thanDts because it is negatively injecting
information regarding D

u
tr into ϑ→. This results in F

→ to de-
liberately make incorrect classification on D

u
tr, which is not

aligned with our goal of sample unlearning.

5 Experiments
5.1 Experiment Setup
Datasets and Models. We use three benchmark datasets:
CIFAR-10, SVHN, and Mini-Imagenet [Cao, 2022], and em-
ploy ResNet (RN)-18, 34, 50, and 101 models [He et al.,
2016] and ViT-small [Dosovitskiy et al., 2021]. We report
the results of CIFAR-10 and Mini-Imagenet in the main pa-
per. Please refer to the appendix for details on the models,
implementations (code), results of SVHN, additional experi-
ments on CIFAR-10 and Mini-Imagenet, and parameter stud-
ies. We use CLIPmodel [Radford et al., 2021], and a different
contrastive framework MOCO [He et al., 2020] to show the
generalizability and scalability.
Comparison Methods. For class unlearning, we remove all
samples belonging to class 5 by default. For sample unlearn-
ing, we remove randomly selected 500 samples by default.
We also evaluate class unlearning on other classes and sample
unlearning of varying number of samples. Please refer to Ap-
pendix D.3 and D.5 for results. To assure the robustness, we

repeat sample unlearning with a random seed for five times
and report the average and standard deviation of the results.
We provideRetrain, a retrained model using the training data
excluding the unlearning data, as a reference.
We include four state-of-the-art (SOTA) methods specif-

ically designed for single class unlearning: 1) Boundary
Expansion [Chen et al., 2023] trains the model using all un-
learning samples as a temporary class and then discards the
temporary class. 2) Boundary Shrink [Chen et al., 2023]
modifies the decision boundary of unlearning class to prevent
unlearning samples from being classified into the unlearning
class. 3) SCRUB [Kurmanji et al., 2023] is based on the
knowledge distillation, selectively transfers knowledge from
the original model to the unlearned model (all information
except that of the unlearning class). 4) UNSIR [Tarun et al.,
2023] uses an iterative process of generating noise that max-
imizes error in the unlearning class and repairing the classifi-
cation performance for the other classes.
We include four SOTA methods designed for sample un-

learning: 1) Finetune [Golatkar et al., 2020] iteratively
trains the original model using only the remaining samples.
2) Gradient Ascent [Golatkar et al., 2020] conducts gradi-
ent ascent using unlearning samples. 3) Fisher [Golatkar et
al., 2020] is a certified unlearning algorithm using random-
ization with Fisher information matrix. 4) LCODEC [Mehta
et al., 2022] is also a certified unlearning method with a fast
and effective way of obtaining Hessian by importance-based
parameter selection.
We note that sample unlearning methods may be used for

class unlearning. However, our class unlearning baselines al-
ready demonstrated their superiority over the sample unlearn-
ing baselines. Hence we do not include them in comparison.

Evaluation Metrics. 1) Model performance. For class un-
learning, we assess the accuracy of the unlearned model on
D

r
ts (test data of remaining classes). For sample unlearn-

ing, we evaluate Dts (test data). 2) Unlearning efficacy.
For class unlearning, we assess accuracy of the unlearned
model on D

u
tr and D

u
ts (training and test data of unlearning

class). Successful class unlearning should achieve zero for
both. For sample unlearning, we assess accuracy of Du

tr (un-
learning samples). We provide an additional metric of un-
learn score. It is the absolute difference between the accu-
racy of test and unlearn samples. A successful sample un-
learning should achieve a low unlearn score which means the
model perceives unlearning samples and test samples (unseen
samples) similarly. The statistical reliability is dependent on
the test and unlearn accuracy. 3) Efficiency is measured by
the runtime of the unlearning algorithm.

Unlearning Verification via MIA. We conduct a member-
ship inference attack (MIA) [Shokri et al., 2017] to verify ef-
fectiveness of sample unlearning. Although more robust MIA
frameworks are available such as LiRA [Carlini et al., 2022],
we used the MIA framework from [Shokri et al., 2017] as
our main goal is to fairly compare our contrastive unlearn-
ing and other baseline unlearning algorithms and to obtain
a generalizable comparison on unlearning efficacy. Refer to
appendix C.1 for details of MIA.
We report the Member prediction rate defined as num-
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Remain test ↑ Unlearn train ↓ Unlearn test ↓

Method RN18 RN34 RN50 RN101 RN18 RN34 RN50 RN101 RN18 RN34 RN50 RN101

Retrain (Reference) 65.62 67.64 70.57 71.34 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Contrastive 60.69 57.61 58.81 58.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
Boundary Shrink 10.17 14.88 - - 0.00 0.00 - - 0.00 0.00 - -
Boundary Expansion 51.26 26.89 - - 0.00 0.00 - - 0.95 0.00 - -
SCRUB 50.20 26.57 22.03 12.63 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
UNSIR 17.05 12.32 12.74 8.75 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 1: Performance evaluation for single class unlearning on Mini-Imagenet

Model Retrain
(Reference)Contrastive

Boundary
Shrink

Boundary
Expansion SCRUB UNSIR

RN18 329.23 4.51 7.99 8.38 12.54 5.74
RN34 468.89 8.25 14.76 12.82 21.54 10.05
RN50 911.55 16.01 - - 47.50 20.95
RN101 1473.07 26.94 - - 76.17 31.01

Table 2: Running time of class unlearning on Mini-Imagenet (Min-
utes).

ber of positive (member) predictions by the MIA divided by
total number of tests. It can be considered as false positive
rate (FPR) for unlearning samples (considering them as non-
members) and true positive rate (TPR) for members. An ef-
fective unlearning algorithm should have a low member pre-
diction rate on unlearning samples and high member predic-
tion rate on member samples. Our metric is consistent with
existing literature [Jia et al., 2023] utilizing true negative rate
(TNR) for unlearning samples and test non-member samples.

5.2 Results on Single Class Unlearning

Unlearning Efficacy and Model Performance. Table 1
shows the accuracy of unlearned models on Mini-Imagenet.
Results of other classes are consistent. Readers may refer to
Appendix D.3. We only report the average and omit standard
deviation since all of them are very small (<0.01). The re-
train shows an ideal unlearning with good performance and
zero accuracy for both unlearn train and unlearn test sets.
Contrastive unlearning achieves zero unlearn accuracy across
all models with the smallest performance loss, showing com-
pleteness in unlearning while preserving model utility. Com-
pare to the experiments on CIFAR-10 and SVHN datasets,
the utility loss is bigger on unlearning Mini-Imagenet dataset.
We presume that it is due to the large number of classes as
model could exhibit more intricate decision boundaries. We
did not report experiments of ViT models, Boundary Shrink
and Boundary Expansion for ResNet50 and ResNet101 be-
cause they required excessive computational resources and
resulted out-of-memory error.
Efficiency. Table 2 depicts the elapsed time for each unlearn-
ing algorithm of the single class unlearnings. Contrastive un-
learning is the fastest compared to all baselines, requiring the
smallest number of passes over the entire unlearning samples.

5.3 Results on Sample Unlearning

Model Performance. Table 3 shows the performance metrics
of unlearned models. Like the results of the retrained model,

successful sample unlearning should achieve high test accu-
racy (utility) and low unlearn score (effective unlearning).
Contrastive unlearning achieved best utility and good unlearn
score. LCODEC achieved higher test accuracy on ViT, how-
ever, its unlearn score implies unlearning was not complete,
resulting in higher test accuracy. Although fine-tuning re-
sulted lower unlearning scores, the difference is not signifi-
cant and we demonstrate in the following paragraph that con-
trastive unlearning actually achieves effective unlearning.

Unlearning Efficacy via MIA. Table 4 shows the mem-
ber prediction rate of the MIA on unlearning samples and
test member samples against each unlearned model. An
ideal attack model against the retrain model should have zero
member prediction rate for unlearning samples and 100%
for member samples (since the unlearning samples are non-
members). However, the attack model in our experiment
shows around 60% for unlearning samples on the retrain
model, which is due to the attack power of the attack model.
The high rate on member samples suggests it has reasonable
attack power in recognizing members. We expect stronger
attack methods [Carlini et al., 2022] can better differenti-
ate members and non-members but the comparison of the
methods should stay the same. An unlearning algorithm is
more effective if it exhibits 1) lower member prediction rate
on unlearning samples, and 2) bigger difference in member
prediction rate on unlearning samples and member samples.
For gradient ascent, Fisher, and LCODEC, the member pre-
diction rate for member samples and unlearning samples are
similar, showing ineffective unlearning. For finetune and con-
trastive unlearning, the member prediction rate for unlearning
samples is lower than member samples. However, the differ-
ence is significantly bigger in contrastive unlearning, suggest-
ing stronger discrimination between unlearning samples and
member samples and more effective unlearning.

Efficiency. Table 5 shows the runtime of different algorithms.
It shows contrastive unlearning is the fastest to reach the ter-
mination condition. On average, it needed less than 15 un-
learning rounds, which is computation equivalent to at most
15 ↘ ϱ passess on unlearning dataset. While gradient as-
cent also iterates only on unlearning dataset, it requires more
than 40 passess to achieve unlearning effects, and requires a
smaller batch size for the better results. Finetune, Fisher, and
LCODEC need longer runtime as they iterate over the entire
set of remaining samples. Moreover, Fisher and LCODEC are
even slower for bigger models as their computation is propor-
tional to model parameters and hardly parallelizable.

Embeddings visualization. Figure 2 is the visualization of
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Test accuracy ↑ Unlearn accuracy Unlearn score ↓

Method RN18 RN34 RN50 RN101 ViT RN18 RN34 RN50 RN101 ViT RN18 RN34 RN50 RN101 ViT

Retrain 84.68±0.23 85.48±0.14 86.44±0.57 85.98±0.13 73.28±0.52 85.30±0.6 85.12±0.21 86.86±0.52 86.11±0.27 73.40±0.82 0.62 0.08 0.42 0.31 0.12

Contrastive 81.86±0.33 83.53±0.54 84.80±0.34 86.75±0.87 62.02±0.49 81.69±0.24 81.50±1.4 83.20±0.00 85.34±0.87 59.67±0.90 0.17 2.03 1.6 1.41 2.35
Finetune 81.68±0.29 82.38±0.80 82.60±0.51 83.76±1.16 73.08±2.35 83.65±2.5 82.7±0.89 82.46±1.59 82.23±1.58 96.43±3.23 1.97 0.32 0.14 0.53 23.35
Gradient 67.64±3.41 67.54±3.41 67.70±5.22 76.76±6.71 69.25±3.17 88.65±3.86 88.65±3.86 91.80±1.12 94.18±3.34 95.93±2.59 21.01 12.11 24.10 17.42 26.68
Fisher 76.54±2.34 76.54±2.34 72.03±8.00 82.81±0.83 20.66±3.10 92.83±2.71 92.85±2.73 85.15±12.1 98.30±0.93 24.98±3.30 16.29 16.31 13.12 15.49 4.32
LCODEC 76.20±1.37 81.22±0.85 78.14±1.04 78.62±1.11 84.54±0.78 99.65±0.24 99.53±0.23 99.31±0.45 99.08±0.78 89.23±0.97 23.45 18.31 21.17 20.46 4.69

Table 3: Performance evaluation on sample unlearning on CIFAR-10.

Model
Unlearning Samples ↓ Member-test Samples (Reference)

Retrain (Ref.) Contrastive Finetune Gradient Ascent Fisher LCODEC Retrain (Ref.) Contrastive Finetune Gradient Ascent Fisher LCODEC

RN18 63.28±0.48 60.88±0.78 63.87±0.98 79.85±1.13 85.91±1.26 92.18±1.41 96.08±0.52 91.05±0.59 85.81±1.01 84.62±1.12 89.23±1.31 92.98±0.89
RN34 63.81±0.55 53.51±0.58 66.65±0.87 83.08±0.99 82.59±1.10 95.49±1.13 94.82±0.32 86.44±0.46 86.99±0.84 84.01±1.18 83.74±0.98 97.21±1.21
RN50 63.04±0.29 60.87±0.64 68.47±0.89 85.87±1.08 74.46±1.42 93.98±1.35 97.43±0.47 91.13±0.54 84.03±0.93 89.29±1.29 77.15±1.68 93.59±1.56
RN101 62.49±0.51 60.79±0.78 54.89±0.99 91.98±1.14 84.20±1.86 94.93±1.53 95.74±0.62 86.45±0.92 62.39±1.05 90.47±0.89 84.90±1.77 95.10±1.68
ViT 53.57±0.38 55.49±0.74 84.97±1.04 56.58±1.23 56.18±1.59 83.99±1.48 89.29±0.76 72.87±0.69 85.92±1.18 57.49±1.44 59.86±0.88 87.12±1.43

Table 4: Member prediction rate on unlearning samples and member-test samples (memorized train samples) of MIA on CIFAR-10 dataset.

Method RN18 RN34 RN50 RN101 ViT

Retrain 43.05±2.18 73.22±3.44 134.42±4.72 215.84±4.57 402.15±3.73
Contrastive 2.68±0.64 3.64±0.72 8.46±0.98 12.63±1.02 3.10±0.45
Finetune 16.93±2.24 31.51±2.21 42.93±3.52 103.74±3.05 79.24±3.61

GA 4.89±0.82 7.52±1.21 14.16±1.46 20.21±1.41 35.65±1.19
Fisher 72.31±1.52 115.51±1.98 219.49±1.95 398.87±1.66 218.93±1.48

LCODEC 34.87±1.87 55.50±1.15 152.28±1.64 449.11±1.31 1719.60±3.41

Table 5: Running time of sample unlearning on CIFAR-10 (minutes)

Figure 2: Visualization of the representation space

representation space with Uniform Manifold Approximation
and Projection (UMAP). The colors represent each class. The
circles, crosses and triangles represent embeddings of re-
maining, unlearning and test samples respectively. For sim-
plicity, we only show five classes and 128 unlearning, remain-
ing and test samples. The left figure shows the embeddings
before unlearning, both unlearning and remaining samples
are clustered to their classes. The right figure shows the em-
beddings after termination condition is satisfied. It clearly
shows that representations of unlearning samples are pushed
away from their original clusters and closer to test samples
while remaining samples are intact.

5.4 Generalizability & Scalability
Generalizability. Contrastive unlearning is highly general-
izable across different models due to its nature of optimiz-
ing embeddings to achieve unlearning. It can unlearn mod-
els beyond the standard classifiers such as vision language

Method Remain test ↑ Unlearn train↓ Unlearn test↓

Contrastive 76.20 0.0 0.0
Gradient Ascent 12.42 0.0 0.0

Finetune 79.87 87.00 68.32

Table 6: Performance evaluation on class unlearning on CLIP

models. To demonstrate, we finetune CLIP [Radford et al.,
2021] with CIFAR-100 (top-1 accuracy of 82.3%) and un-
learn entire class of 1 using contrastive unlearning. We com-
pare results only with gradient ascent and finetune as other
baselines are strictly designed for unlearning standard classi-
fiers. Table 6 shows that contrastive unlearning completely
removes knowledge of the class from CLIP with small utility
loss. Meanwhile, baselines experienced ineffective unlearn-
ing or utility loss. Refer to Appendix D.7 for the details.
Scalability. Contrastive unlearning is a general framework
and can leverage more advanced contrastive “learning” algo-
rithms for enhanced scalability and reduced batch size depen-
dence. To demonstrate, we utilize MoCo [He et al., 2020], a
batch-agnostic contrastive learning algorithm as a backbone
and compared the unlearning efficacy and model utility with
the standard one. The results showed that MoCo-based un-
learning significantly outperformed the standard method with
small batch sizes. Refer to Appendix D.8 for the details.

6 Conclusion
In this paper, we proposed a novel contrastive approach for
machine unlearning. It achieves unlearning by effectively op-
timizing embedding space and contrasting unlearning sam-
ples and remaining samples. Through extensive experiments,
we demonstrated that it outperforms state-of-the-art unlearn-
ing algorithms in model performance, unlearning efficacy, ef-
ficiency and scalability. In future work, we will examine the
efficacy of contrastive unlearning in different model archi-
tectures and different unlearning scenarios such as graph un-
learning and correlated sequence unlearning.
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