
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Bidirectional Search while Ensuring Meet-In-The-Middle via
Effective and Efficient-to-Compute Termination Conditions

Yi Wang1 , Eyal Weiss2 , Bingxian Mu3 and Oren Salzman2

1University of New Hampshire, New Hampshire, USA
2Technion-Israel Institute of Technology, Haifa, Israel

3University of Prince Edward Island, Prince Edward Island, Canada
yw1055@usnh.edu, {eweiss@campus,osalzman@cs}.technion.ac.il, bingxianmu@gmail.com

Abstract
In bidirectional heuristic search, the meeting-in-
the-middle property (MMP) and the theory of must-
expand pairs (MEP) have driven significant recent
developments in search efficiency. However, these
methodologies typically terminate the search based
on minimal priority metrics in the forward and
backward OPEN lists, requiring exploration of all
potentially better solutions and potentially incur-
ring substantial computational burden. In this pa-
per, we investigate the reasons that contribute to
the potential inefficiency in MM, and introduce a
tighter termination condition that enables earlier
termination without exhaustive exploration while
still ensuring both MMP and optimality. This re-
sults in a highly efficient bidirectional search algo-
rithm. Experimental comparisons demonstrate that
our algorithm outperforms MM in terms of running
time by at least two orders of magnitude and is on
par or better compared to A*, highlighting its po-
tential in a wide range of applications.

1 Introduction and Related Work
Search is a fundamental task in AI and robotics in which, in
its simplest form, we wish to compute a minimal-cost path on
a given graph between given start and goal vertices [Russell
and Norvig, 2020]. Heuristics, which estimate the cost be-
tween states, allow to improve planner efficiency by focusing
search efforts to smaller portions of the search space [Pearl,
1984]. Unidirectional heuristic search (Uni-HS) algorithms,
such as A* [Hart et al., 1968], exemplify this principle by ex-
panding the search from the start state to the goal.

Bidirectional search algorithms compute a solution by
conducting two separate searches simultaneously: a for-
ward search from the start, and a backward search from the
goal [Nicholson, 1966]. In theory, a bidirectional search is
capable of reducing the number of expanded states exponen-
tially due to the search proceeding only to half the depth of the
solution path [Nicholson, 1966; Pearl and Korf, 1987]. This
theoretical efficiency renders bidirectional heuristic search
(Bi-HS) a promising algorithmic approach. However, orches-
trating the meeting of the forward and backward searches
presents a significant challenge using heuristics (e.g., [Sint

and de Champeaux, 1977; Kaindl and Kainz, 1997; Auer and
Kaindl, 2004; Felner et al., 2010; Arefin and Saha, 2010;
Barker and Korf, 2015; Siag et al., 2023]).

Arguably, there have been two conceptual breakthroughs
in the field in the last decade [Sturtevant and Felner, 2018]:
The first was the introduction of the meeting-in-the-middle
propriety (MMP), which guarantees finding an optimal solu-
tion while also ensuring that each expanded state has a cost
that is less than or equal to half of the cost of an optimal
solution [Holte et al., 2016]. The second, which is an exten-
sion and generalization of the first, was a new theory of must
expand pairs (MEP) for Bi-HS [Eckerle et al., 2017] which
characterizes the set of forward and backward node pairs that
must be expanded to guarantee solution optimality. Indeed,
the majority of work in Bi-HS has been devoted to devel-
oping approaches that use these two concepts within Bi-HS
algorithms in a computationally efficient manner.

Thus far, MM and its variants [Holte et al., 2017] did
not achieve competitive running times when compared to
the state-of-the-art in Uni-Hs and Bi-HS. In contrast, us-
ing the theory of MEP, many highly efficient, though ar-
guably more complex, Bi-HS algorithms were suggested
(e.g., [Shaham et al., 2017; Chen et al., 2017; Shaham et
al., 2018; Shperberg et al., 2019a; Shperberg et al., 2019b;
Sturtevant et al., 2020; Alcázar et al., 2020]). When the
heuristic used is known to be consistent1, the efficiency of
these algorithms may be improved. Siag et al. (2023) pre-
sented an algorithmic framework unifying many of these al-
gorithms. This also resulted in slight improvements to ex-
isting Bi-HS algorithms such as BAE* [Sadhukhan, 2012;
Sewell and Jacobson, 2021]. As a general guideline, Siag et
al. (2023) suggest that BAE* should be the default algorithm
to use for the consistency case, as it strikes a good balance be-
tween node expansions and runtime across different domains
and heuristics. Consequently, we use BAE* as a baseline.

In this paper, we revisit the MM-family of algorithms and
study the reason to their practical inefficiency. We claim that
this can be attributed to the termination condition (TC) used
to decide when to stop MM’s search. We suggest a tighter TC
that preserves the theoretical properties of MM while being

1A heuristic function is said to be consistent if its value is always
less than or equal to the estimated distance from any neighboring
vertex to the goal, plus the cost of reaching that neighbor.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

(a) A* (0.106 ms). (b) MM (4.118 ms). (c) BAE* (0.232 ms). (d) MEET (0.075 ms).

Figure 1: Comparative illustration of A* (a), MM (b), BAE* (c), and MEET (d) when finding an optimal path () from a start state (•) to
the goal state (•), using the Euclidean distance as a heuristic and breaking ties according to larger g-values. When relevant, (•) denotes the
meeting state (see Sec. 2), and (•) and (•) denote states expanded in the forward and backward search, respectively. All algorithms return a
path with the same optimal cost but the number of expanded states differ: A* expands 292 states, MM expands a total of 381 with 196 and 185
in the forward and backward searches, respectively, BAE* expands a total of 352 with 262 and 97 in the forward and backward searches,
respectively, and MEET expands a total of 202 with 111 and 91 in the forward and backward searches, respectively.

highly efficient to compute: In contrast to the TC employed
by MM, our new TC does not require computing the minimal
cost-to-come among all states in the forward and backward
search. This allows (i) to perform state culling (i.e., to remove
states that cannot be part of an optimal solution); and (ii) to
efficiently test if the TC holds without the need to iterate over
all states in the forward and backward search queues.

Meet-in-the-middle with Early and Efficient Termination
(MEET) incorporates this new TC into an efficient Bi-HS al-
gorithm that satisfies the MMP and is guaranteed to compute
optimal solutions (i.e., it retains the same theoretical guaran-
tees as MM). In contrast to conventional heuristic search algo-
rithms, such as A*, which use a predefined admissible heuris-
tic, MEET improves heuristic values on-the-fly, in a similiar
fashion to MM, which increases its efficiency. Unlike Bi-HS
algorithms that build on MEP theory, MEET halts the search
by relying on cost metrics of a meeting state. Compared to
BAE*, MEET achieves optimality without relying on the ex-
pansion of a meeting state that intersects on both search trees
and lies on an optimal solution. Additionally, MEET is the
first algorithm to address the open question of whether Bi-HS
can terminate early while still ensuring optimality and MMP.

In this paper, we focus on the arguably simple MM-family
of algorithms that do not require much of the advanced al-
gorithmic building blocks developed using the general MEP
theory. However, as we will see in the experimental results
(Sec. 5), MEET is competitive and often outperforms state-
of-the-art Bi-HS algorithms such as BAE*. To illustrate this,
we visualize in Fig. 1 the states expanded by A*, MM, BAE*,
and MEET in an instance on the grid map brc203 [Sturtevant,
2012], where MEET outperforms the other algorithms both in
terms of the number of nodes expanded and the running time.

2 Problem Definitions and Notations
Let G = (S,E, c) be a weighted graph, where S is a set of
states, E ⊆ S × S is a set of edges connecting states, and

c : E → R≥ε is a cost function over the edges (i.e., we
assume that the minimal edge cost is ε for some ε > 0). For
a state s, we define the neighbors of s, denoted as nbr(s) to
be all states that share an edge with s. Namely, nbr(s) :=
{s′|(s, s′) ∈ E}. A path π = ⟨s0, . . . , sk⟩ is a sequence of
states such that ∀i, si ∈ S and (si, si+1) ∈ E, where si is
called the parent of si+1, and si+1 is called the child of si. We
denote the parent of a state s in a path as prt(s). The cost of
a path c(π) is defined as the sum of edge costs, i.e., c(π) :=∑

i c(si, si+1). Given start and goal states sstart, sgoal ∈ S,
a path connecting sstart to sgoal is also called a solution. A
solution whose cost is minimal is called an optimal solution.

A Bi-HS algorithm simultaneously performs a search
from sstart to sgoal (forward) and from sgoal to sstart (backward)
until the searches meet at a state that lies on an optimal solu-
tion. We use subscripts ‘F’ and ‘B’ to denote the forward
and backward search directions, respectively. For brevity,
we primarily concentrate on the forward search direction, as
the backward search (notations, definitions, analyses, etc.) is
symmetrical and will be referenced only when specifically
stated. When referring to an arbitrary direction D ∈ {F ,B},
we denote its opposite by D̄.

We denote by Π∗ and C∗ the set of all optimal solutions
and their cost. Given a state s we denote gF (s) the estimated
cost to reach s from sstart as currently computed by the for-
ward search. Furthermore, we define h∗

F (s) to be the minimal
cost among all paths connecting s to sgoal and assume that we
are provided a heuristic function hF (s) that estimates h∗

F (s).
We say that hF is admissible if ∀ s ∈ S, hF (s) ≤ h∗

F (s) and
call hF static if it never changes its values during the search.
Throughout this work, we assume that all static heuristics are
admissible. Finally, we set fF (s) := gF (s) + hF (s).

As common in best-first heuristic search, all algorithms uti-
lize OPENF , a priority queue that stores states generated in
the forward search but not expanded (i.e., states with gF (s) <
∞), ordered by their fF -value. Similarly, CLOSEDF is a set

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

of all states that have been expanded in the forward search.
We use πcurr and Ccurr to denote the current-best path and its

cost as produced by a search algorithm at any given point in
time. When an algorithm starts, πcurr is undefined and Ccurr =
∞. If it is guaranteed that πcurr ∈ Π∗ and Ccurr = C∗ upon
termination, then the algorithm is said to be optimal.

We use fmin-F and gmin-F to denote the minimal f -value
and g-value among all states in OPENF , respectively. For
OPENB we define fmin-B and gmin-B, analogously. Addi-
tionally, we set fmin := min (fmin-F , fmin-B) and gmin :=
min (gmin-F , gmin-B). Finally, with a slight abuse of notation,
we set gmin(s) := min(gF (s), gB(s)).

We say that a state s ∈ S is an intersecting state if s ∈
OPENF ∩ OPENB. We denote by Icurr the set of all intersect-
ing states that lie on paths with a cost equal to Ccurr. For the
intersecting states, we set

Ib := argmin
s∈Icurr

(gmin(s)) .

Namely, Ib is an intersecting state that lies on a solution with
Ccurr and has the minimal g-value among such states. We
call Ib the current-best intersecting state. When the search
ends with Ccurr = C∗, Ib serves as a meeting state, smeet.
Definition 1 (Meet-in-the-middle property [Holte et al.,
2017]). A Bi-HS algorithm satisfies meet-in-the-middle prop-
erty (MMP) if it only expands states s with gD(s) ≤ C∗/2.

We say that a Bi-HS algorithm is MM-optimal if it is en-
sured to (i) return an optimal solution and to (ii) satisfy MMP.

3 Algorithmic Background
3.1 Algorithmic Framework
We start by outlining an algorithmic framework for an MM-
optimal Bi-HS algorithm to standardize the core operations
(Alg. 1). These key operations include state priority, state
selection for expansion, state culling (or pruning), and TCs.

• State priority: A function that dictates how states are
stored in the priority queues based on the estimated path
cost in each search direction (Lines 1, 3 and 14).

• State selection for expansion: An operation that selects
a state for expansion from the queues of both search di-
rections. In a best-first approach, the selection should
follow a priority function, which could be identical to
the state priority, but not necessarily (Line 3).

• State pruning: A function that tests if discarding a state
does not compromise MM-optimality (Line 12).

• Termination conditions: A termination criterion that
allows the search to stop once no further expansion can
improve Ccurr, ensuring MM-optimality, (Line 4).

3.2 Challenges in Bidirectional Heuristic Search
Unlike in Uni-HS, where the search termination is tied to
a singular, clearly defined goal state, in Bi-HS the state in
which the search should terminate, i.e., a meeting state, is
implicitly defined. This raises a challenge: There is no guar-
antee of optimality when the forward and backward search
fronts meet (i.e., when a solution is found). Thus, verifying

Algorithm 1: Generic Framework for MM-Optimal Bi-HS
Input: G = (S,E, c), sstart, sgoal
Output: Solution π

1 Insert sstart into OPENF and sgoal into OPENB using
priority function

2 while both OPENF and OPENB are not empty do
3 Select s ∈ OPENF ∪ OPENB with min priority

function
4 if ToTerminate then
5 return ReconstructPath
6 if s ∈ OPENF then
7 Remove s from OPENF
8 Add s to CLOSEDF
9 foreach s′ ∈ nbr(s) do

10 if s can’t improve gF (s′) then
11 continue
12 if ToPrune(s′) then
13 continue
14 Insert s′ into OPENF using priority function

15 else
16 Analogous operation for the backward search

17 return ∅

that a solution is optimal might incur unnecessary expansions
if the TC is not tight. Conversely, tighter TCs can be compu-
tationally expensive to evaluate, and earlier termination poses
a high risk of compromising optimality.

Indeed, significant research efforts were taken to derive ef-
fective TCs that ensure solution optimality in Bi-HS. This
culminated in the work by Siag et al. (2023) who introduced
a set of 17 search bounds (which included bounds from previ-
ous works) that can be used for determining optimality. No-
tably, utilizing combinations of them for obtaining a tighter
TC introduces non-trivial computational overhead.

3.3 Meet-In-The-Middle (MM)
To obtain MMP, MM uses the following priority function
when inserting a state s into OPENF where states are priori-
tized from low to high:

prF (s) := max (fF (s), 2gF (s)) .

The ordering in OPENB is defined analogously. To under-
stand the intuition behind this priority function, recall that to
maintain MMP, an algorithm should only expand a state s if
gF (s) ≤ C∗/2, identical to the condition 2gF (s) ≤ C∗. In
addition, to ensure optimality, a state s should be expanded
if fF (s) ≤ C∗, indicating it may lie on an optimal path.

Unfortunately, when a heuristic fails to accurately estimate
the cost to reach the goal, then a state s with gF (s) > C∗/2
may have fF (s) < C∗, thereby violating MMP. This happens
when gF (s) > hF (s). In this case, we say that h is a weak
heuristic [Barker and Korf, 2015], and this may cause MM to
expand states that can not be part of an optimal solution.

As a termination condition, MM halts the search once

Ccurr ≤ max(Cpr, fmin-F , fmin-B, gmin-F + gmin-B + ε).

Here, Cpr represents the minimum priority on both search
fronts. Holte et al. [2017] show that each of the last three

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

terms is a lower bound on the cost of any solution that might
be found by continuing to search.

Importantly, this TC requires access to gmin and fmin from
both OPEN lists at each iteration. Since MM does not sort
its lists by g- or f -values (rather by prF defined above), each
iteration in MM needs to iterate over all members of each
OPEN list to obtain gmin and fmin. This comes with a signifi-
cant computational overhead due to the exponential growth in
the number of generated states as the search progresses. Con-
sequently, a TC that can be computed efficiently, rather than
with complexity O(|OPENF |+ |OPENB|), could dramatically
speed up the search process.

Finally, MM does not prune any states.

4 Meet-in-the-middle with Early and Efficient
Termination (MEET)

In this section, we introduce MEET, our Bi-HS algorithm,
which follows the structure as detailed in Alg. 1 and Sec. 3.1.

4.1 Algorithm Description
State Priority
Similar to MM, MEET defines the priority of a state s in
OPEND according to its fD-value. However, the heuristic
used is not the static heuristic hD but an updated one which
we denote by h̃D. Specifically, and with slight abuse of
notation, fD(s) := gD(s) + h̃D(s) where h̃D(s) is initial-
ized to be hD(s). In case s /∈ CLOSEDD̄ ∪ {OPEND̄} and
gD(s) > hD(s), h̃D(s) is updated to be gD(s). Otherwise,
if s ∈ OPEND̄, h̃D(s) is set to be gD̄(s). Note that for the
simplicity of the presentation we make a slight abuse of nota-
tion and use the notation f rather than define a new notation
for f with h̃. Hence, whenever we describe MEET or results
related to it, consider that f is used with h̃.

State Selection for Expansions
Similar to MM, MEET selects the state whose priority
equals fmin.

State Pruning
Before generating a new state s in direction D ∈ {F ,B},
MEET tests whether

min{fD(s), gD(s) + gD(s) if gD(s) < ∞} > Ccurr.

If so, s is discarded.

Termination Condition
MEET makes use of four termination conditions and termi-
nates if one of them holds. When describing the termina-
tion conditions, we assume that a solution has been found
(namely, C∗ ≤ Ccurr) and that H ∈ {F ,B} is the direction
for which Ib has a larger g-value (i.e., gD(Ib) > gD̄(Ib)).
prtH(Ib) denote the parent of Ib in H direction. Further-
more, we denote s to be the state chosen for expansion (i.e.,
fD(s) = fmin) and s′ ∈ nbr(s) to be a neighbor that is gen-
erated in the expansion of s with minimal fD-value. Finally,
we denote t as the state with fD(t) = fmin-D (i.e., the state
with the minimal f -value in the opposite search direction).

MEET terminates if one of the following conditions holds:

TC 1. fD(s) ≥ Ccurr.
Intuitively, TC1, also used by MM, indicates that no further

expansion can improve the current best solution.
TC 2. (i) gD(Ib) ≤ gD̄(Ib), (ii) gD(s) ≤ hD(s), (iii) gD(s)+
gD(t) + ε > Ccurr, (iv) Ib /∈ {s, t}, and (v) gD(t) ≤ hD(t).

TC2 triggers if the lowest-priority states in both OPEN lists
are too far apart, namely if the sum of their g-values plus the
minimal edge cost exceeds Ccurr, so no further expansions can
improve it, and thus the search can terminate early.

MEET has two more termination conditions (TC3 and
TC4), for which we require further notation: We denote
S(Ib, s) to be the set of states generated after Ib has been
found (i.e., generated by both search directions) but before s
was expanded. Note that S(Ib, s) may be empty. We now
introduce an auxiliary precondition that needs to hold before
using TC3 and TC4.
PC 1. ∀s̃ ∈ {S(Ib, s) ̸= ∅}, the inequalities fD(s̃) ≥ Ccurr
and gH(s̃) > gH(Ib) hold.

For the specific case where S(Ib, s) is empty, we define
that PC1 does not hold. If PC1 holds, MEET terminates if
one of the following conditions hold:
TC 3. (i) gD(s) ≥ gH(prtH(Ib)), (ii) gD(s) > hD(s),
(iii) c(s, s′) = ε, and (iv) gH(s′) > gH(Ib),

TC3 captures the intuition that if Ccurr is not yet optimal,
then before expanding any child s′ of s with the minimal f -
value, there must already exist a newly generated s̃ such that
f{D,D̄}(s̃) ≤ 2gH(Ib). In other words, if no such s̃ exists,
and TC3 holds, then no further expansions can improve Ccurr
and the search can stop early.
TC 4. (i) gD(s) ≥ gH̄(prtH̄(Ib)), (ii) gD(s) > hD(s),
(iii) c(s, s′) = ε, and (iv) fD(s′) ≥ Ccurr.

The logic and intuition of TC4 are similar to those of TC3.
The two key differences in TC4 are that (1) f{D,D̄}(s̃) <

Ccurr, and (2) it is applied when gD(Ib) ≤ gD̄(Ib).
It is noteworthy that in all termination conditions, we do

not need to compute the minimal g-value in OPENF and
OPENB as in MM. In contrast, we rely on the readily avail-
able g and h̃ values that can be computed in constant time
(e.g., of the best intersecting state and its parent). This
is demonstrated in TC2 which is similar to the condition
gmin-F + gmin-B + ε used by MM but is much cheaper to com-
pute from a computational point of view.

4.2 Theoretic Properties and Guarantees
We now prove the correctness of MEET. We start by as-
suming the existence of an optimal solution with the length
C∗ going through a meeting state smeet, following C∗ =
gF (smeet)+gB(smeet). For all our proofs in this section, we set
Sg>h

D := {s | gD(s) > hD(s)}. Furthermore, we prove all
lemmas for the forward direction, where the backward direc-
tion is analogous. We first prove that MEET satisfies MMP
during expansions.

Lemma 1. MEET never expands a state s with gD(s) >
C∗

2 .

Proof. Assume, for contradiction, that MEET expands s with
gD(s) > C∗

2 . When s is generated, MEET sets h̃D(s)

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

to either hD(s), gD(s), or gD̄(s). As a result, fD(s) =

gD(s) + h̃D(s) ≥ gD(s) + gD(s) > C∗. Since MEET
expands the states in a monotonically non-decreasing order
of priority and fD(s) = fmin, it implies that all nodes with
priority ≤ C∗ have been expanded. As a result, MEET must
already have found the optimal solution and such solution has
been recorded, which means Ccurr = C∗. This contradicts the
fact that s is selected for expansion only when fD(s) < Ccurr.
Thus, MEET satisfies MMP.

We now prove that h̃ is an admissible heuristic for every
state that is expanded.

Lemma 2. When MEET expands a state s, then h̃D(s) ≤
h∗
D(s) holds.

Proof. By Lemma 1, when s is selected for expansion, we di-
rectly have fD(s) = gD(s) + h̃D(s) ≤ C∗. Thus, it provides

h̃D(s) = fD(s)− gD(s) ≤ C∗ − gD(s).

According to [Pearl, 1984], g∗D(s) ≤ gD(s) holds once
fD(s) ≤ C∗. Moreover, for any s, we also have f∗

D(s) =
g∗D(s) + h∗

D(s) ≥ C∗. Substituting g∗D(s) ≤ gD(s) gives

h∗
D(s) = f∗

D(s)− g∗D(s) ≥ C∗ − gD(s).

Consequently, h̃D(s) ≤ h∗
D(s) holds.

We continue to examine each stopping condition individu-
ally to ensure optimality.

Lemma 3. If TC1 holds, MEET returns with C∗ = Ccurr.

Proof. Since states are ordered according to their f -value
from low to high, and due to h̃F (s) being admissible when s
is expanded (Lemma 2), once TC1 is met, we are guaranteed
that no solution with an f -value lower than Ccurr exists.

Lemma 4. If TC2 holds, MEET returns with C∗ = Ccurr.

Proof. We first prove that gD(s) + gD(t) + ε > Ccurr implies
both 2(gD(s)+ε) > Ccurr and 2(gD(t)+ε) > Ccurr. We pro-
ceed by contradiction. Suppose 2(gD(s) + ε) ≤ Ccurr, equiv-
alent to gD(s) + ε ≤ Ccurr

2 . Then, it follows Ccurr − gD(s) ≥
Ccurr
2 + ε. Since gD(s) + gD(t) + ε > Ccurr, we have

gD(t)+ε > Ccurr−gD(s). Substituting the previous inequal-
ity, we obtain gD(t)+ ε > Ccurr

2 + ε, indicating gD(t) >
Ccurr
2 ,

which contradicts the fact that gD(t) < Ccurr
2 . By symmetry,

assuming 2(gD(t) + ε) ≤ Ccurr similarly leads to a contra-
diction. Since Ccurr > C∗ and gD(Ib) ≤ gD̄(Ib), it implies
that fD(si) < Ccurr must hold in at least one direction before
finding C∗ , contradicting the fact that 2(gD(s) + ε) > Ccurr
and 2(gD(t) + ε) > Ccurr. Thus, Ccurr = C∗.

Lemma 5. If TC3 holds, MEET returns with C∗ = Ccurr. If
Ccurr > C∗, then the expansion of s, which occurs after Ib is
found, will not have a child s′ such that gD(s′) = gD(s) + ε
and gD(s

′) > gH(Ib).

Proof. TC3 requires that when Ib appears in D, 2gD(Ib) >
Ccurr and implies that any s′ in {D, D̄} satisfies f{D,D̄}(s

′) >

2gD(Ib) after expanding prtD(Ib). By contradiction, since
Ccurr > C∗, the search will eventually generate a state s̃ with
f{D,D̄}(s̃) < Ccurr < 2gD(Ib) before reaching Ccurr = C∗.
Consequently, prt{D,D̄}(s̃) must have been expanded before
s, contradicting TC3.

Lemma 6. If TC4 holds, MEET returns with C∗ = Ccurr.
If Ccurr > C∗, then the expansion of s, which occurs imme-
diately after Ib is found, will not have a child s′ such that
gD(s

′) = gD(s) + ε and fD(s
′) ≥ Ccurr.

Proof. The proof of Lemma 6 is similar to the proof of
Lemma 5.

Theorem 1. MEET returns an optimal solution, if it exists.

Proof. By Lemmas 3-6, we establish that when either TC1,
TC2, TC3 or TC4 hold it necessarily implies that C∗ =
Ccurr. Thus, MEET only terminates the search when an opti-
mal solution is found. Furthermore, if a solution exists, then
TC1 must hold at some point in the search, unless the search
is terminated beforehand by one of the other termination con-
ditions. Namely, MEET necessarily returns the optimal solu-
tion if a solution exists.

5 Experiments
In this section we compare MEET with A*, MM and BAE*,
where the latter was chosen as a representative of the non-
MM family of Bi-HS algorithms that provides state-of-the-art
performance [Alcázar et al., 2020].2 Additionally, we con-
ducted an ablation study for MEET to separately assess the
impact of using the h̃ heuristic instead of the static h heuris-
tic and the impact of the pruning mechanism.

We ran experiments on two distinct domains: grid maps
and 10-Pancake puzzles with all algorithms implemented in
C++ on a desktop with 16GB RAM and an Intel i7 CPU
running Ubuntu 20.04. The implementations of A*, MM,
and BAE* were adapted from the source code of [Uras and
Koenig, 2015], [Holte et al., 2017], and [Hu and Speck,
2022], respectively. Table 1 displays summarized experimen-
tal results for runtime statistics, while Fig. 2, 3, and 4 illus-
trate, respectively, the distributions of each triggered TC, the
average percentages of runtime reduction achieved by each
triggered TC vs. the baseline TC1, and detailed time dis-
tributions. The code implementation and additional results,
including details on state expansions and reduction percent-
ages, can be found in the supplementary material [Wang et
al., 2025].

2We also ran A* in the backward direction and MMe (a variant
of MM with a different state priority function [Holte et al., 2017]),
but these yielded very similar results to forward A* and MM, respec-
tively, and were thus omitted.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Domain Heuristic A* MM BAE* MEET

brc203 Euclidean Distance 1.4 (0.42, 2.4) 216 (52, 366) 3.9 (1.3, 6.1) 2.2 (0.65, 3.3)
Octile Distance 1.6 (0.36, 3.1) 406 (82, 879) 4.3 (1.3, 6.5) 2.4 (0.65, 3.8)

orz100d Euclidean Distance 8.5 (1.8, 14.5) 3.467×103 (588, 6.411×103) 23.8 (5.2, 34.3) 13.4 (2.7, 22.1)
Octile Distance 9.2 (1.4, 16.5) 5.214×103 (864, 11.339×103) 25 (4.6, 37.2) 14.7 (2.4, 24.5)

10-Pancake
puzzle

GAP-1 0.31 (0.08, 0.75) 7.1 (1.5, 22.3) 0.46 (0.2, 1.5) 0.48 (0.14, 0.74)
GAP-2 5.6 (3.6, 17.9) 447 (110, 2.275×103) 1.3 (0.74, 3.1) 1.0 (0.45, 2.1)
GAP-3 81 (45.8, 291) 12.189×103 (403, 27.420×103) 8.2 (3.0, 24.8) 3.9 (2.2, 11.1)
GAP-4 510 (224, 1.605×103) 36.1326×103 (529, 40.419×103) 26.1 (13.7, 78.8) 6.5 (3.8, 32.5)

Table 1: Experimental results for grid maps and 10-Pancake puzzle domains. For each algorithm, we report the median runtime (rounded to
integer values if greater than 50 milliseconds) and the interquartile range (IQR), indicated in parentheses as (25th percentile, 75th percentile).

Figure 2: Triggered TC distributions. The colors (•), (•), (•), and (•) denote TC1, TC2, TC3, and TC4, respectively.

Figure 3: Average runtime reduction (%) vs. stopping on TC1. The bars (), (), and () denote TC2, TC3, and TC4, respectively.

5.1 Grid Maps

We evaluate each algorithm on two grid maps from the
MovingAI benchmark repository [Sturtevant, 2012], both
originating from Dragon Age: Origins (DAO). These maps
feature traversable regions that vary significantly across in-
stances, providing substantial variability and ensuring a thor-
ough evaluation of each algorithm’s performance. An agent

can move in an 8-way movement, and all evaluations use
the Octile and Euclidean distance heuristics. The first map,
brc203d (274 × 391), has 1290 instances, following [Holte et
al., 2017]. The second map, orz100d (412 × 395), contains
2420 instances, and is considered relatively challenging, as
the heuristics are often less informative on this map.

The experimental results demonstrate that MEET signifi-

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

10−2 10−1 100
10−2

10−1

100

A*
1x 0.5x

10−2 10−1 100

10−1

101

BA
E* 2x

1x

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
MEET

10−1

101

103

M
M speedup ≤ 30x

100x ≤ speedup
 30x ≤ speedup ≤ 100x

(a) brc203 (Euclidean distance)

10−1 100

10−1

100

A*

2x1x
0.5x

0.1x

10−1 10010−1

100

BA
E* 2x

1x
3x

0.5x

0.5 1.0 1.5 2.0 2.5 3.0 3.5
MEET

100

102

M
M

50x ≤ speedup
10x ≤ speedup ≤ 50x
 1x ≤ speedup ≤ 10x

 speedup ≤ 1x

(b) 10-Pancake puzzle (GAP-1)

100 101
101

102

103

A*

50x ≤ speedup

 10x ≤ speedup ≤ 50x
 speedup ≤ 10x

100 101100

101

102

BA
E*

3x ≤ speedup

1x ≤ speedup≤ 3x

speedup ≤ 1x

10 20 30 40 50 60 70
MEET

102

103

104

M
M

100x ≤ speedup≤ 500x
50x ≤ speedup ≤ 100x

 10x ≤ speedup ≤ 50x
 speedup ≤ 10x

500x ≤ speedup

(c) 10-Pancake puzzle (GAP-4)

Figure 4: Time distributions, in seconds. The symbols (•), (•), and (•) denote MEET vs. A*, BAE*, and MM, respectively.

cantly improves the search speed as an optimal Bi-HS algo-
rithm, outperforming MM by at least two orders of magnitude
(Fig. 4a and Table 1). The runtime of MEET is still on par
with A* in brc203d and roughly twice as slow in orz100d.
MEET expands slightly more states than BAE* in orz100d
but achieves better runtime.

Considering the ablation study, running MEET with the
static heuristic h results in similar runtimes compared to run-
ning it with h̃, but the solutions found are often sub-optimal,
which aligns with the theory, as the termination conditions
TC1–TC4 rely on f -values defined by f = g + h̃. Finally,
the results show that the pruning process reduces the runtime
of MEET by an average of roughly 2% over all the instances
in grid maps. Results omitted for breivity.

5.2 10-Pancake Puzzle
Our second domain is the well-known Pancake puzzle: A
state in the 10-Pancake puzzle is represented by a vector
of 10 different numbers, where the goal is to sort them in
ascending order through a sequence of flips from a given
start state. In our experiments, we apply both GAP, as de-
scribed in [Helmert, 2010] and GAP-X heuristics [Holte et
al., 2017]. The GAP-X heuristics are variants of the original
GAP heuristic, devised to be less accurate. GAP-X heuris-
tics exclude gaps that include pancakes among the small-
est X in size, where the smallest X in our test dataset is 1.
As X increases, GAP-X becomes less accurate. We conduct
experiments on 30 random instances, with optimal solution
costs (C∗) ranging between 7 and 10.

As indicated by the median search time in Table 1, it is at
least 100× faster than MM and an order of magnitude faster
than A* as the heuristic accuracy decreases, which suggests
the improved efficiency of our algorithm in scenarios with
weaker heuristics. Compared to BAE*, MEET consistently
achieves better performance, where the performance gap ex-
pands with weaker heuristics.

Fig 4b and 4c illustrate the advantages of MEET in runtime
over A* and MM. We note that the performance of A* is highly
dependent on the accuracy of the heuristic, and when com-
pared to Bi-HS algorithms this dependence is exacerbated,
since Bi-HS algorithms also exploit information on g-values
from both sides, thus reducing the importance of heuristic ac-

curacy. This explains the dominance of MEET over A* with
GAP-X for X > 1.

As for the ablation study, the findings in this domain are
consistent with those described for the grid maps domain: op-
timality can only be guaranteed if h̃ is utilized, and pruning
reduces the runtime of MEET by an average of roughly 3%.

Lastly, we analyze differences between the TCs using
Fig. 2 and 3. Fig. 2 indicates that TC1, TC3 and TC4 are all
frequently triggered in different cases, providing meaningful
contributions. Fig. 3 shows that TC3 and TC4 save more run-
time as the heuristic weakens, whereas TC1 leads when the
heuristic is nearly perfect (e.g., GAP-1). Fig. 3 also shows
that it is almost always preferable to use TC2, TC3 and TC4
in addition to TC1 in terms of runtime. This is because the
computation time required to evaluate them is insignificant,
while the potential runtime reduction is significant.

6 Discussion and Future Work
While significant progress and achievements have been made
in Bi-HS, no algorithm thus far has been able to satisfy MM-
optimality while providing competitive runtime. Addition-
ally, the challenge of terminating the search early while still
ensuring both optimality and MMP was unsolved. This paper
closes these gaps by introducing a new bidirectional best-first
search algorithm, MEET, that guarantees MM-optimality
with significantly improved runtime compared to MM. Key to
the efficiency of our approach is a set of new termination con-
ditions that test states when they are generated and not when
they are expanded. A predicate that is computationally cheap
to test. This is in contrast to MM whose termination condition
can only be evaluated when a meeting state is expanded.

Interestingly two of the termination conditions (TC3
and TC4) make use of the minimal edge cost ε. This is natural
in settings such as grid worlds where many, if not all, edges
have the same minimal cost. However, in settings where edge
costs can take arbitrary values, these termination conditions
can prove to be ineffective. However, by inflating ε by some
scalar w, we can use these termination conditions to terminate
while ensuring a bounded suboptimal solution whose approx-
imation factor is defined by w. Further exploration of the im-
plication of ε in TC3 and TC4 is left for future work.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
This research was supported in part by the Technion Au-
tonomous Systems Program (TASP) and by the Israeli Min-
istry of Science and Technology, grant No. 3-17385.

References
[Alcázar et al., 2020] Vidal Alcázar, Patricia J. Riddle, and

Mike Barley. A unifying view on individual bounds and
heuristic inaccuracies in bidirectional search. In Associa-
tion for the Advancement of Artificial Intelligence (AAAI),
pages 2327–2334, 2020.

[Arefin and Saha, 2010] Kazi Shamsul Arefin and Aloke Ku-
mar Saha. A new approach of iterative deepening
bi-directional heuristic front-to-front algorithm (IDB-
HFFA). International Journal of Electrical and Computer
Sciences, 10(2):13–21, 2010.

[Auer and Kaindl, 2004] Andreas Auer and Hermann
Kaindl. A case study of revisiting best-first vs. depth-first
search. In European Conference on Artificial Intelligence
(ECAI), volume 16, page 141, 2004.

[Barker and Korf, 2015] Joseph Barker and Richard Korf.
Limitations of front-to-end bidirectional heuristic search.
In Association for the Advancement of Artificial Intelli-
gence (AAAI), volume 29, pages 1086–1092, 2015.

[Chen et al., 2017] Jingwei Chen, Robert C. Holte, Sandra
Zilles, and Nathan R. Sturtevant. Front-to-end bidirec-
tional heuristic search with near-optimal node expansions.
In International Joint Conferences on Artificial Intelli-
gence (IJCAI), pages 489–495, 2017.

[Eckerle et al., 2017] Jürgen Eckerle, Jingwei Chen, Nathan
Sturtevant, Sandra Zilles, and Robert Holte. Sufficient
conditions for node expansion in bidirectional heuristic
search. In International Conference on Automated Plan-
ning and Scheduling (ICAPS), volume 27, pages 79–87,
2017.

[Felner et al., 2010] Ariel Felner, Carsten Moldenhauer,
Nathan Sturtevant, and Jonathan Schaeffer. Single-frontier
bidirectional search. In Association for the Advancement
of Artificial Intelligence (AAAI), volume 24, pages 59–64,
2010.

[Hart et al., 1968] Peter E Hart, Nils J Nilsson, and Bertram
Raphael. A formal basis for the heuristic determination of
minimum cost paths. IEEE transactions on Systems Sci-
ence and Cybernetics, 4(2):100–107, 1968.

[Helmert, 2010] Malte Helmert. Landmark heuristics for the
pancake problem. In Symposium on Combinatorial Search
(socs), volume 1, pages 109–110, 2010.

[Holte et al., 2016] Robert C. Holte, Ariel Felner, Guni
Sharon, and Nathan R. Sturtevant. Bidirectional search
that is guaranteed to meet in the middle. In Association for
the Advancement of Artificial Intelligence (AAAI), pages
3411–3417, 2016.

[Holte et al., 2017] Robert C. Holte, Ariel Felner, Guni
Sharon, Nathan R. Sturtevant, and Jingwei Chen. MM: A

bidirectional search algorithm that is guaranteed to meet
in the middle. Artificial Intelligence, 252:232–266, 2017.

[Hu and Speck, 2022] Kilian Hu and David Speck. On bidi-
rectional heuristic search in classical planning: An analy-
sis of bae. In Symposium on Combinatorial Search (socs),
volume 15, pages 91–99, 2022.

[Kaindl and Kainz, 1997] Hermann Kaindl and Gerhard
Kainz. Bidirectional heuristic search reconsidered. Jour-
nal of Artificial Intelligence Research, 7:283–317, 1997.

[Nicholson, 1966] T Alastair J Nicholson. Finding the short-
est route between two points in a network. The computer
journal, 9(3):275–280, 1966.

[Pearl and Korf, 1987] Judea Pearl and Richard E Korf.
Search techniques. Annual Review of Computer Science,
2(1):451–467, 1987.

[Pearl, 1984] Judea Pearl, editor. Heuristics: Intelli-
gent Search Strategies for Computer Problem Solving.
Addison-Wesley, Reading, Mass., 1984.

[Russell and Norvig, 2020] Stuart J Russell and Peter
Norvig. Artificial intelligence: a modern approach.
Pearson, 2020.

[Sadhukhan, 2012] Samir K Sadhukhan. A new approach to
bidirectional heuristic search using error functions. In In-
ternational Conference on Intelligent Infrastructure, 2012.

[Sewell and Jacobson, 2021] Edward C Sewell and Shel-
don H Jacobson. Dynamically improved bounds bidirec-
tional search. Artificial Intelligence, 291:103405, 2021.

[Shaham et al., 2017] Eshed Shaham, Ariel Felner, Jingwei
Chen, and Nathan R. Sturtevant. The minimal set of
states that must be expanded in a front-to-end bidirectional
search. In Symposium on Combinatorial Search (socs),
pages 82–90, 2017.

[Shaham et al., 2018] Eshed Shaham, Ariel Felner,
Nathan R. Sturtevant, and Jeffrey S. Rosenschein.
Minimizing node expansions in bidirectional search with
consistent heuristics. In Symposium on Combinatorial
Search (socs), pages 81–89, 2018.

[Shperberg et al., 2019a] Shahaf S. Shperberg, Ariel Felner,
Solomon Eyal Shimony, Nathan R. Sturtevant, and Avi
Hayoun. Improving bidirectional heuristic search by
bounds propagation. In Symposium on Combinatorial
Search (socs), pages 106–114, 2019.

[Shperberg et al., 2019b] Shahaf S. Shperberg, Ariel Felner,
Nathan R. Sturtevant, Solomon Eyal Shimony, and Avi
Hayoun. Enriching non-parametric bidirectional search al-
gorithms. In Association for the Advancement of Artificial
Intelligence (AAAI), pages 2379–2386, 2019.

[Siag et al., 2023] Lior Siag, Shahaf S. Shperberg, Ariel Fel-
ner, and Nathan R. Sturtevant. Front-to-end bidirectional
heuristic search with consistent heuristics: Enumerating
and evaluating algorithms and bounds. In International
Joint Conferences on Artificial Intelligence (IJCAI), pages
5631–5638, 2023.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Sint and de Champeaux, 1977] Lenie Sint and Dennis
de Champeaux. An improved bidirectional heuristic
search algorithm. Journal of the ACM, 24(2):177–191,
1977.

[Sturtevant and Felner, 2018] Nathan Sturtevant and Ariel
Felner. A brief history and recent achievements in bidirec-
tional search. In Association for the Advancement of Ar-
tificial Intelligence (AAAI), volume 32, pages 8000–8006,
2018.

[Sturtevant et al., 2020] Nathan R. Sturtevant, Shahaf S. Sh-
perberg, Ariel Felner, and Jingwei Chen. Predicting the
effectiveness of bidirectional heuristic search. In Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), pages 281–290, 2020.

[Sturtevant, 2012] Nathan R Sturtevant. Benchmarks for
grid-based pathfinding. IEEE Transactions on Computa-
tional Intelligence and AI in Games, 4(2):144–148, 2012.

[Uras and Koenig, 2015] Tansel Uras and Sven Koenig. An
empirical comparison of any-angle path-planning algo-
rithms. In Symposium on Combinatorial Search (socs),
volume 6, pages 206–210, 2015.

[Wang et al., 2025] Yi Wang, Eyal Weiss, Bingxian Mu, and
Oren Salzman. Supplementary material for ”meet-in-
the-middle with early and efficient termination”. https://
github.com/yi213-robotic/MEET, 2025. Accessed: 2025-
09-01.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/yi213-robotic/MEET
https://github.com/yi213-robotic/MEET

