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Abstract
This paper presents FreEformer, a simple yet ef-
fective model that leverages a Frequency Enhanced
Transformer for multivariate time series forecast-
ing. Our work is based on the assumption that
the frequency spectrum provides a global perspec-
tive on the composition of series across various fre-
quencies and is highly suitable for robust represen-
tation learning. Specifically, we first convert time
series into the complex frequency domain using
the Discrete Fourier Transform (DFT). The Trans-
former architecture is then applied to the frequency
spectra to capture cross-variate dependencies, with
the real and imaginary parts processed indepen-
dently. However, we observe that the vanilla at-
tention matrix exhibits a low-rank characteristic,
thus limiting representation diversity. To address
this, we enhance the vanilla attention mechanism
by introducing an additional learnable matrix to the
original attention matrix, followed by row-wise L1
normalization. Theoretical analysis demonstrates
that this enhanced attention mechanism improves
both feature diversity and gradient flow. Extensive
experiments demonstrate that FreEformer consis-
tently outperforms state-of-the-art models on eigh-
teen real-world benchmarks covering electricity,
traffic, weather, healthcare and finance. Notably,
the enhanced attention mechanism also consis-
tently improves the performance of state-of-the-art
Transformer-based forecasters. Code is available at
https://anonymous.4open.science/r/FreEformer.

1 Introduction
Multivariate time series forecasting holds significant impor-
tance in real-world domains such as weather [Wu et al.,
2023b], energy [Zhou et al., 2021], transportation [He et al.,
2022] and finance [Chen et al., 2023]. In recent years, vari-
ous deep learning models have been proposed, significantly
pushing the performance boundaries. Among these mod-
els, Recurrent Neural Networks (RNN) [Salinas et al., 2020],
Convolutional Neural Networks (CNN) [Bai et al., 2018;

∗Corresponding Author

Figure 1: Time series and their corresponding frequency spectra.
The series are normalized before applying the DFT, and the ampli-
tudes of the frequency spectra are plotted. (1) The frequency spec-
tra often exhibit strong consistency across adjacent temporal spans
within the same time series, forming the basis for frequency-based
forecasting. (2) Strong correlations between the two variables in
PEMS04 (rows 2 and 3) are observed, suggesting that exploring
such multivariate relationships could lead to more robust represen-
tations. (3) The frequency spectrum usually exhibits sparsity, with a
few dominant frequencies.

Wu et al., 2023a], LLM [Zhou et al., 2023; Jin et al., 2021],
Multi-Layer Perceptrons (MLP) [Zeng et al., 2023; Xu et
al., 2023], Transformers-based methods [Nie et al., 2023;
Liu et al., 2024a; Wang et al., 2024c] have demonstrated great
potential due to their strong representation capabilities.

In recent years, frequency-domain-based models have been
proposed and have achieved great performance [Yi et al.,
2024c; Xu et al., 2023], benefiting from the robust frequency
domain modeling. As shown in Figure 1, frequency spec-
tra exhibit strong consistency across different spans of the
same series, making them suitable for forecasting. Most
existing frequency-domain-based works [Yi et al., 2024a]
rely on linear layers to learn frequency-domain representa-
tions, resulting in a performance gap. Frequency-domain
Transformer-based models remain under-explored. Recently,
Fredformer [Piao et al., 2024] applies the vanilla Transformer
to patched frequency tokens to address the frequency bias is-
sue. However, the patching technique introduces additional
hyper-parameters and undermines the inherent global per-
spective [Yi et al., 2024c] of frequency-domain modeling.

In this paper, we adopt a simple yet effective approach

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://anonymous.4open.science/r/FreEformer


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

by applying the Transformer to frequency-domain variate to-
kens for representation learning. Specifically, we embed
the entire frequency spectrum as variate tokens and capture
cross-variate dependencies among them. This architecture
offers four main advantages: 1) As shown in Section 3, sim-
ple frequency-domain operations can correspond to complex
temporal operations [Yi et al., 2024c]; 2) Multivariate cor-
relations typically exists (Figure 1), and learning these de-
pendencies facilitates forecasting; 3) Minimal correlations
among frequency points [Wang et al., 2024a] hinder the ef-
ficacy of cross-frequency dependency learning (Table 5); 4)
The permutation invariance of the attention mechanism aligns
naturally with the order insensitivity of variates.

Furthermore, we observe that for the frequency-domain
representation, the attention matrix of vanilla attention often
exhibits a low-rank characteristic, which reduces the diver-
sity of representations. To address this issue, we propose a
general solution: adding a learnable matrix to the original
softmax attention matrix, followed by row-wise normaliza-
tion. We term this approach enhanced attention and name
the overall model FreEformer. Despite its simplicity, the
enhanced attention mechanism is proven effective both theo-
retically and empirically. The main contributions of this work
are summarized as follows:

• This paper presents a simple yet effective model, named
FreEformer, for multivariate time series forecasting.
FreEformer achieves robust cross-variate representation
learning using the enhanced attention mechanism.

• Theoretical analysis and experimental results demon-
strate that the enhanced attention mechanism increases
the rank of the attention matrix and provides greater
flexibility for gradient flow. As a plug-in module,
it consistently enhances the performance of existing
Transformer-based forecasters.

• Empirically, FreEformer consistently achieves state-of-
the-art forecasting performance across 18 real-world
benchmarks spanning diverse domains such as electric-
ity, transportation, weather, healthcare and finance.

2 Related Works
2.1 Transformer-Based Forecasters
Classic works such as Autoformer [Wu et al., 2021], In-
former [Zhou et al., 2021], Pyraformer [Liu et al., 2022a],
FEDformer [Zhou et al., 2022b], and PatchTST [Nie et al.,
2023] represent early Transformer-based time series fore-
casters. iTransformer [Liu et al., 2024a] introduces the
inverted Transformer to capture multivariate dependencies,
and achieves accurate forecasts. More recently, research
has focused on jointly modeling cross-time and cross-variate
dependencies [Zhang and Yan, 2023; Wang et al., 2024c;
Han et al., 2024]. Leddam [Yu et al., 2024] uses a dual-
attention module for decomposed seasonal components and
linear layers for trend components. Unlike previous models
in the time domain, we shift our focus to the frequency do-
main to explore dependencies among the frequency spectra
of multiple variables for more robust representations.

2.2 Frequency-Domain Forecasters
Frequency analysis is an important tool in time series fore-
casting [Yi et al., 2023]. FEDformer [Zhou et al., 2022b] per-
forms DFT and sampling prior to Transformer. DEPTS [Fan
et al., 2022] uses the DFT to capture periodic patterns for bet-
ter forecasts. FiLM [Zhou et al., 2022a] applies Fourier anal-
ysis to preserve historical information while mitigating noise.
FreTS [Yi et al., 2024c] employs frequency-domain MLPs to
model channel and temporal dependencies. FourierGNN [Yi
et al., 2024b] transfers GNN operations from the time do-
main to the frequency domain. FITS [Xu et al., 2023] applies
a low-pass filter and complex-valued linear projection in the
frequency domain. DERITS [Fan et al., 2024] introduces a
Fourier derivative operator to address non-stationarity. Fred-
former [Piao et al., 2024] addresses frequency bias by divid-
ing the frequency spectrum into patches. FAN [Ye et al.,
2024] introduces frequency adaptive normalization for non-
stationary data. In this work, we adopt a simple yet effective
Transformer-based model to capture multivariate correlations
in the frequency domain, outperforming existing methods.

2.3 Transformer Variants
Numerous variants of the vanilla Transformer have been de-
veloped to enhance efficiency and performance. Informer
[Zhou et al., 2021] introduces a ProbSparse self-attention
mechanism with O(𝑁log𝑁) complexity. Flowformer [Wu
et al., 2022] proposes Flow-Attention, achieving linear com-
plexity based on flow network theory. Reformer [Kitaev et
al., 2020] reduces complexity by replacing dot-product at-
tention with locality-sensitive hashing. Linear Transformers,
such as FLatten [Han et al., 2023] and LSoftmax [Yue et
al., 2024], achieve linear complexity by precomputing K𝑇V
and designing various mapping functions. FlashAttention
[Dao et al., 2022] accelerates computations by tiling to mini-
mize GPU memory operations. LASER [Surya Duvvuri and
Dhillon, 2024] mitigates the gradient vanishing issue using
exponential transformations. In this work, we focus on the
low-rank issue and adopt a simple yet effective strategy by
adding a learnable matrix to the attention matrix. This im-
proves both matrix rank and gradient flow with minimal mod-
ifications to the vanilla attention mechanism.

3 Preliminaries
The discrete Fourier transform (DFT) [Palani, 2022] converts
a signal x ∈ R𝑁 into its frequency spectrum F ∈ C𝑁 . For
𝑘 = 0, 1, · · · , 𝑁 − 1, we have

F [𝑘] =
𝑁−1∑︁
𝑛=0

𝑒− 𝑗 2𝜋
𝑁

𝑛𝑘x[𝑛] . (1)

Here, 𝑗 denotes the imaginary unit. For a real-valued vector
x, F [𝑘] is complex-valued and satisfies the property of Her-
mitian symmetry [Palani, 2022]: F [𝑘] = (F [𝑁 − 𝑘])∗ for
𝑘 = 1, · · · , 𝑁 − 1, where (·)∗ denotes the complex conjugate.
The DFT is a linear and reversible transform, with the inverse
discrete Fourier transform (IDFT) being:
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Figure 2: Overall structure of the FreEformer. We leverage the frequency spectrum to capture temporal patterns and employ an enhanced
Transformer to model dependencies among multivariate spectra. The enhanced Transformer introduces a learnable matrix to the attention
mechanism, which, as shown through theoretical analysis, addresses potential low-rank issues and improves gradient flow.

x[𝑛] = 1
𝑁

𝑁−1∑︁
𝑘=0

F [𝑘] · 𝑒 𝑗 ·2𝜋 𝑘
𝑁
𝑛, 𝑘 = 0, 1, · · · , 𝑁 − 1. (2)

Linear projections in the frequency domain are widely em-
ployed in works such as FreTS [Yi et al., 2024c] and FITS
[Xu et al., 2023]. The following theorem establishes their
equivalent operations in the time domain.
Theorem 1 (Frequency-domain linear projection and time–
domain convolutions). Given the time series x ∈ R𝑁 and its
corresponding frequency spectrum F ∈ C𝑁 . Let W ∈ C𝑁×𝑁

denote a weight matrix and b ∈ C𝑁 a bias vector. Under
these definitions, the following DFT pair holds:

F̃ = WF + b ↔
𝑁−1∑︁
𝑖=0

Ω𝑖 ⊛ M𝑖 (x) + IDFT(b), (3)

where

𝑤𝑖 = [diag(W, 𝑖), diag(W, 𝑖 − 𝑁)] ∈ C𝑁 ,

Ω𝑖 = IDFT (𝑤𝑖) ∈ C𝑁 ,

M𝑖 (x) = x ⊙
[
e− 𝑗 2𝜋

𝑁
𝑖𝑘
]
𝑘=0,1, · · ·𝑁−1

∈ C𝑁 .

(4)

Here, ⊛ denotes the circular convolution, and ⊙ represents
the Hadamard (element-wise) product. The notation [·, ·] in-
dicates the concatenation of two vectors. diag(W, 𝑖) ∈ C𝑁−|𝑖 |

extracts the 𝑖-th diagonal of W. M𝑖 (x) represents the 𝑖-th
modulated version of x, with M0 (x) being x itself.

We provide the proof of this theorem in Section A of the
appendix. Theorem 1 extends Theorem 2 from FreTS [Yi

et al., 2024c] and demonstrates that a linear transformation
in the frequency domain is equivalent to the sum of circular
convolution operations applied to the series and its modulated
versions. This equivalence highlights the computational sim-
plicity of performing such operations in the frequency domain
compared to the time domain.

4 Method
In multivariate time series forecasting, we consider historical
series within a lookback window of 𝑇 , each timestamp with
𝑁 variates: x = {x1, · · · , x𝑇 } ∈ R𝑁×𝑇 . Our task is to predict
future 𝜏 timestamps to closely approximate the ground truth
y = {x𝑇+1, · · · , x𝑇+𝜏} ∈ R𝑁×𝜏 .

4.1 Overall Architecture
As shown in Figure 2, FreEformer employs a simple archi-
tecture. First, an instance normalization layer, specifically
RevIN [Kim et al., 2021], is used to normalize the input data
and de-normalize the results at the final stage to mitigate non-
stationarity. The constant mean component, represented by
the zero-frequency point in the frequency domain, is set to
zero during normalization. Subsequently, a dimension ex-
tension module is employed to enhance the model’s repre-
sentation capabilities. Specifically, the input x is expanded
by a learnable weight vector 𝜙𝑑 ∈ R𝑑 , yielding higher-
dimensional and more expressive series data: x̄ = x × 𝜙𝑑 ∈
R𝑁×𝑑×𝑇 . We refer to 𝑑 as the embedding dimension.
Frequency-Domain Operations Next, we apply the Dis-
crete Fourier Transform (DFT) to convert the time series x̄
into its frequency spectrum along the temporal dimension:

F = DFT(x̄) = Re(F ) + 𝑗 · Im(F ) ∈ C𝑁×𝑑×𝑇 , (5)
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Dataset ECL Weather Traffic COVID-19 NASDAQ COVID-19 NASDAQ

𝑇 − 𝜏 96-{96,192,336,720} 36-{24,36,48,60} 12-{3,6,9,12}

Concat. 0.162 0.243 0.443 8.705 0.190 1.928 0.055
S.W. 0.165 0.240 0.440 8.520 0.189 1.895 0.055

N.S.W. 0.162 0.239 0.435 8.435 0.185 1.892 0.055

Table 1: Comparison of different processes for real and imaginary
parts. Average MSEs are reported in this table. ‘S.W.’ and ‘N.S.W.’
denote ‘Shared Weights’ and ‘Non-Shared Weights’, respectively.
‘Concat.’ denotes the concatenation method.

where Re(·) and Im(·) represent the real and imaginary parts,
respectively. Due to the conjugate symmetry property of
the frequency spectrum of a real-valued signal, only the first
⌈(𝑇 + 1)/2⌉ elements of the real and imaginary parts need to
be retained. Here, ⌈·⌉ denotes the ceiling operation.

To process the real and imaginary parts, common strategies
include employing complex-valued layers [Yi et al., 2024c;
Xu et al., 2023], or concatenating the real and imaginary parts
into a real-valued vector and subsequently projecting the re-
sults back [Piao et al., 2024]. In this work, we adopt a sim-
ple yet effective scheme: processing these two parts indepen-
dently. As shown in Table 1, this dual-branch scheme yields
better performance for FreEformer.

After flattening the last two dimensions of the real and
imaginary parts and projecting them into the hidden di-
mension 𝐷, we construct the frequency-domain variate to-
kens R̃e, ˜Im ∈ R𝑁×𝐷 . These tokens are then fed into 𝐿

stacked Transformer blocks to capture multivariate dependen-
cies among the spectra. Subsequently, the tokens are pro-
jected back to the lookback length. The real and imaginary
parts are then regrouped to reconstruct the frequency spec-
trum. Then, the time-domain signal x̃ is recovered using the
IDFT. The entire process is summarized as follows:

F̃ = F [:, :, 0 : ⌈(𝑇 + 1)/2⌉] ∈ C𝑁×𝑑×⌈ (𝑇+1)/2⌉ ,

R̃e0
= Linear(Flatten(Re(F̃ ))) ∈ R𝑁×𝐷

R̃e𝑙+1
= TrmBlock(R̃e𝑙) ∈ R𝑁×𝐷 , 𝑙 = 0, · · · , 𝐿 − 1,

R̃e = Linear(Reshape(R̃e𝐿)) ∈ R𝑁×𝑑×⌈ (𝑇+1)/2⌉ ,

˜Im0
= Linear(Flatten(Im(F̃ ))) ∈ R𝑁×𝐷

˜Im𝑙+1
= TrmBlock( ˜Im𝑙) ∈ R𝑁×𝐷 , 𝑙 = 0, · · · , 𝐿 − 1,

˜Im = Linear(Reshape( ˜Im𝐿)) ∈ R𝑁×𝑑×⌈ (𝑇+1)/2⌉ ,

x̃ = IDFT(R̃e + 𝑗 · ˜Im) ∈ R𝑁×𝑑×𝑇 .

(6)

In the above equation, the final step is implemented via the
irfft function in PyTorch to ensure real-valued outputs.

Prediction Head A shortcut connection is applied to sum x̃
with the original x̄. Finally, a flatten layer and a linear head
are used to ensure the output matches the desired size. The
final result is obtained through a de-normalization step:

ŷ = DeNorm (Linear(Flatten(x̃ + x̄))) ∈ R𝑁×𝜏 . (7)

Figure 3: Attention matrices from state-of-the-art forecasters on the
Weather dataset. The FreEformer with vanilla attention typically ex-
hibits a low rank, likely due to the inherent sparsity of the frequency
spectrum and the strong-value-focused nature of the Softmax func-
tion in vanilla attention.

Vanilla Attn. Ori. Attn. (Ours) Learned Add. (Ours) Final Attn. (Ours)
Rank: 3 Rank: 18 Rank: 21 Rank: 21

Rank: 137 Rank: 40 Rank: 321 Rank: 321

W
ea

th
er

EC
L

Figure 4: Attention matrices from vanilla and enhanced attention.
The left column shows the low-rank attention matrix from the vanilla
attention (Weather: 3, ECL: 137), with most entries near zero.
The right three columns show the original attention matrix (A), the
learned addition matrix (Softplus(B)), and the final attention matrix
(Norm (A + Softplus(B))). The final matrix exhibits more promi-
nent values and higher ranks (Weather: 21, ECL: 321).

4.2 Enhanced Attention
In the Transformer block, as shown in Figure 2(b), we first
employ the attention mechanism to capture cross-variate de-
pendencies. Then the LayerNorm and FFN are used to up-
date frequency representations in a variate-independent man-
ner. According to Theorem 1, the FFN corresponds to a series
of convolution operations in the time domain for series repre-
sentations. The vanilla attention mechanism is defined as:

Attn (Q,K,V) = Softmax
(
QK𝑇

√
𝐷

)
︸               ︷︷               ︸

Attention Matrix≜A

V. (8)

Here, Q,K,V ∈ R𝑁×𝐷 are the query, key and value matrix,
respectively, obtained through linear projections. We denote
𝐷 as the feature dimension and refer to Softmax

(
QK𝑇/

√
𝐷

)
,

represented as A, as the attention matrix.
However, as shown in Figure 3, compared to other state-

of-the-art forecasters, FreEformer with the vanilla attention
mechanism usually exhibits an attention matrix with a lower
rank. This could arise from the inherent sparsity of the fre-
quency spectrum [Palani, 2022] and the strong-value-focused
properties of the vanilla attention mechanism [Surya Duvvuri
and Dhillon, 2024; Xiong et al., 2021]. While patching ad-
jacent frequency points can mitigate sparsity (as in Fred-
former), we address the underlying low-rank issue within the
attention mechanism itself, offering a more general solution.
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Figure 5: Illustration of the Jacobian matrices of c with respect to a
and b for the Weather and COVID-19 datasets.

In this work, we adopt a straightforward yet effective so-
lution: introducing a learnable matrix B to the attention
matrix. The enhanced attention mechanism, denoted as
EnhAttn (Q,K,V), is defined as 1:

Norm
(
Softmax

(
QK𝑇

√
𝐷

)
+ Softplus(B)

)
V, (9)

where Norm(·) denotes row-wise L1 normalization. The
Softplus(·) function ensures positive entries, thereby prevent-
ing potential division-by-zero errors in Norm(·).
Theoretical Analysis
Feature Diversity According to Equation (9), feature di-
versity is directly influenced by the rank of the final attention
matrix Norm

(
A + B̄

)
, where B̄ ≜ Softplus(B). Since row-

wise L1 normalization does not alter the rank of a matrix, we
have: rank

(
Norm

(
A + B̄

) )
= rank

(
A + B̄

)
. For further anal-

ysis, we present the following theorem:
Theorem 2. Let A and B be two matrices of the same size
𝑁 × 𝑁 . The rank of their sum satisfies the following bounds:

|rank(A) − rank(B) | ≤ rank(A + B) ≤ rank(A) + rank(B)
(10)

The proof is provided in Section B of the appendix. As
illustrated in Figure 4, the original attention matrix A often
exhibits a low rank, whereas the learned matrix B̄ is nearly
full-rank. According to Theorem 2, the combined matrix A +
B̄ generally achieves a higher rank. This observation aligns
with the results shown in Figure 4.

Gradient Flow Let a ∈ R𝑁 denote a row in QK𝑇/
√
𝐷. For

vanilla attention, the transformation is ã ≜ Softmax(a). Then
the Jacobian matrix of ã regarding a can be derived as:

𝜕ã
𝜕a

= Diag(ã) − ãã𝑇 , (11)

where Diag(ã) is a diagonal matrix with ã as its diagonal.
For the enhanced attention, the transformation is given by:

c = Norm (Softmax(a) + b) , (12)
where b represents a row of Softplus(B). The Jacobian ma-
trices of c with respect to a and b can be derived as:

𝜕c
𝜕a

=
1

b̃

1

(
Diag(ã) − ãã𝑇

)
,

𝜕c
𝜕b

=
1

b̃

2

1

(

b̃

1 · I − b̃1𝑇
)
,

(13)

1The variants are discussed in Section C.3 of the appendix.

where b̃ = ã + b = Softmax(a) + b, I ∈ R𝑁×𝑁 is the unit ma-
trix; 1 = [1, · · · , 1]𝑇 ∈ R𝑁 . The detailed proofs of Equations
(11) and (13) are provided in Section C of the appendix.

We can see that 𝜕c/𝜕a in Equation (13) shares the same
structure as that of vanilla attention in Equation (11), except
for the scaling factor 1/

��b̃��1. Since


b̃

1 = 1+ ∥b∥1 > 1 and b̃

is learnable, the gradient is scaled down by a learnable factor,
providing extra flexibility in gradient control.

Moreover, as shown in Figure 5, 𝜕c/𝜕b exhibits a pro-
nounced diagonal than 𝜕c/𝜕a, suggesting a stronger depen-
dence of c on b than a. This aligns with the design, as b
directly modulates the attention weights.

Combination of MLP and Vanilla Attention We now pro-
vide a new perspective on the enhanced attention. In Equation
(9), the attention matrix is decomposed into two components:
the input-independent, dataset-specific term B̄, and the input-
dependent term A. If A is zero, the enhanced attention re-
duces to a linear transformation of V, effectively functioning
as an MLP along the variate dimension. By jointly optimiz-
ing A and B̄, the enhanced attention can be interpreted as an
adaptive combination of MLP and vanilla attention.

5 Experiments
Datasets and Implementation Details We extensively
evaluate the FreEformer using eighteen real-world datasets:
ETT (four subsets), Weather, ECL, Traffic, Exchange,
Solar-Energy, PEMS (four subsets), ILI, COVID-19,
METR-LA, NASDAQ and Wiki. During training, we adopt
the L1 loss function from CARD [Wang et al., 2024c]. The
embedding dimension 𝑑 is fixed at 16, and the dimension 𝐷

is selected from {128, 256, 512}. The dataset description and
implementation details are provided in the appendix.

5.1 Forecasting Performance
We choose 10 well-acknowledged deep forecasters as our
baselines, including (1) Transformer-based models: Led-
dam [Yu et al., 2024], CARD [Wang et al., 2024c], Fred-
former [Piao et al., 2024], iTransformer [Liu et al., 2024a],
PatchTST [Nie et al., 2023], Crossformer [Zhang and Yan,
2023]; (2) Linear-based models: TimeMixer [Wang et al.,
2024b], FreTS [Yi et al., 2024c] and DLinear [Zeng et al.,
2023]; (3) TCN-based model: TimesNet [Wu et al., 2023a].

Comprehensive results for long- and short-term forecast-
ing are presented in Tables 2 and 3, respectively, with the
best results highlighted in bold and the second-best un-
derlined. FreEformer consistently outperforms state-of-the-
art models across various prediction lengths and real-world
domains. Compared with sophisticated time-domain-based
models, such as Leddam and CARD, FreEformer achieves
superior performance with a simpler architecture, benefiting
from the global-level property of the frequency domain. Fur-
thermore, its performance advantage over Fredformer, an-
other Transformer- and frequency-based model, suggests that
the deliberate patching of band-limited frequency spectra
may introduce noise, hindering forecasting accuracy.

Notably, in Table 4, we compare FreEformer with addi-
tional frequency-based models, where it also demonstrates
a clear performance advantage. The visualization results of
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Model
FreEformer

(Ours)
Leddam
[2024]

CARD
[2024c]

Fredformer
[2024a]

iTrans.
[2024a]

TimeMixer
[2024b]

PatchTST
[2023]

Crossfm.
[2023]

TimesNet
[2023a]

FreTS
[2024c]

DLinear
[2023]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETTm1 0.379 0.381 0.386 0.397 0.383 0.384 0.384 0.395 0.407 0.410 0.381 0.395 0.387 0.400 0.513 0.496 0.400 0.406 0.407 0.415 0.403 0.407
ETTm2 0.272 0.313 0.281 0.325 0.272 0.317 0.279 0.324 0.288 0.332 0.275 0.323 0.281 0.326 0.757 0.610 0.291 0.333 0.335 0.379 0.350 0.401
ETTh1 0.433 0.431 0.431 0.429 0.442 0.429 0.435 0.426 0.454 0.447 0.447 0.440 0.469 0.454 0.529 0.522 0.458 0.450 0.488 0.474 0.456 0.452
ETTh2 0.372 0.393 0.373 0.399 0.368 0.390 0.365 0.393 0.383 0.407 0.364 0.395 0.384 0.405 0.942 0.684 0.414 0.427 0.550 0.515 0.559 0.515
ECL 0.162 0.251 0.169 0.263 0.168 0.258 0.176 0.269 0.178 0.270 0.182 0.272 0.208 0.295 0.244 0.334 0.192 0.295 0.202 0.290 0.212 0.300

Exchange 0.354 0.399 0.354 0.402 0.362 0.402 0.333 0.391 0.360 0.403 0.387 0.416 0.367 0.404 0.940 0.707 0.416 0.443 0.416 0.439 0.354 0.414
Traffic 0.435 0.251 0.467 0.294 0.453 0.282 0.433 0.291 0.428 0.282 0.484 0.297 0.531 0.343 0.550 0.304 0.620 0.336 0.538 0.328 0.625 0.383

Weather 0.239 0.260 0.242 0.272 0.239 0.265 0.246 0.272 0.258 0.279 0.240 0.271 0.259 0.281 0.259 0.315 0.259 0.287 0.255 0.298 0.265 0.317
Solar 0.217 0.219 0.230 0.264 0.237 0.237 0.226 0.262 0.233 0.262 0.216 0.280 0.270 0.307 0.641 0.639 0.301 0.319 0.226 0.254 0.330 0.401

PEMS03 0.102 0.206 0.107 0.210 0.174 0.275 0.135 0.243 0.113 0.221 0.167 0.267 0.180 0.291 0.169 0.281 0.147 0.248 0.169 0.278 0.278 0.375
PEMS04 0.094 0.196 0.103 0.210 0.206 0.299 0.162 0.261 0.111 0.221 0.185 0.287 0.195 0.307 0.209 0.314 0.129 0.241 0.188 0.294 0.295 0.388
PEMS07 0.080 0.167 0.084 0.180 0.149 0.247 0.121 0.222 0.101 0.204 0.181 0.271 0.211 0.303 0.235 0.315 0.124 0.225 0.185 0.282 0.329 0.395
PEMS08 0.110 0.194 0.122 0.211 0.201 0.280 0.161 0.250 0.150 0.226 0.226 0.299 0.280 0.321 0.268 0.307 0.193 0.271 0.212 0.297 0.379 0.416

Table 2: Long-term time series forecasting results for 𝑇 = 96 and 𝜏 ∈ {96, 192, 336, 720}. For PEMS, 𝜏 ∈ {12, 24, 48, 96}. Results are
averaged across these prediction lengths. These settings are used throughout the following tables.

Model
FreEformer

(Ours)
Leddam
[2024]

CARD
[2024c]

Fredformer
[2024a]

iTrans.
[2024a]

TimeMixer
[2024b]

PatchTST
[2023]

TimesNet
[2023a]

DLinear
[2023]

FreTS
[2024c]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

S1 1.140 0.585 1.468 0.679 1.658 0.707 1.518 0.696 1.437 0.659 1.707 0.734 1.681 0.723 1.480 0.684 2.400 1.034 1.839 0.782ILI S2 1.906 0.835 1.982 0.875 2.260 0.938 1.947 0.899 1.993 0.887 2.020 0.878 2.128 0.885 2.139 0.931 3.083 1.217 3.036 1.174

S1 1.892 0.673 2.064 0.779 2.059 0.767 1.902 0.765 2.096 0.795 2.234 0.782 2.221 0.820 2.569 0.861 3.483 1.102 2.516 0.862COVID-19 S2 8.435 1.764 8.439 1.792 9.013 1.862 8.656 1.808 8.506 1.792 9.604 1.918 9.451 1.905 9.644 1.877 13.075 2.099 11.345 1.958

S1 0.336 0.221 0.327 0.243 0.349 0.233 0.336 0.242 0.338 0.244 0.334 0.245 0.335 0.243 0.344 0.253 0.341 0.294 0.324 0.279METR-LA S2 0.840 0.406 0.878 0.490 0.929 0.466 0.898 0.495 0.916 0.501 0.881 0.499 0.893 0.502 0.890 0.488 0.819 0.550 0.804 0.543

S1 0.055 0.126 0.059 0.135 0.057 0.130 0.059 0.135 0.060 0.137 0.055 0.126 0.058 0.132 0.068 0.151 0.072 0.170 0.080 0.184NASDAQ S2 0.185 0.277 0.196 0.286 0.193 0.284 0.194 0.285 0.207 0.297 0.186 0.281 0.198 0.286 0.255 0.343 0.228 0.331 0.263 0.361

S1 6.524 0.391 6.547 0.404 6.553 0.400 6.705 0.406 6.569 0.405 6.572 0.409 6.523 0.404 7.956 0.520 6.634 0.481 6.521 0.448Wiki S2 6.259 0.442 6.286 0.463 6.285 0.453 5.931 0.453 6.275 0.458 6.315 0.468 6.212 0.444 7.310 0.623 6.205 0.539 6.147 0.505

Table 3: Short-term time series forecasting results under two settings: S1 (Input-12, Predict-{3, 6, 9, 12}) and S2 (Input-36, Predict-
{24, 36, 48, 60}). Average results are reported across four prediction lengths. S1 is the default setting in the following experiments.

Models
FreEformer

(Ours)
FITS

[2023]
FAN

[2024]
FilterNet
[2024a]

FreDF
[2024a]

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

ETT(Avg) 0.364 0.380 0.408 0.405 0.405 0.427 0.367 0.384 0.369 0.384
ECL 0.162 0.251 0.384 0.434 0.208 0.298 0.201 0.285 0.170 0.259

Traffic 0.435 0.251 0.615 0.370 0.526 0.357 0.521 0.340 0.421 0.279
Weather 0.239 0.260 0.273 0.292 0.247 0.292 0.248 0.274 0.254 0.274

Table 4: Comparison with additional state-of-the-art frequency-
based models. Average results are reported across four prediction
lengths. ‘Avg’ refers to averages further computed over subsets.

FreEformer are presented in Figure 6. Furthermore, as shown
in Table 10 of the appendix, FreEformer exhibits state-of-the-
art performance with variable lookback lengths.

5.2 Model Analysis
Architecture Ablations The FreEformer utilizes an en-
hanced Transformer architecture to capture cross-variate de-
pendencies in the frequency domain. Table 5 presents a com-
parison of several FreEformer variants, evaluating the impact
of linear and enhanced Transformer layers, different dimen-
sional configurations, and patching along the frequency di-
mension. To ensure a fair comparison, the enhanced Trans-

0 200

0.0

2.5

ECL

0 200

0

5

Traffic

0 200

0

2

Solar-Energy

0 200

0

2

PEMS03

Ground Truth Prediction

Figure 6: Visualization of the forecasting results under the ‘Input-
96-Predict-96’ setting, demonstrating accurate approximations.

former is used for all Transformer-based settings. The re-
sults indicate that: 1) Enhanced Transformer blocks outper-
form linear layers due to their superior representation capa-
bilities; 2) Multivariate dependency learning generally out-
performs inter-frequency learning, aligning with the claim
in FreDF [Wang et al., 2024a] that correlations among fre-
quency points are minimal; 3) Furthermore, patching does
not improve FreEformer, likely because patching frequencies
creates localized receptive fields, thereby limiting access to
global information.

Frequency-Domain vs. Temporal Representation To
construct the time-domain variant of FreEformer, we remove
the DFT and IDFT steps, as well as the imaginary branch.
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Layer Dim. Patch. ETTm1 Weather ECL Traffic COVID-19

Linear Var. ✗ 0.385 0.245 0.189 0.488 2.040
Linear Fre. ✗ 0.386 0.246 0.184 0.482 2.086

Trans. Fre. ✔ 0.381 0.244 0.183 0.504 2.100
Trans. Fre. ✗ 0.383 0.245 0.181 0.489 2.116
Trans. Var. ✔ 0.385 0.241 0.162 0.443 2.029

Trans. Var. ✗ 0.379 0.239 0.162 0.435 1.892

Table 5: Architecture ablations on layers, dimensions, and patching
settings. Layers include linear and enhanced Transformer layers,
while dimensions refer to frequency and variate dimensions. ‘Patch.’
indicates patching along the frequency dimension, with patch length
and stride set to 6 and 3 for COVID-19, and 16 and 8 for other
datasets. Average MSEs are reported across four prediction hori-
zons. The final row corresponds to the FreEformer configuration.

Attn. Domain Traffic PEMS03 Weather Solar ILI

Ours Fre. 0.435 0.102 0.239 0.217 1.140
Time 0.443 0.122 0.243 0.228 1.375

Vanilla Fre. 0.451 0.113 0.245 0.220 1.510
Time 0.441 0.146 0.248 0.226 2.140

Table 6: Performance comparison of the frequency-domain and
time-domain representation learning under two attention settings.
Average MSEs are reported across four prediction lengths.

As shown in Table 6, the frequency-domain representation
achieves an average improvement of 8.4% and 10.7% in MSE
compared to the time-domain version under the enhanced and
vanilla attention settings, respectively. Additionally, we show
in Section I.1 of the appendix that Fourier bases generally
outperform Wavelet and polynomial bases for our model.

Head ETTm1 Weather ECL Traffic Solar NASDAQ COVID-19

Fre. 0.379 0.245 0.160 0.441 0.216 0.055 1.930
Time 0.379 0.239 0.162 0.435 0.217 0.055 1.892

Table 7: Performance comparison of frequency-domain and tempo-
ral prediction heads. Average MSEs are reported.

Prediction Head In our model, after performing frequency
domain representation learning, we apply a temporal predic-
tion head to generate the final predictions. In contrast, some
frequency-based forecasters (e.g., FITS and Fredformer) di-
rectly predict the future frequency spectrum and transform it
back to the time domain as the final step. In FreEformer, the
frequency prediction head is formulated as:

ŷ = DeNorm
(
IDFT

(
FlatLin(R̃e) + 𝑗 · FlatLin( ˜Im)

) )
, (14)

where R̃e and ˜Im are defined in Equation (6). As shown in Ta-
ble 7, the temporal head slightly outperforms the frequency-
domain head, highlighting the challenges of accurately fore-
casting the frequency spectrum. Additionally, Equation (14)
incurs higher computational costs in the IDFT step when
𝜏 > 𝑇 , as in long-term forecasting scenarios.

5.3 Enhanced Attention Analysis

Dataset Ours Trans.
[2017]

Flowfm.
[2022]

Flashfm.
[2022]

Flatten
[2023]

Mamba
[2023]

LASER
[2024]

Lin.Attn.
[2024]

Traffic 0.435 0.451 0.453 0.448 0.453 0.443 0.451 0.452
PEMS03 0.102 0.113 0.113 0.114 0.114 0.115 0.111 0.115
Weather 0.239 0.245 0.242 0.245 0.248 0.243 0.244 0.245

Solar 0.217 0.220 0.224 0.221 0.229 0.228 0.219 0.230
ILI 1.140 1.510 1.288 1.547 1.842 1.508 1.596 1.453

Table 8: Comparison of the enhanced Transformer with state-of-
the-art attention models and Mamba. Average MSEs are reported
across four prediction lengths. Results outperforming state-of-the-
art forecasters Leddam and CARD are highlighted in red.

We compare the enhanced Transformer with vanilla Trans-
former, state-of-the-art Transformer variants and Mamba [Gu
and Dao, 2023] in Table 8. The enhanced Transformer consis-
tently outperforms other models, verifying the effectiveness
of the enhanced attention mechanism.

Dataset iTrans. PatchTST Leddam Fredformer

Van. E.A. Van. E.A. Van. E.A. Van. E.A.

ETTm1 0.407 0.389 0.387 0.381 0.386 0.384 0.384 0.385
ECL 0.178 0.165 0.208 0.181 0.169 0.167 0.176 0.169

PEMS07 0.101 0.086 0.211 0.156 0.084 0.080 0.121 0.103
Solar 0.233 0.226 0.270 0.232 0.230 0.228 0.226 0.222

Weather 0.258 0.249 0.259 0.245 0.242 0.242 0.246 0.242
METR-LA 0.338 0.329 0.335 0.335 0.327 0.321 0.336 0.334

Table 9: Comparison of state-of-the-art models using vanilla (Van.)
and enhanced attention (E.A.). Only the attention mechanism is up-
dated, with other components and the loss function kept unchanged.
Average MSEs across four prediction lengths are reported.

We further apply the enhanced attention mechanism to
state-of-the-art forecasters, as shown in Table 9. This yields
average MSE improvements of 5.9% for iTransformer, 9.9%
for PatchTST, 1.4% for Leddam (with updates only to the
‘cross-channel attention’ module), and 3.8% for FreEformer.
These results demonstrate the versatility and effectiveness of
the enhanced attention mechanism. Moreover, comparing Ta-
bles 2 and 9, FreEformer consistently outperforms these im-
proved forecasters, underscoring its architectural advantages.

In the appendix, we further demonstrate FreEformer’s per-
formance superiority on more metrics (e.g., MASE, corre-
lation coefficient). Remarkably, FreEformer, trained from
scratch, achieves superior or comparable performance to a
pre-trained model fine-tuned on the same training data.

6 Conclusion
In this work, we present a simple yet effective multivariate
time series forecasting model based on a frequency-domain
enhanced Transformer. The enhanced attention mechanism
is demonstrated to be effective both theoretically and empir-
ically. It can consistently bring performance improvements
for state-of-the-art Transformer-based forecasters. We hope
that FreEformer will serve as a strong baseline for the time
series forecasting community.
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