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Abstract
Multivariate time series (MTS) forecasting endeav-
ors to anticipate the forthcoming sequence of inter-
dependent variables through the utilization of past
observations. The prevailing methodologies, rely-
ing on deep neural networks, Transformer, or in-
formation bottleneck frameworks, persist in con-
fronting challenges such as overlooking or inad-
equately capturing the inter / intra-series correla-
tions evident in practical MTS datasets. In response
to these challenges, we introduce a conditional in-
formation bottleneck-based strategy for MTS fore-
casting, grounded in information theory. Initially,
we establish a conditional information bottleneck
principle to capture the inter-series correlations
via conditioning on non-target variables. Subse-
quently, a conditional mutual information-based
technique is introduced to extract intra-series cor-
relations by conditioning historical data, ensuring
temporal consistency within each variable. Lastly,
we devise a unified optimization objective and pro-
pose a training algorithm to collectively capture in-
ter / intra-series correlations. Empirical investiga-
tions on authentic datasets underscore the superi-
ority of our proposed approach over other cutting-
edge competitors. Our code is available at https:
//github.com/Xinhui-Lee/CIB-MTSF.

1 Introduction
Multivariate time series (MTS) forecasting, a focal point in
domains such as stock price [Adebiyi et al., 2014], energy
management [Li et al., 2024], and weather prediction [Chen
et al., 2023], necessitates capturing inter-series correlations
that delineate dependencies among variables at the same time
and intra-series correlations that signify temporal dependen-
cies within a variable across different time spans. For in-
stance, in weather forecasting, grasping inter-series correla-
tions is critical for deciphering the intertwined relationships
among temperature, humidity, and vapor pressure. Higher
temperatures induce increased evaporation, resulting in ele-
vated humidity levels and altered vapor pressure. Further-

∗Corresponding author.

more, capturing intra-series correlations preserves the tem-
poral coherence of each variable across adjacent time peri-
ods, facilitating gradual transitions in temperature between
day and night or across seasons.

Existing methods utilize deep neural networks, including
recurrent neural networks (RNN) [Pagliarini et al., 2024],
convolutional neural networks (CNN) [Sun et al., 2023],
graph convolutional networks (GCN) [He et al., 2024], and
multilayer perceptrons (MLP) [Zeng et al., 2023] for MTS
forecasting. These approaches often encounter challenges
in maintaining temporal coherence due to struggles in cap-
turing long-term dependencies and insensitivity to tempo-
ral order. Transformer-based methods [Zhou et al., 2023;
Nie et al., 2023] leverage self-attention mechanisms for MTS
forecasting. However, they lack interpretability in capturing
inter-variable dependencies.

The Information Bottleneck (IB) principle, aimed at retain-
ing relevant information for forecasting while reducing irrel-
evant information [Tishby et al., 2000], has been applied in
IB-based models like LaST and DeepCoupling [Wang et al.,
2022b; Yi et al., 2024] to identify temporal patterns while
preserving essential forecasting information. However, the
exploration of leveraging IB to capture variable dependencies
and maintain temporal coherence remains uncharted. Estab-
lishing a model that incorporates the IB principle to effec-
tively capture inter / intra-series correlations remains a valu-
able pursuit.

The conditional information bottleneck (CIB) method in-
tegrates task-relevant background information using mutual
information through conditional variables, aiming to mini-
mize redundancy while capturing useful information from
all data [Choi and Lee, 2024]. Hence, we employ CIB to
discern intricate interaction patterns among variables within
each time period. Subsequently, to ensure temporal coher-
ence within each variable across neighboring periods, we uti-
lize conditional mutual information (CMI) to preserve the
inherent sequence consistency. Addressing the efficient cal-
culation of mutual information and precise representation of
correlations in MTS involves tackling the following two piv-
otal challenges:

• How can the CIB-based principle be formulated to cap-
ture inter-series correlations in MTS data?

• How can CMI be utilized to capture intra-series correla-
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tions and ensure continuous time coherence?

For the first challenge, we employ CIB to diminish super-
fluous data while conserving pertinent information for MTS
forecasting. To delineate inter-series dependencies, each vari-
able is considered with other variables as conditions, offering
additional temporal insights. To streamline mutual informa-
tion computation within CIB, we establish manageable upper
and lower bounds for each mutual information component.
Subsequently, we formulate the CIB-based loss function by
amalgamating the estimated mutual information terms.

For the second issue, we segment the time series into over-
lapping patches to enhance the capture of local intra-series
correlations within each variable. To preserve the temporal
coherence without disrupting the continuity of the time series
segmentation, we introduce the CMI-based principle, where
all preceding patches are regarded as conditions to offer ad-
ditional temporal insights. To address the computational in-
tensity of mutual information estimation within CMI, we es-
tablish a lower bound for mutual information approximation,
subsequently defining the CMI-based loss function.

Ultimately, we introduce a cohesive objective by amal-
gamating the CIB and CMI-based loss functions to collec-
tively capture inter / intra-series correlations within MTS
data. Additionally, we present a training algorithm tailored to
MTS data, offering a systematic approach to capturing inter-
variable dependencies and upholding temporal coherence.

We summarize our contributions as follows:

• We propose the CIB-based principle for MTS forecast-
ing to delineate inter-variable dependencies within con-
current time periods.

• We introduce the CMI-based approach for MTS fore-
casting to ensure temporal consistency within individual
variables across neighboring time segments.

• We present a unified optimization goal and training pro-
tocol to concurrently capture both inter / intra-series cor-
relations.

• We conduct extensive experiments on authentic datasets
and demonstrate the superior efficacy of our method over
state-of-the-art alternatives.

2 Related Work
Deep neural network-enabled MTS forecasting. Diverse
deep neural network methodologies have emerged for MTS
forecasting. RNN-based architectures leverage hidden states
to capture temporal dependencies [Li et al., 2022; Pagliarini
et al., 2024]. CNN-based models extract local features and
recurrent patterns through convolutions [Sun et al., 2023;
Wang et al., 2023]. Graph structure is instrumental in cap-
turing intricate dependencies in data [Duan et al., 2024],
and thus GCN-based models establish graph structures from
MTS, employing graph convolutions to propagate temporal
features across nodes [He et al., 2024; Wu et al., 2020]. MLP
models are tailored for efficient MTS forecasting [Zeng et
al., 2023]. Certain models extract local temporal features
by segmenting time series into patches [Huang et al., 2024;
Ma et al., 2024]. Nevertheless, these approaches may strug-
gle to capture dependencies over extended periods and might

overlook the sequential nature of temporal data, potentially
compromising the preservation of long-term patterns crucial
for accurate forecasting.

Transformer-based MTS forecasting. To mitigate com-
putational overhead, Zhou et al. [Zhou et al., 2023] intro-
duce Informer, employing ProbSparse attention, while Li et
al. [Li et al., 2023] integrate dilated convolutional networks
and Transformer blocks to circumvent global attention com-
putations. Liu et al. [Liu et al., 2024] captures inter-variable
dependencies by applying self-attention over variate tokens.
Strategies such as frequency domain transformation or time
series decomposition aid in extracting periodic and global
features, easing computational demands [Wu et al., 2021;
Zhou et al., 2024]. Techniques like fragmentation [Nie et
al., 2023] or multi-scale processing [Zhang and Yan, 2023]
of time series, which capture both local and global dependen-
cies. Nonetheless, these approaches lack the interpretability
of inter-variable dependencies.

Temporal pattern recognition-based MTS forecasting.
Several methods leverage frequency-domain transformations
to uncover global and periodic trends in MTS, facilitating
the detection of short-term variations and long-term rela-
tionships [Yi et al., 2023; Cai et al., 2024]. For instance,
Wang et al. [Wang et al., 2022b] utilize mutual information
for disentangled representation learning, while Grzegorz et
al. [Grzegorz, 2023] decompose MTS into trend and season-
ality components to discern distinct patterns. Yi et al. [Yi et
al., 2024] identify multi-order dependency patterns and the
coupling of MTS through Information Bottleneck (IB) prin-
ciples. Choi et al. [Choi and Lee, 2024] addresses the is-
sue of overly stringent regularization in IB by introducing
conditional regularization based on temporal contexts within
time series. Additionally, Liu [Liu, 2022] reduces data di-
mensions while preserving pertinent patterns in lengthy time
series. Ryabko [Ryabko, 2019] maps high-dimensional time
series into finite spaces to uncover underlying dependencies
accurately. Nevertheless, these approaches struggle with the
interpretation of complex multivariate interactions.

3 Preliminaries and Problem Formalization
In this section, we present formulations of MTS forecasting
and conditional information bottleneck.

MTS forecasting. Given L historical time steps of
N variables, the input series is denoted as X =
{X1, X2, . . . , XN} ∈ RN×L, where each Xi =
{x1

i , x
2
i , . . . , x

L
i } ∈ RL(1 ≤ i ≤ N) represents the his-

torical values of the i-th variable. In this paper, our ob-
jective is to learn a function F : F(X) → X̂ , where
X̂ = {X̂1, X̂2, . . . , X̂N} ∈ RN×T denotes the values
of all variables in future T time steps, and each X̂i =
{x̂L+1

i , x̂L+2
i , . . . , x̂L+T

i } ∈ RT represents the forecasted
values of the i-th variable.

Conditional information bottleneck. With random vari-
ables X , X̂ and Y representing input feature series, future
prediction outcomes, and their corresponding ground truth,
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Figure 1: Framework of our model

the IB principle seeks to ascertain the variable set Z that min-
imizes irrelevant information from X while upholding cru-
cial information necessary for predicting X̂ that aligns with
Y . This is succinctly expressed as:

max I(Z;Y )− βI(Z;X), (1)

where I(Z;Y ) and I(Z;X) are the mutual information be-
tween Z and both Y and X , respectively. β ∈ R is the La-
grangian multiplier used to balance the trade-off between two
terms in IB. Specifically, I(Z;Y ) is formulated as:

I(Z;Y ) = Ep(z,y)

[
log

p(z, y)

p(z)p(y)

]
. (2)

By incorporating conditions, the CIB principle is to find the
variable set Z that retains the information most relevant to the
ground truth Y while reducing irrelevant information from
features X under the conditional variables C, formulated as:

max I(Z;Y )− βI(Z;X | C), (3)

where I(Z;X | C) represents the CMI between Z and X
given C, formulated as:

I(Z;X | C) = Ep(z,x,c)

[
log

p(z, x | c)
p(z | c)p(x | c)

]
. (4)

The chain rule for CMI is

I(Z;X | C) = I(Z;X,C)− I(Z;C). (5)

Accordingly, Eq. (3) could be expanded as:

max I(Z;Y )− β(I(Z;X,C)− I(Z;C)). (6)

Problem formalization. Given the MTS X , our objective
is to establish the mapping F : F(X) → X̂ , where F rep-
resents an encoder designed to generate embeddings that en-
capsulate the salient temporal details crucial for prediction.

To capture the local intra-correlations in each variable, we
divide X into overlapped patches, achieving a segmented rep-
resentation XP . To reduce redundancy and utilize inter-series
correlations when generating embeddings Zi for Xi, we first
impose the loss on the encoder to retain useful information
for Zi. Then, to capture dependencies among variables, we
construct the contrastive learning loss by using positive sam-
ple set Z+

i and negative sample set Z−
i . Thus, the tempo-

ral information can be captured from X̄i, which denotes the
variables in Xp except Xi. Subsequently, we maximize the
CMI between patches within Zi to solve the truncation of the
temporal coherence. Additionally, we generate X̂i by Zi and
use the Mean Squared Error (MSE) loss between X̂i and its
ground truth Yi. Finally, we summarize these steps into an
algorithm for MTS forecasting.

4 Methodology
4.1 Framework Overview
We give the framework for MTS forecasting, as shown
in Fig.1, including the following components:

• Segmenting time series is proposed to divide time se-
ries into overlapped patches, helping the encoder to bet-
ter capture local intra-series correlations.

• Capturing dependencies among variables is designed
and implemented to leverage the CIB principle to iden-
tify and capture complex interactions among variables.

• Maintaining time coherence and forecasting is pro-
posed to maintain the intrinsic consistency of MTS by
leveraging CMI and then generating forecasting results.

4.2 Conditional Information Bottleneck for
Inter-Series Correlation

To capture the dependencies among variables, we employ
I(Zi; X̄i)(1 ≤ i ≤ N) to quantify the information shared
between Zi and X̄i, where Zi is generated by qϕ(Zi | Xi)
and qϕ(·) denotes the multi-head attention with parameters ϕ.
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Maximizing I(Zi; X̄i) encourages Zi to capture the depen-
dencies among variables. For this, we adopt the CIB principle
centered on I(Zi; X̄i), designed to achieve three key objec-
tives: capturing dependencies among variables, minimizing
redundancy, and forecasting future observations.

Capturing dependencies among variables. Directly max-
imizing I(Zi; X̄i) for capturing dependencies proves
unattainable due to the intricate estimation involved in high-
dimensional joint distributions. Consequently, we employ the
InfoNCE loss [Oord et al., 2018], which establishes a man-
ageable bound to approximate the mutual information:

LInfoNCE ≥ logN − I(z1; z2). (7)

To construct the InfoNCE loss, we first generate the an-
chor sample set Zanchor

i by selecting Zi within the cur-
rent batch. Then, we generate the positive sample set Z+

i

by qϕ(Z
+
i | X̄i), which exclusively contains temporal in-

formation from other variables, serving as a reference for
capturing dependencies among variables. Positive samples
Z+
ij = {Z+

i1, Z
+
i2, . . . , Z

+
iN} ∈ Z+

i (j ̸= i) consist of all vari-
ables in Z+

i except the i-th variable, which share the same
sample index as Zanchor

i .
To prevent Zi excessively focusing on temporal informa-

tion within its own context Xi, the negative sample set Z−
i

is generated by selecting Zi from each sample within cur-
rent batch, where Z−

il = {Z−
i1, Z

−
i2, . . . , Z

−
ibs} ∈ Z−

i within
the current batch represents negative samples, and bs denotes
batch size. All the samples are selected exclusively from the
current batch, shown as Fig.2. Meanwhile, other labels in
Fig.2 refer to the unused data points.

Subsequently, we pair Zanchor
i with Z+

ij to form positive
pairs, and Zanchor

i with Z−
il to form negative pairs. The sim-

ilarity between positive and negative pairs can be computed
using the Cosine similarity function:

sim(z1, z2) =
z1 · z2
∥z1∥∥z2∥

, (8)

where z1 and z2 are the representations of the feature embed-
dings of two data samples, respectively.

Finally, we impose the inter-series contrastive loss to ap-
proximate I(Zi; X̄i) by amplifying the similarity of positive
pairs and diminishing the similarity of negative pairs at the
batch level.

Lc = −EX log


N∑

j=1,j ̸=i

exp
(
sim(zanchor

i , z+ij)
)

∑N
j=1,j ̸=i exp

(
sim(zanchor

i , z+ij)
)

+
∑bs

l=1 exp
(
sim(zanchor

i , z−il )
)

 .

(9)

Redundancy minimization. To reduce the forecasting-
irrelevant information in Zi, we introduce I(Zi;XP ) to quan-
tify the information shared between Zi and XP . This mea-
sure is minimized to prompt Zi to concentrate on pertinent

Anchor Positive Negative Other

1

N

i

1

N

i

1

N

i

1

N

i

1 2 bs−1 bs

···
··· ··· ··· ···

··· ··· ··· ···

𝑍𝑖
+

𝑍𝑖
+

𝑍𝑖

···

···

Figure 2: Contrastive loss samples in the same batch

temporal data. Given the intractability of directly minimiz-
ing I(Zi;XP ), we employ the Kullback-Leibler (KL) diver-
gence [Kullback, 1997] to establish a feasible upper limit for
I(Zi;XP ).

DKL(P ||Q) = Ep(x)

[
log

p(x)

q(x)

]
. (10)

To enable the subsequent use of KL divergence, we first
express I(Zi;XP ) using variational probability distributions
qϕ(Zi;XP ) and qϕ(Zi) as follows:

I(Zi;XP ) = Eqϕ(Zi;XP )

[
log

qϕ(Zi | XP )

qϕ(Zi)

]
. (11)

Without the distributional constraints, Eq. (11) can still
result in overfitting and temporal redundancy in Zi, while
qϕ(Zi) is still intractable. Thus, we reformulate I(Zi;XP )
by introducing a standard Gaussian distribution p(Zi) ∼
N (0, I ) into Eq. (11).

I(Zi;Xp) = Eqϕ(Zi;Xp)

[
log

qϕ(Zi | Xp)

qϕ(Zi)

p(Zi)

p(Zi)

]
. (12)

To further simplify the minimization of I(Zi;XP ) and im-
pose distributional constraints on Zi, we decompose Eq. (12)
into two KL divergence terms:

I(Zi;Xp) = Eqϕ(Zi;Xp) [DKL(qϕ(Zi | Xp)∥p(Zi))]

− Eqϕ(Zi;Xp) [DKL(qϕ(Zi)∥p(Zi))] .
(13)

Given the non-negativity property of the KL divergence,
the upper limit of Eq. (13) is:

Eqϕ(Zi;Xp) [DKL(qϕ(Zi | Xp)∥p(Zi))] . (14)

Eq. (14) can be formulated using the KL divergence and
minimized to constrict the information capacity of Zi by pro-
moting qϕ(Zi | Xp) to approximate p(Zi). This process aids
in reducing redundancy in the encoding of Zi and minimizing
I(Zi;XP ). Therefore, we designate Eq. (14) as the redun-
dancy minimization loss, denoted by Lk.

Future observation forecasting. To encourage Zi to con-
tain more information w.r.t. the ground truth Yi, we formulate
I(Zi;Yi) to quantify the shared information between Zi and
Yi as follows:

I(Zi;Yi) = H(Yi)−H(Yi | Zi). (15)
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Maximizing I(Zi;Yi) promotes the retention of relevant
information in Zi for forecasting Yi. To enable a tractable
maximization for the mutual information, we assume that Yi

is generated by transforming Zi through a linear transforma-
tion model with Gaussian noise ϵ.

Yi = fξ(Zi) + ϵ, ϵ ∼ N (0, σ2), (16)

where ξ denotes the model’s parameters.
Assuming that ϵ ∼ N (0, σ2) holds, the conditional dis-

tribution of Yi given Zi conforms to a Gaussian distribution
(i.e., Yi | Zi ∼ N (fξ(Zi), σ

2), enabling the direct computa-
tion of the conditional entropy H(Yi | Zi) as:

H(Yi | Zi) = log
(
2πeσ2

)
/2, (17)

where σ2 is the variance of the Gaussian noise and can be
formulated as MSE loss.

σ2 ≈ E (Yi − fξ(Zi))
2
= MSE

(
Yi, X̂i

)
. (18)

By substituting Eq. (18) into Eq. (17) and substituting Eq.
(17) into Eq. (15), we have

I(Zi;Yi) ≈ H(Yi)− log
(
2πe ·MSE

(
Yi, X̂i

))
/2. (19)

Since H(Yi) is constant, minimizing MSE(Yi, X̂i) is
equivalent to maximizing I(Zi;Yi). Thus, we give the MSE
loss Lm to maximize I(Zi;Yi) in a tractable way.

Lm = MSE
(
Yi, X̂i

)
. (20)

To establish a unified method for the CIB principle, we give
three loss componentsLm, Lk, andLc to minimize I(Zi;Yi),
I(Zi;Xp), and I(Zi; X̄i), respectively. By integrating these
objectives, the unified loss function is formulated as:

minLm + βLk + βLc

= max I(Zi;Yi)− βI(Zi;Xp) + βI(Zi; X̄i)

= max I(Zi;Yi)− βI(Zi;Xi | X̄i). (21)

4.3 Conditional Mutual Information for
Intra-Series Correlation

To maintain temporal coherence in MTS, we give the CMI-
based principle, which we aim to maximize for each pair
of adjacent embedding patches Zik and Zik−1

(1 ≤ k ≤
M) at the data sample level, where M denotes the num-
ber of patches and Zik denotes the k-th patch in Zi. These
adjacent patches are conditioned on all preceding patches
{Zik−2

, . . . , Zi1}, formulated as:

max

M∑
k=3

I
(
Zik ;Zik−1

| Zik−2
, . . . , Zi1

)
. (22)

In order to optimize Eq. (22), we employ the Mutual In-
formation Neural Estimator (MINE) [Belghazi et al., 2018].
MINE establishes a computationally feasible lower bound for

I(X;Z) through the dual form of KL divergence, thereby cir-
cumventing the direct computation of high-dimensional joint
and marginal distributions.

I(X;Z) ≥ sup
θ∈Θ

EP(n)
XZ

[Tθ]− log
(
EP(n)

X ⊗P̂(n)
Z

[eTθ ]
)
, (23)

where {Tθ}θ∈Θ denotes the functions parametrized by a neu-
ral network, and P̂ means the empirical distribution associ-
ated to n i.i.d. samples.

Constructing a computationally feasible lower bound for
I
(
Zik ;Zik−1

| Zik−2
, . . . , Zi1

)
directly from Eq. (23) poses

a challenge. To tackle this issue, we initially reformulate it in
terms of the KL divergence.

I
(
Zik ;Zik−1

| Zik−2
, . . . , Zi1

)
= DKL(p(Zik , Zik−1

, Zik−2
, . . . , Zi1)∥p(Zik−2

, . . . , Zi1)

p(Zik | Zik−2
, . . . , Zi1)p(Zik−1

| Zik−2
, . . . , Zi1)). (24)

Expanding upon this representation, we utilize Eq. (23) to
establish a lower bound for the CMI. Through parameteriz-
ing the CMI distribution with a neural network-based vari-
ational function, the resulting computationally manageable
lower bound is articulated as

I
(
Zik ;Zik−1

| Zik−2
, . . . , Zi1

)
≥ sup

θ∈Θ
EP(n)

Zik
,Zik−1

,Zik−2
,...,Zi1

[Tθ] − log

(
EP(n)

Zi

[
eTθ

])
,

(25)
where P(n)

Zi
= P(n)

Zik−2
,...,Zi1

⊗ P̂(n)
Zik

|Zik−2
,...,Zi1

⊗

P̂(n)
Zik−1

|Zik−2
,...,Zi1

, and ⊗ represents tensor product.

The first term in Eq. (25) signifies the expectation of Tθ

within the joint distribution of {Zik , Zik−1
, Zik−2

, . . . , Zi1},
reflecting the ability of Tθ to capture the true conditional de-
pendencies present in the data. It assigns greater values when
Zik and Zik−1

, given {Zik−2
, . . . , Zi1}, exhibit stronger cor-

relation. The second term corresponds to the logarithm of
the expected value of eTθ under a factorized distribution ap-
proximating a scenario, where Zik and Zik−1

are condition-
ally independent given {Zik−2

, . . . , Zi1}. Specifically, we
approximate this factorized distribution by shuffling Zik and
Zik−1

while keeping {Zik−2
, . . . , Zi1} fixed to prevent over-

estimation of the mutual information between Zik and Zik−1
.

By computing the difference between these terms, a tractable
lower bound on the CMI is derived, which can be optimized
w.r.t. Tθ.

In essence, Eq.(25) furnishes a computationally manage-
able lower bound for the CMI. This bound is employed for
every CMI component within Eq.(22) to delineate the loss
function Ls, ensuring the temporal coherence of MTS data.

Ls = max

M∑
k=3

Iθ(Zik ;Zik−1
|Zik−2

, . . . , Zi1). (26)
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4.4 Training Algorithm
In terms of inter / intra-series correlations, the larger the inter-
series correlation, the smaller the inter-series loss. Mean-
while, the larger the intra-series correlation, the larger the
intra-series loss. To train the forecasting model, we give the
total objective as follows:

L = Lm + α1Lk + α1Lc − α2Ls, (27)

where Lm is associated with the forecasting task, encourag-
ing the model to accurately forecast future values. Lk focuses
on removing irrelevant information. Lc captures the depen-
dencies among variables, and Ls maintains time coherence
of MTS. The hyperparameter α1 serves as a regularization
coefficient in CIB, balancing the inter-series temporal inter-
actions and preventing overfitting. α2 regulates the strength
of time coherence preservation across patches, encouraging
the model to capture consistent temporal patterns while con-
trolling its impact on forecasting performance.

Then, we develop the method simultaneously capturing in-
ter and intra-series correlations, summarized in Algorithm
1. The computation of inter-series correlation from line 4
to line 7 takes O(M · d2 + L · d) time, and the com-
putation of intra-series correlation from line 8 to line 13
takes O(M · d) time. Thus, the total time complexity of Al-
gorithm 1 is O(M · d2 + L · d).

5 Experiments
5.1 Experiment Setup
Datasets. We conduct extensive experiments on 9 real-
world datasets, as outlined in [Huang et al., 2024], including
ETT datasets (ETTh1, ETTh2, ETTm1, ETTm2), Weather,
Traffic, Electricity, ILI, and Exchange Rate. In all experi-
ments, we adopt the same train/val/test split ratio of 6:2:2 for
ETT datasets and 7:1:2 for others.

Comparison methods. We compare our method with 8
state-of-the-art methods in 5 categories: (a) Transformer-
based models: Crossformer [Zhang and Yan, 2023]. Informer
[Zhou et al., 2023]. (b) Linear-based models: HDMixer
[Huang et al., 2024]. DLinear [Zeng et al., 2023]. (c) CNN-
based model: MICN [Wang et al., 2023]. (d) GNN-based
models: MSGNet [Cai et al., 2024]. MTGNN [Wu et al.,
2020]. (e) IB-based model: LaST [Wang et al., 2022b].

Metrics. We adopt MSE and mean absolute error (MAE) to
evaluate the effectiveness of our method.

5.2 Experimental Results
Effectiveness. We compare the MSE and MAE of all mod-
els on various datasets, shown in Table 1, where the input
sequence length L is set to 96 for Exchange, 60 for ILI, and
336 for others. The lower the indicators, the better the results.
In the table, red bold numbers indicate the best performance,
while blue indicates the second best. Based on the results, we
observe the following:

(a) Our method achieves superior performance in 67 met-
rics, matching the SOTA methods in 3 metrics and ranking
second in the remaining 2 metrics.

Algorithm 1 CIB-based MTS forecasting
Input: X: historical MTS data
Parameters: P : length of patches, T : total training epochs,
lr: learning rate, ϕ: parameters of encoder, θ: parameters of
variational bound, ξ: parameters of forecasting head
Output: X̂: forecasting results

1: Divide X into M overlapped patches Xp

2: Initialize ϕ, θ, and ξ
3: for t = 1 to T do
4: Z ← qϕ(Z|XP )
5: Calculate Lk by Eq. (14) // Constraint on encoder
6: Generate samples Z+

i and Z−
i

7: Calculate Lc by Eq. (9) // Inter-series correlations
8: Ls ← 0
9: for k = 3 to M do

10: Calculate Iθ(Zik ;Zik−1
|Zik−2

, . . . , Zi1)
11: Ls ← Ls + Iθ(Zik ;Zik−1

|Zik−2
, . . . , Zi1)

12: end for
13: Ls ← Ls/(M − 2) // Constraint on time coherences
14: X̂ ← fξ(Z) // Generating forecasting results
15: Calculate Lm by Eq. (20) // MSE loss
16: L ← Lm + α1Lk + α1Lc − α2Ls

17: ϕ← ϕ− lr ∗ ∇L // Updating parameters
18: θ ← θ − lr ∗ ∇L
19: ξ ← ξ − lr ∗ ∇L
20: end for
21: return X̂

(b) Our method outperforms the existing best results by
achieving an overall 4.26% reduction in MSE and a 6.12%
reduction in MAE. Moreover, our method achieves an overall
60.2% reduction in MSE and 40.5% reduction in MAE when
compared to MTGNN.

(c) Our method outperforms HDMixer, an advanced patch-
based model that improves upon PatchTST, achieving overall
reductions of 4.26% / 6.12% in MSE / MAE, respectively.

(d) Our method outperforms the best existing methods
without multivariate correlations by achieving an overall
21.4% and 14.3% reduction in MSE and MAE, respectively.

The consistent improvements across all benchmarks under-
score the superiority of our method in delivering accurate re-
sults across a wide range of datasets and forecasting settings,
as reflected in consistently low error metrics.

Ablation studies. We conduct ablation studies on three
datasets by removing specific components from our model.
The constraints on the encoder, multivariate information in-
teraction, and smooth data transfer are removed by W/O-Lk,
W/O-Lc, and W/O-Ls, respectively. From the ablation stud-
ies results in Table 2, we can find that:

(a) When W/O-Lk is applied, MSE increases by up to 5.1%
and averages 4.21%, while MAE increases by up to 4.0%
with an average of 2.77%.

(b) When W/O-Lc is performed, the MSE rises a maxi-
mum of 5.6% and averaged 3.43%, while the MAE rises a
maximum of 3.2% and averaged 1.87%.

(c) When W/O-Ls is performed, the MSE rises a maxi-
mum of 3.04% and averaged 2.01%, while the MAE rises a
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Models Ours MSGNet HDMixer DLinear Crossformer MICN LaST Informer MTGNN

Metrics MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

24 1.250 0.638 3.135 1.201 1.305 0.767 2.215 1.081 3.040 1.186 2.441 1.058 4.247 1.355 4.657 1.449 4.268 1.385
36 1.299 0.650 3.355 1.215 1.428 0.763 1.963 0.963 3.356 1.230 2.469 1.028 4.064 1.332 4.650 1.463 4.768 1.494
48 1.220 0.644 3.588 1.306 1.233 0.798 1.673 0.854 3.441 1.223 2.430 1.037 4.559 1.440 5.004 1.542 5.333 1.592IL

I

60 1.351 0.710 3.590 1.331 1.496 0.853 2.368 1.096 3.608 1.302 2.457 1.065 5.346 1.648 5.071 1.543 5.083 1.556

96 0.148 0.195 0.161 0.220 0.153 0.209 0.176 0.237 0.153 0.217 0.161 0.226 0.169 0.219 0.354 0.405 0.161 0.223
192 0.194 0.237 0.204 0.257 0.200 0.249 0.220 0.282 0.197 0.269 0.220 0.283 0.197 0.238 0.419 0.434 0.206 0.278
336 0.243 0.275 0.254 0.291 0.251 0.287 0.265 0.319 0.252 0.311 0.275 0.328 0.257 0.285 0.583 0.543 0.261 0.322

W
ea

th
er

720 0.311 0.327 0.334 0.344 0.321 0.337 0.323 0.362 0.318 0.363 0.323 0.356 0.315 0.327 0.916 0.705 0.324 0.366

96 0.390 0.273 0.576 0.357 0.405 0.286 0.410 0.282 0.512 0.290 0.508 0.301 0.520 0.338 0.733 0.410 0.527 0.316
192 0.394 0.281 0.602 0.366 0.416 0.288 0.423 0.287 0.523 0.297 0.536 0.315 0.579 0.367 0.777 0.435 0.534 0.320
336 0.418 0.287 0.621 0.370 0.428 0.297 0.436 0.296 0.530 0.300 0.525 0.310 0.616 0.419 0.776 0.434 0.540 0.335Tr

af
fic

720 0.447 0.305 0.633 0.374 0.461 0.314 0.466 0.315 0.573 0.313 0.571 0.323 0.689 0.452 0.827 0.466 0.557 0.343

96 0.130 0.221 0.143 0.252 0.137 0.241 0.140 0.237 0.187 0.283 0.159 0.267 0.161 0.257 0.304 0.393 0.198 0.294
192 0.147 0.235 0.166 0.271 0.152 0.246 0.153 0.249 0.258 0.330 0.168 0.279 0.170 0.265 0.327 0.417 0.266 0.339
336 0.167 0.258 0.176 0.281 0.171 0.267 0.169 0.267 0.323 0.369 0.196 0.308 0.188 0.280 0.333 0.422 0.328 0.373

E
le

ct
ri

ci
ty

720 0.201 0.285 0.252 0.367 0.212 0.296 0.203 0.301 0.404 0.423 0.203 0.312 0.223 0.309 0.351 0.427 0.422 0.410

96 0.361 0.388 0.422 0.439 0.373 0.398 0.375 0.399 0.386 0.429 0.396 0.427 0.398 0.414 0.941 0.769 0.439 0.461
192 0.383 0.407 0.449 0.459 0.412 0.420 0.405 0.416 0.419 0.444 0.430 0.453 0.468 0.453 1.007 0.786 0.476 0.477
336 0.385 0.409 0.461 0.466 0.392 0.417 0.439 0.443 0.440 0.461 0.433 0.458 0.566 0.512 1.038 0.784 0.736 0.643E

T
T

h1

720 0.420 0.443 0.499 0.501 0.448 0.463 0.472 0.490 0.519 0.524 0.474 0.508 0.740 0.650 1.144 0.857 0.916 0.750

96 0.260 0.326 0.355 0.401 0.267 0.332 0.289 0.353 0.628 0.563 0.289 0.357 0.377 0.426 1.549 0.952 0.690 0.614
192 0.314 0.365 0.407 0.432 0.317 0.367 0.383 0.418 0.703 0.624 0.409 0.438 0.619 0.639 3.792 1.542 0.745 0.662
336 0.302 0.365 0.391 0.423 0.306 0.367 0.448 0.465 0.827 0.675 0.417 0.452 0.849 0.805 4.215 1.642 0.886 0.721E

T
T

h2

720 0.374 0.418 0.406 0.442 0.390 0.421 0.605 0.551 1.181 0.840 0.426 0.473 0.874 0.679 3.656 1.619 1.299 0.936

96 0.289 0.337 0.303 0.360 0.291 0.341 0.299 0.343 0.316 0.373 0.314 0.360 0.323 0.360 0.626 0.560 0.428 0.446
192 0.327 0.360 0.353 0.391 0.332 0.364 0.335 0.365 0.377 0.411 0.359 0.387 0.346 0.376 0.725 0.619 0.509 0.491
336 0.361 0.383 0.379 0.408 0.363 0.385 0.369 0.386 0.431 0.442 0.398 0.413 0.395 0.404 1.005 0.741 0.577 0.556

E
T

T
m

1

720 0.413 0.417 0.429 0.437 0.424 0.417 0.425 0.421 0.600 0.547 0.459 0.464 0.493 0.470 1.133 0.845 0.713 0.729

96 0.160 0.247 0.186 0.273 0.162 0.254 0.167 0.260 0.421 0.461 0.178 0.273 0.174 0.265 0.355 0.462 0.463 0.503
192 0.213 0.285 0.249 0.314 0.213 0.289 0.224 0.303 0.503 0.519 0.245 0.316 0.234 0.310 0.595 0.586 0.530 0.547
336 0.266 0.321 0.301 0.347 0.275 0.331 0.281 0.342 0.611 0.580 0.295 0.350 0.352 0.397 1.270 0.871 0.449 0.473

E
T

T
m

2

720 0.349 0.373 0.401 0.407 0.355 0.380 0.397 0.421 0.996 0.750 0.389 0.406 0.911 0.671 3.001 1.267 1.093 0.836

96 0.079 0.195 0.102 0.230 0.089 0.210 0.088 0.218 0.188 0.365 0.102 0.235 0.108 0.236 0.847 0.752 0.208 0.381
192 0.164 0.288 0.195 0.317 0.173 0.297 0.176 0.315 0.456 0.532 0.172 0.316 0.212 0.343 1.204 0.895 0.459 0.512
336 0.304 0.396 0.360 0.436 0.322 0.408 0.313 0.427 0.796 0.741 0.272 0.407 0.394 0.468 1.672 1.036 0.710 0.698

E
xc

ha
ng

e

720 0.769 0.655 0.940 0.738 0.867 0.701 0.839 0.695 1.367 0.943 0.714 0.658 1.398 1.102 2.478 1.310 1.323 0.912

Table 1: MSE and MAE across different forecasting horizons for MTS forecasting results on all datasets

Datasets ETTm1 ILI Weather

Models Metrics 96 192 336 720 96 192 336 720 96 192 336 720

Ours MSE 0.289 0.327 0.361 0.413 1.250 1.239 1.220 1.351 0.148 0.194 0.243 0.311
MAE 0.337 0.360 0.383 0.416 0.638 0.650 0.624 0.710 0.195 0.237 0.275 0.327

W/O-Lk
MSE 0.294 0.333 0.368 0.431 1.326 1.360 1.261 1.376 0.156 0.198 0.259 0.325
MAE 0.341 0.362 0.386 0.419 0.648 0.689 0.674 0.718 0.200 0.237 0.289 0.341

W/O-Lc
MSE 0.291 0.331 0.366 0.423 1.394 1.322 1.252 1.378 0.153 0.199 0.250 0.320
MAE 0.339 0.363 0.385 0.420 0.658 0.668 0.669 0.712 0.199 0.240 0.280 0.331

W/O-Ls
MSE 0.293 0.333 0.373 0.420 1.307 1.301 1.248 1.358 0.152 0.198 0.249 0.321
MAE 0.340 0.365 0.386 0.418 0.644 0.666 0.671 0.715 0.202 0.239 0.278 0.331

Table 2: Ablation of different parts in our method

maximum of 2.8% and averaged 1.6%.
These results demonstrate that each component contributes

to the model’s performance.

6 Conclusion
Our study introduces a method based on CIB for MTS fore-
casting, aiming to capture both inter / intra-series correlations
effectively. CIB is utilized to capture dependencies among

variables within manageable bounds, while CMI is leveraged
to ensure temporal coherence through a computationally fea-
sible lower bound. Our approach adeptly captures intricate
dependencies in MTS data, thereby improving forecasting ac-
curacy compared to traditional methods.

In forthcoming research, we plan to explore the structural
relationships inherent in MTS data and design advanced op-
timization techniques to better capture temporal and cross-
variable dependencies for improved forecasting.
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