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Abstract

In recent years, diversity has emerged as a use-
ful mechanism to enhance the efficiency of multi-
agent reinforcement learning (MARL). However,
existing methods predominantly focus on design-
ing policies based on individual agent characteris-
tics, often neglecting the interplay and mutual in-
fluence among agents during policy formation. To
address this gap, we propose Competitive Diversity
through Constructive Conflict (CoDiCon), a novel
approach that incorporates competitive incentives
into cooperative scenarios to encourage policy ex-
change and foster strategic diversity among agents.
Drawing inspiration from sociological research,
which highlights the benefits of moderate compe-
tition and constructive conflict in group decision-
making, we design an intrinsic reward mechanism
using ranking features to introduce competitive mo-
tivations. A centralized intrinsic reward module
generates and distributes varying reward values to
agents, ensuring an effective balance between com-
petition and cooperation. By optimizing the pa-
rameterized centralized reward module to maxi-
mize environmental rewards, we reformulate the
constrained bilevel optimization problem to align
with the original task objectives. We evaluate our
algorithm against state-of-the-art methods in the
SMAC and GRF environments. Experimental re-
sults demonstrate that CoDiCon achieves superior
performance, with competitive intrinsic rewards ef-
fectively promoting diverse and adaptive strategies
among cooperative agents.

1 Introduction

Due to the advancement of deep multi-agent reinforcement
learning, many real-world problems have been modeled and
addressed as cooperative multi-agent problems [Samvelyan
et al., 2019; Sunehag et al., 2017; Rashid et al., 2020], such
as traffic signal control [Wiering, 2000], autonomous driv-
ing [Hu et al., 2019], and robot control [Haarnoja et al.,
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2019]. The goal of these cooperative multi-agent problems is
to maximize the reward from a team perspective [Colby et al.,
2015; Rashid et al., 2020]. However, learning effective strate-
gies for such complex multi-agent systems remains a signif-
icant challenge. One key problem is that relying on a single
feedback signal often leads to homogeneous agent policies,
resulting in inefficient exploration and hindering the emer-
gence of complex cooperative behaviors [Li et al., 2021].

Providing additional reward signals [Du et al., 2019; Li
et al., 2021; Jiang and Lu, 2021] to individual agents has
proven to be an effective approach for diversifying coopera-
tive strategies and improving performance. Existing methods
for designing such rewards primarily rely on the mutual in-
formation between agent policies and agent identities (IDs)
as intrinsic rewards [Li et al., 2021; Jiang and Lu, 20211, but
such methods do not consider the influence of other agents
and lack intuitive interpretability. LIIR [Du et al., 2019] in-
troduces learnable intrinsic rewards with shared parameters
to facilitate information exchange, enabling agents to develop
independent strategies. However, the process of learning in-
trinsic rewards overlooks the important role of competitive
mechanisms in cooperative scenarios, as evidenced in socio-
logical research.

There is a unique phenomenon observed in sociological re-
search called Constructive Conflict [Kirchmeyer and Cohen,
1992; King et al., 2009]. Constructive Conflict describes a
situation in which the collective intelligence of a cooperative
group is stimulated by the positive competition or clash of
views between individuals and subgroups. Unlike destructive
conflict that hinder the achievement of optimization goals,
constructive conflict does not lead to strained relationships or
reduced efficiency. Instead, it fosters diverse perspectives and
strategy refinement, positively contributing to group goals.
Inspired by the concept of constructive conflict, we propose
competitive intrinsic rewards to enhance agent learning and
team performance. In particular, unlike intrinsic rewards, the
competitive intrinsic rewards provide cooperative agents with
competitive incentives, thereby stimulating strategic commu-
nication and strategy diversification among agents.

In this paper, we propose an algorithm called CoDiCon,
which is designed for competitive intrinsic rewards. Specif-
ically, ranking is an effective method to encourage mutual
competition, so we design an intrinsic reward that incorpo-
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rates ranking property. The overall algorithm adopts an actor-
critic structure [Lowe et al., 2017; Schulman et al., 2017]
based on MAPPO [Yu et al., 2022], where each agent has
a separate set of parameters. The global critic evaluates the
current action values, and a centralized intrinsic reward gen-
eration module produces a ranked intrinsic reward for each
agent’s current action to foster competition. The agent’s pol-
icy is jointly optimized using both extrinsic and intrinsic re-
wards, with the intrinsic reward serving merely as a train-
ing signal to distinguish rankings rather than having any in-
herent meaning. Mathematically, the optimization problem
can be modeled as a constrained bilevel optimization prob-
lem, where the constraints in the outer optimization ensure
the equivalence between the optimization objective and the
original maximization of the environmental reward. We sum-
marize our contributions as follows:

* We design an effective intrinsic reward mechanism
based on the principles of constructive conflict, intro-
ducing competitive incentives to cooperative multi-agent
systems to enhance team performance.

The ranking module is proposed to provide agents with
intrinsic rewards possessing ranking property. The opti-
mization objective is formulated as a constrained bilevel
problem, ensuring that optimizing the policy based on
the ranking rewards aligns with the original goal of max-
imizing environmental rewards.

L]

Experimental results demonstrate that our algorithm out-
performs existing methods. Visualizations of the agents’
intrinsic rewards and state-reward space indicate that the
learned intrinsic rewards produce distinct signals, en-
abling agents to take diverse actions collaboratively.

2 Related Work

In recent years, deep multi-agent reinforcement learning
has made significant advancements. Research efforts such
as COMA [Foerster et al., 20181, MADDPG [Lowe et
al., 2017], and LICA [Zhou et al., 2020] have explored
policy-based approaches to multi-agent problems, utiliz-
ing a centralized critic to evaluate the value of each dis-
tributed policy. Value decomposition methods, including
VDN [Sunehag et al., 2017], QMIX [Rashid er al., 2020], and
QTRAN [Hostallero er al., 2019], decompose environmental
feedback into individual agent value functions, thereby en-
abling credit assignment. QPLEX [Wang et al., 2020] pro-
posed using dueling networks to relax the monotonicity con-
straint of mixing networks, expanding their representational
capacity. Learning from others is an innate human survival
skill, a phenomenon mirrored in agent policies, where infor-
mation exchange via mixing networks enhances policy gen-
eration. However, most existing methods focus on central-
ized mixing network structures to satisfy value function con-
straints, often relying on strong assumptions about these func-
tions. In contrast, our approach learns explicit intrinsic re-
wards for each agent at each time step, avoiding such assump-
tions and enabling immediate credit assignment.

Our work addresses the problem of designing intrinsic re-
wards in cooperative multi-agent systems, a topic that has

been explored in some previous studies. EOI [Jiang and
Lu, 2021] proposed learning a classifier for observations to
compute the probability that an observation belongs to each
agent, using this probability as an intrinsic reward to adjust
the agent’s final reward. CDS [Li et al., 2021] introduced
maximizing the mutual information between agent IDs and
trajectories as an intrinsic reward to promote diverse poli-
cies. However, such methods do not consider the influence
of other agents, overlooking the importance of learning from
them, and they lack intuitive interpretability. LIIR [Du er al.,
2019] designed a module for generating intrinsic rewards to
guide more diverse policies, ensuring that the two-level op-
timization is equivalent to the initial optimization problem.
However, it also overlooks the positive competitive influence
that other agents can have on policy development. Further-
more, directly calculating intrinsic rewards can result in an
excessively large optimization space, increasing the risk of
policies converging to local optima.

3 Preliminary

3.1 Cooperative Multi-Agent Reinforcement
Learning

Multi-agent reinforcement learning [Sutton and Barto,
2018] extends traditional reinforcement learning to address
decision-making problems with multiple agents in sequen-
tial environments. A fully cooperative multi-agent problem
can be represented as a Decentralized Partially Observable
Markov Decision Process (Dec-POMDP) [Oliehoek and Am-
ato, 2016]. In this model, a Dec-POMDP is described by the
tuple (S, A, U, Z, O, P,r,n,~). Here, S represents the global
states of the environment, and A denotes the set of n agents.
Ateach time step ¢, each agent i € A selects an action u; from
its action set U;, resulting in a joint action w € U = U™. The
state transition function P determines the next state s’ € S
based on the current state s and the joint action u. All agents
share a common reward r(s, ), which depends on the state
and joint action. A discount factor v € [0,1) is used to
weigh future rewards. In the partially observable setting, each
agent receives a local observation z; € Z, derived from the
observation function O(s,u) : S x U — Z, where Z is
the observation space. Each agent learns an individual pol-
icy m;(u;|7;; 0;) with parameters 6; based on its own action-
observation history 7;. The agents’ combined policies deter-
mine the joint action taken in the environment.

3.2 Centralized Training with Decentralized
Execution

Centralized Training and Decentralized Execution (CTDE)
is a commonly used paradigm for addressing multi-agent
problems. In this paradigm, actor-critic methods are of-
ten chosen [Williams, 1992; Andrychowicz et al., 2016;
Schulman, 2015; Sutton and Barto, 2018; Yu et al., 2022].
In our approach, we choose the MAPPO [Yu er al., 2022]
algorithm as the base framework, which consists of n inde-
pendently parameterized policies mg,. The policy parame-
ters @ = {61, 0s, ..., 6, } are optimized using policy gradient
methods to maximize the extrinsic reward:

J(0) = Es o [min (p(0) Ar (s, w) , p(0) Ar (s,w))], (1)
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Figure 1: Framework of the proposed method. The framework consists of four parameterized modules: the agent module with parameters 6,
the ranking module with parameters 7, the hybird critic module with parameters (, and the extrinsic critic module with parameters ¢.

% denotes the policy ratio, which de-

pends on the policy parameters 6, and p(0) = clip(p(0),1 —
€,1 + €) is the clipped policy ratio. A, (s, ) represents the
advantage function based on the state and actions. There
are several methods to estimate A.(s,u). For example,
Ar(s,u) = 1(s,u) + V(s') — V*(s) is the standard ad-
vantage function [Schulman, 2015], where s’ is the next state.

where p(0) =

4 Method

In this section, we present the competitive intrinsic reward al-
gorithm, CoDiCon. First, we provide a formal definition of
the problem and represent it as a constrained bilevel optimiza-
tion problem. Then, we detail the approach for solving this
problem, which effectively addresses the interplay between
agents’ learning and their competitive interactions.

4.1 The Optimization Objective

We define the components of the agent’s reward, which con-
sist of intrinsic reward 7 and extrinsic reward 7°*. The in-
trinsic reward is parameterized by 7. At each time step, each
agent takes a state-action pair as input, the hybird reward can
be expressed as:

i = 1 (). @)
In equation (2), A represents the hyperparameter that balances
intrinsic and extrinsic rewards. It is important to note that
the additional intrinsic reward does not appear in the standard
multi-agent problem. After defining a hybird reward r?,ytb"d
for each agent at each time step, we define the discounted

hybird reward for each agent as follows:

RPPM =374 (r5%, 4 Xy () 3)

=0

and the hybird value function for agent ¢ is defined as:

Vhybird(st) = Eapr s [Rg)ytbird} ' 4)

K2

Unlike the extrinsic value function V', these hybird value
functions V"™ do not have any actual physical meaning.

i
They are just used to update the parameters ; of each agent’s
policy. Next, we consider the overall optimization objective,

defined as:

max J%(n), (5)
n,0
st 6 = argmax J;"(0,m), Vi€ [L,2,....n],

r<ry <---<rp where r"=rank(n)

hybird E

hybird
where J; R

00 } depending on 6; and 7,

80,Ui 0y
7 indicates the parameter of the ranking module and 6 in-
dicates the policy parameter set {61,6o,---,60,}. The up-
dates of the ranking module parameters and policy param-
eters are performed alternately. The ranking network mod-
ule consists of fully connected layers and a sorting function
layer, ensuring that the intrinsic rewards " it outputs have
numerical differences and are arranged in ascending order.
When the parameters of the ranking module are frozen, the
policy parameter 6; is optimized by maximizing the hybrid
expected cumulative return J/*"™ for agent i. The advan-
tage of this approach lies in using the ranked intrinsic re-
wards at each step for policy learning, where competition is
captured by the intrinsic rewards, defined through pairwise
performance ranking as r" = rank,, (i, —i). This mechanism
motivates agents to compete and learn from each other, lead-
ing to more complex and diverse behaviors. Conflict arises
when an agent’s action that maximizes its intrinsic reward 71"
opposes the team’s extrinsic reward r°*. Specifically, conflict
exists if for some agent i, V,,, 7 - V,,. 7" < 0, implying the
agent’s optimal behavior hinders team performance. From
an optimization perspective, problem (5) can be viewed as a
constrained bilevel optimization problem, where the outer op-
timization constrains the inner policy improvement process.
The ultimate goal of optimization is to maximize the environ-
mental reward under the constraint of intrinsic rewards. This
ensures alignment with the original objective of maximizing
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the environmental reward, allowing better-performing poli-
cies to receive higher intrinsic rewards. In the next section,
we will discuss the relationship between J* and the intrinsic
reward parameter 7 during the optimization process.

4.2 Algorithm

For the constrained two-level optimization problem, at each
update step, the policy parameters are updated based on the
hybrid expected return, while the update of the ranking mod-
ule parameters depends on the ranking process and the extrin-
sic expected return.

Specifically, the parameters of each agent are updated us-
ing the hybird critic network. Given the trajectory data gener-
ated by the agents, the policy parameters are updated through
the policy gradient method as described in (1):

Vo, min (p(0:) A" (s,w) 50 AP (s,w) ), (6)

where p(6;) is the policy ratio of agent i. AM"™ (s, u)
denotes the hybird critic, which can be chosen in various
ways [Sutton and Barto, 2018; Schulman, 2015; Yu et al.,
2022]. In this paper, we choose A™*™ (s, u) = ™" (s, u)+
V() — VP(s) as the advantage function, where
VP represents the hybird state value, parameterized by
@, and s’ denotes the next state of the agent in the tra-
jectory. Given (6) and a policy learning rate a, the up-
dated policy parameter 0 can be expressed as: ¢, = 0; +

oV, min (p(6:) AP (5, ), 5(0) AP (5,w) ).

K3 K3

To ensure that intrinsic rewards promote competition
among agents, we update 7 by applying a relative numeri-
cal constraint to the intrinsic rewards produced by the ranking
module. This ensures that the rewards follow a sequential dis-
tribution. Specifically, we use mean squared error (MSE) loss
and variance loss of intrinsic rewards to maintain the output
as a sequence with numerical differences:

n

1 .
Lyse(n) = > =), @)
i=1
1 < . .
Lyvar(n) = > (=72, ®)
i=1

where y is the optimization target for the intrinsic reward,
represented as an ordered sequence. This sequence is ran-
domly initialized at the beginning of training (in our setup,
20% positive values and 80% negative values) and remains
fixed during subsequent training. 7" is the mean of the in-
trinsic rewards. For the update of the parameter 7, we first
minimize the MSE loss and maximize the variance loss:

L(n) = L1Lmse(n) — BaLvar(n). )

Given (9) and a learning rate 3, the updated parameters of the
ranking module can be expressed as: ' = n — 8V, L(n).

Next, we construct expressions for ' and J to update
the parameter . Using the updated policy parameter €', we
apply the chain update rule to get:

Vo I = Vg J¥V 0., (10)

Algorithm 1 The algorithm of CoDiCon.

1: Input: Policy learning rate « and intrinsic reward learn-
ing rate 3.
2: Initialize: Policy parameters 6 and intrinsic reward pa-
rameters 7).
3: fort = 1 to Ty do
4:  Sample a trajectory D = {sg,uo,S1,u1, -} by
executing actions with the decentralized policies
{7701 s " aﬂ—en};
5:  Update 0 according to (6) with learning rate «;
6:  Update 7 according to (9) with learning rate J;
7:  Compute (11) and (12) using samples from D after the

first update of 7;

8:  Update 7’ according to (10) and step 7 with learning
rate [3;

9: end for

10: return policy parameters 6

The purpose of (10) is to formally express the impact of J*
on the updated policy parameter 1’ through the updated pa-
rameter 6. This technique is widely adopted in meta-gradient
learning [Andrychowicz et al., 2016; Santoro et al., 2016;
Xu et al., 2018]. Using samples generated by the updated pol-
icy network, the meta-gradient V, can be computed. In (10),
Vg, J can be estimated by stochastic gradient as

Vo, min (p(0;) A™ (s,u) , p(0;)A™ (s,u)),  (11)

here, A (s, u) denotes the centralized extrinsic critic. Sim-
ilar to the centralized hybrid critic, we define A*(s,u) =
(s, u) —&—. V‘EX(‘.S/) — V§*(s), where V§*(s) is the extrinsic
value function with parameters ¢. For the update of 7, the
second term in (10) can be derived as:

aneg :V,,/ [92 + aVai min (p(0i>A1;ybird,ﬁ(@i)A?ybird) ]

=X min(Vo,p(0) V17", Vo, 5(0:) Vi),
(12)

Figure 1 presents the overall framework of the CoDiCon al-
gorithm. A detailed description of the algorithm is provided
in Algorithm 1.

5 Experiments

In this section, we analyze and illustrate the perfor-
mance and effectiveness of our algorithms in Pac-Men,
Google Reasearch Football (GRF) and Starcraft Multi-agent
Changellenge (SMAC) environments. We select the multi-
agent policy-based method (MAPPO), the intrinsic reward
policy-based method (LIIR), and the independent emergence
methods (EOI, CDS) as baseline methods for comparison.
First, we analyze the effectiveness of introducing a compet-
itive mechanism to improve policy performance in the Pac-
Man environment. Next, we conduct performance compar-
ison experiments on GRF and SMAC. Then, we perform a
case study on GRF to analyze the effectiveness of the intrin-
sic rewards in our algorithm. Additionally, we use t-SNE vi-
sualization in the SMAC environment to compare the final
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Figure 3: Training curves compared with the baselines on GRF.

distribution of policies in the state-reward space, explaining
the intrinsic reasons behind the effectiveness of the algorithm.
Finally, we experimentally validate the two modules of the
algorithm that encourage intrinsic reward variability through
ablation studies.

5.1 Competitive Intrinsic Reward

We design the Pac-Men environment, shown in Figure 2a, to
demonstrate how our algorithm encourages agents to com-
pete, thereby improving overall algorithm performance. In
this environment, the central room connects four equally
sized rooms and is equidistant from each of them. Four
agents are initialized at fixed positions near the entrance of
each room, and each agent has a 5x5 field of view. To fos-
ter competition among agents, the lower room contains the
highest number of “dots” compared to the other three rooms.
To make the environment more challenging, the game is lim-
ited to 17 timesteps, making it difficult for a single agent
to collect all dots in the lower room, requiring at least two
agents. The best case scenario is that one of the agents gives
up the closest room and chooses to enter the room below, and
then the two agents eat all the dots in the room below to-
gether. Agents incur a -0.25 penalty per timestep but gain
1 reward for each bean eaten. We compare our algorithm
with SOTA algorithms. As shown in the visitation heatmap in
Figure 2b and 2c, the EOI agents dispersed to four different
rooms, whereas two agents in our algorithm both moved to
the lower room, which contains the highest number of dots. In
this environment, overly dispersed strategies do not result in
optimal rewards. The experimental results shown in Figure 2
demonstrate that our algorithm successfully discovers the op-
timal strategy, while other algorithms fall into local optimal

solutions. The possible reason is that our algorithm enables
other agents to learn the high-reward strategy of the agent that
moves to the lower room to collect ”dots” by continuously
ranking the intrinsic rewards, that is, by assigning higher in-
trinsic rewards to the agents that go to the lower room.

5.2 Performence on GRF

In this section, we first evaluate the performance of the al-
gorithm in the GRF environment. Specifically, we com-
pare our algorithm with others on GRF tasks of increasing
difficulty, including academy_3_vs_1_with_keeper, academy-
_counterattack_easy, and academy_counterattack_hard. In the
GREF task, the agents need to collaborate in time and space to
organize the attacking opportunities, and only the scoring are
rewarded. In our experiments, we control the agents on the
left (in yellow) except the goalkeeper’s agent, and the agents
on the right are controlled via the roule-based Al built into the
game engine. The agents have 19 discrete action spaces, in-
cluding moving from different angles, sliding, shooting, and
passing. Observations include the position and direction of
movement of the agents and other agents, as well as the po-
sition and direction of movement of the ball. The movement
of the soccer ball in the z-axis direction is also included in
the observations, and the agents receive feedback from the
environment only at the end of the game.

Our algorithm outperforms all other algorithms in all test
environments, and the results are shown in Figure 3. In
the academy_3_vs_1_with_keeper, other baselines also per-
form well, such as MAPPO and LIIR, showing performance
close to that of our algorithm. However, on the progressively
more difficult environments of academy_counterattack_easy
and academy_counterattack hard, the advantage of our algo-
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Figure 4: Training curves compared with the baselines on SMAC.

rithm gradually widens, and the interval between the training
curves becomes more and more obvious. This demonstrates
that our algorithm is able to effectively capture valuable states
and actions in sparse reward-difficult environments, generat-
ing intrinsic rewards that encourage the agent to learn better.

5.3 Performence on SMAC

In this section, we test our algorithm in the StarCraft Micro-
management (SMAC) environment, a popular MARL bench-
mark. Each agent has attributes like health, weapon CD,
shield, unit type, last action, and relative distances to ob-
served units, with enemy units sharing similar attributes ex-
cept CD. In partially observable settings, agents gather infor-
mation within a circular range. The action space includes four
movement directions, k attack actions (where k is the max
number of enemies), a stop action, and a no-op action, with
invalid actions masked. We evaluate on scenarios: 3s_vs_5z,
8m_vs_9m, MMM2, 2c_vs_64zg, Sm_vs_6m, 3S5Z. Only the
Zealot is melee, the Medivac is a non-attacking support unit,
and others are ranged. Agents receive a joint team reward
based on total damage, with a significant bonus for winning.
We present the experimental results of the comparison in
Figure 4. Our algorithm outperforms the baseline algorithms
in most environments, with performance comparable to EOI
only in the environment of 2c_vs_64zg. Both CDS and EOI
achieve performance close to our algorithm on some maps,
such as 3s_vs_5z and 8m_vs_9m. However, their performance
on Sm_vs_6m and 2c_vs_64zg are highly unstable, indicating
that the diversity mechanisms in CDS and EOI lack effective
exploration and utilization of the state space, which may lead
to local optima. MAPPO shows relatively stable and high
performance across all environments, but it still lags behind
our algorithm in terms of training efficiency and convergence
speed. In contrast, LIIR performs poorly on all SMAC maps,
suggesting that the unconstrained learnable intrinsic rewards
in LIIR make learning highly unstable, particularly in scenar-
ios with denser rewards. In contrast, our algorithm provides
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Figure 5: Left. Visualization of the trained policy. Right. The
learned intrinsic reward curve for the agent players.

stable initial feedback during training by introducing a dis-
tinctly different prior intrinsic reward.

5.4 Visualizing the Learned Intrinsic Reward

The effectiveness of the strategy is demonstrated on the GRF
counter-_attack_hard mission, where we control four players
positioned at different locations, cooperating to kick the ball
from the half-field area into the opponent’s goal. During the
course of the play, the team encounters two opposing play-
ers controlled by the built-in Al as well as a goalkeeper de-
fending the opponent’s goal. We visualize the trajectories of
the players and the ball in Figure 5 (left), where the players’
paths are represented by white arrows and the ball’s path by
yellow arrows. Agents are distinguished by numerical identi-
fiers. Player 2 dribbles the ball and passes it to player 3, who
receives it and shoots it into the goal. Player 1 collaborates
with player 2 in the attack, applying pressure on the two op-
posing defenders, while player O moves toward the penalty
area to support the offensive play. In Figure 5 (right), we
plot the intrinsic reward curves corresponding to each player
during the passing and shooting process.

* In the passing process, higher rewards are assigned to
player 3 (the player taking the shot), player 2 (the player
dribbling the ball), and player 1 (the player supporting
the attack). In contrast, player 0, who is farther from the
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Figure 6: t-SNE results on the state-reward space.

offensive play, receives lower rewards.

» After player 2 passes the ball, his intrinsic reward drops
sharply. During the flight of the ball, player 1 maintains
a relatively high intrinsic reward because he is close to
the two opposing defenders and supports the offense.
Once player 3 receives the ball and takes the shot, the
intrinsic rewards of the three players involved in the of-
fensive play increase significantly.

This demonstrates that the intrinsic rewards in our algorithm
effectively evaluate each agent’s state and its contribution to
the overall team performance.

5.5 Strategy Visualization in State-Reward Space

In addition to evaluating the performance of the trained poli-
cies, we are also interested in understanding how the learned
intrinsic reward function influences policy learning. To ana-
lyze the intrinsic impact of our algorithm on policy training,
we combine the state space and reward space to form a high-
dimensional state-reward space. In this space, we can intu-
itively compare the distribution of the learned policy across
states and the rewards obtained by executing actions in these
states. We use t-SNE [Van der Maaten and Hinton, 2008]
to perform a low-dimensional mapping of the state-reward
space, where the specific value of each point is represented
by the environmental reward. Different colors are used on
the graph to represent the values, with warmer colors indi-
cating higher values, as shown in the figure 6. We compared
CoDiCon, MAPPO, and the intrinsic reward algorithm with-
out ranking (CoDiCon without rank) based on the results of
the trained policies over 50 episodes. As shown in the fig-
ure, MAPPO explores more meaningless states and attempts
actions over a larger area (larger canvas size) compared to
algorithms utilizing intrinsic rewards, but this does not lead
to higher rewards. In contrast to the policy without ranked
intrinsic rewards, our algorithm avoids meaningless explo-
ration in adjacent feature spaces with high feature similar-
ity (the points are more dispersed yet relatively concentrated)
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Figure 7: The training curves of success rate for ablation methods.

and identifies high-value actions at key nodes (points with
more warm colors). The possible reason is that our algorithm
facilitates mutual learning among agents for high-reward ac-
tions, and the differences in intrinsic rewards make the strat-
egy more complex, diverse, and efficient.

5.6 Ablation Study

In our algorithm, two loss functions are designed to promote
intrinsic reward variability and constrain the training of the
ranking module parameters: the priori intrinsic reward MSE
loss and the intrinsic reward maximum variance loss. To eval-
uate the effectiveness of these constraints, we conduct abla-
tion experiments on the two loss functions as shown in Fig-
ure 7. Here, w/o pri refers to the algorithm without the priori
loss constraint, w/o var refers to the algorithm without the
variance loss constraint, and w/o rank refers to the algorithm
without both loss constraints. We perform comparative ex-
periments on the Sm_vs_6m and MMM2 scenarios in SMAC,
and the results in both scenarios are consistent. These results
indicate that both loss functions make positive contributions
to policy training, outperforming the performance achieved
without the intrinsic reward ranking loss, thereby demonstrat-
ing that both constraints are effective. Notably, using only the
priori intrinsic reward constraint achieves higher performance
and faster convergence compared to using only the variance
constraint. A possible explanation is that reinforcement learn-
ing involves a large number of low-value states during the
early stages of training, where distinguishing these low-value
states and assigning them lower intrinsic rewards is critical.
In contrast, variance constraints primarily become effective
during the later stages of training.

6 Conclusion

We propose a novel competitive intrinsic reward multi-agent
algorithm, CoDiCon, which enables each agent to learn an in-
trinsic reward with ranking properties. This approach effec-
tively guides mutual competition and learning among agents,
enhancing the efficiency of learning diverse strategies even
when the environment provides only a single team reward.
Our algorithm is formulated as a constrained bilevel opti-
mization problem, theoretically ensuring that the final opti-
mization objective aligns with maximizing the original envi-
ronmental rewards. Experimental results on the SMAC, GRF,
and Pac-Men environments demonstrate that CoDiCon out-
performs existing state-of-the-art methods in terms of perfor-
mance. Furthermore, case studies further validate the effec-
tiveness of our intrinsic reward design.
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