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Abstract

Although deep learning models have demonstrated
remarkable potential in weather prediction, most of
them overlook either the physics of the underly-
ing weather evolution or the topology of the Earth’s
surface. In light of these disadvantages, we develop
PASSAT, a novel Physics-ASSisted And Topology-
informed deep learning model for weather predic-
tion. PASSAT attributes the weather evolution to
two key factors: (i) the advection process that can
be characterized by the advection equation and the
Navier-Stokes equation; (ii) the Earth-atmosphere
interaction that is difficult to both model and cal-
culate. PASSAT also takes the topology of the
Earth’s surface into consideration, other than sim-
ply treating it as a plane. With these considerations,
PASSAT numerically solves the advection equa-
tion and the Navier-Stokes equation on the spher-
ical manifold, utilizes a spherical graph neural net-
work to capture the Earth-atmosphere interaction,
and generates the initial velocity fields that are criti-
cal to solving the advection equation from the same
sphe- rical graph neural network. In the 5.625-
degree resolution ERAS data set, PASSAT outper-
forms both the state-of-the-art deep learning-based
weather predi- ction models and the operational nu-
merical weather prediction model IFS T42.

1 Introduction

Weather prediction is of paramount importance to social se-
curity and economic development, and has attracted exten-
sive research efforts since the ancient time. Among the mod-
ern weather prediction methods, numerical weather predic-
tion (NWP) is built upon differential equations that govern the
weather evolution [Randall et al., 2007; Bauer et al., 2015].
These differential equations attribute the weather evolution
to the advection process and the Earth-atmosphere inter-
action [Rood, 1987; Smith er al., 1990], as shown in Figure
1. The advection process is the evolution of weather vari-
ables (described by the advection equation) driven by the
evolution of their velocity fields (described by the Navier-
Stokes equation) [Temam, 1984]. The Earth-atmosphere in-
teraction encompasses other complex physical processes in
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Figure 1: Attributions of the weather evolution.

the atmosphere, such as radiation, clouds, and subgrid turbu-
lent motions. One particular challenge in NWP is that the
Earth-atmosphere interaction is difficult to model and calcu-
late, forming a bottleneck of improving the accuracy of NWP
[Hourdin et al., 2017; Kochkov et al., 2024]. Besides, the ac-
curacy of NWP does not improve with the increasing amount
of historical observations.

On the other hand, data-driven methods that predict the
weather based on the historical observations, especially deep
learning models, have become very popular in recent years
[Bouallegue et al., 2024]. With the aid of high-quality and
ever-accumulating data, state-of-the-art deep learning models
have demonstrated great potentials and been integrated into
the modern weather prediction systems [Kurth ez al., 2023;
Bi et al., 2023; Lam et al., 2023]. In addition, deep learning-
based models are able to remarkably shorten the time con-
sumption in the prediction stage [Kurth ez al., 2023]. How-
ever, these models disregard either the physics of the weather
evolution or the topology of the Earth’s surface. Thus, their
predictions are often unreliable due to the lack of the phys-
ical constraints or suffer from the distortions caused by the
topological structure [Schultz et al., 2021; Xu et al., 2024al.

1.1 Enhancing Deep Learning with Physics

Combining with the differential equations that characterize
the weather evolution can enhance the precisions, efficiency
and robustness of deep learning models, because the differ-
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Figure 2: Distortions due to planar projection. (a) The spherical
and planner representations of the global weather. (b) The same
weather patterns on the sphere are distorted on the plane. (c) The
convolutions on the sphere are distorted on the plane.

ential equations provide valuable prior knowledge [Xiang et
al., 2022]. Some works incorporate differential equations
into losses during training deep learning models [Daw et al.,
2021]. Nevertheless, tuning weights for the differential equa-
tions and computing stochastic gradients of the losses bring
new challenges. Some other works use deep learning models
to correct NWP models [Kwa et al., 2023; Xu et al., 2024b;
Kochkov et al., 2024]. Though having high accuracies, these
approaches are computationally demanding since they need
to both solve a large system of differential equations and train
end-to-end neural networks. The closest to ours are [Zhang
et al., 2023; Verma et al., 2024], in which neural networks
are trained with the aid of differential equations. However,
they both overlook the Navier-Stokes equation that drives the
evolution of the velocity fields.

Despite that these physics-assisted deep learning models
are harder to train and slower in inference compared to the
end-to-end deep learning methods, they significantly enhance
the robustness of predictions and demonstrate remarkable po-
tentials [Chen et al., 2018].

1.2 Taking Topology of Earth into Consideration

The historical observations used during training most deep
learning-based weather prediction models are often on planar
latitude-longitude grids, other than on the spherical surface
of the Earth. However, neglecting the topology of the Earth’s
surface introduces remarkable distortions, as shown in Fig-
ure 2 [Cohen et al., 2018; Mai et al., 2023]. For example,
the points that are close to the poles turn to be denser on
the spherical manifold than on the planar latitude-longitude
grid. A notable consequence is that one weather pattern ap-
pears differently on the sphere and the plane, such that captur-
ing the weather pattern on the plan suffers from distortions.
These distortions also affect the patches and convolution ker-
nels, negatively impacting the deep learning models based
on convolutional neural networks or transformers [Coors et
al., 2018]. In addition, the velocity fields defined on the pla-
nar are significantly distorted when increasing the latitude to-
wards the poles, which will bring biases to the deep learn-
ing models that learn the velocity fields [Zhang er al., 2023;
Verma et al., 2024].

1.3 Contributions

In this paper, we propose PASSAT, a novel Physics-ASSisted
And Topology-informed deep learning model for weather
prediction. PASSAT attributes the weather evolution to the
analytical advection process and the complex Earth-atmo-
sphere interaction. In the advection process, the evolution of
weather variables is driven by the evolution of their velocity
fields, and the two are respectively described by the advec-
tion equation and the Navier-Stokes equation. PASSAT also
takes the topology of the Earth’s surface into consideration.
Therefore, PASSAT: (i) trains a spherical graph neural net-
work to estimate the Earth-atmosphere interaction; (ii) gen-
erates the initial velocity fields with the same spherical graph
neural network; (iii) numerically solves the advection equa-
tion on the spherical manifold; (iv) updates the velocity fields
through numerically solving the Navier-Stokes equation on
the spherical manifold. Our contributions are as follows.

PASSAT seamlessly integrates the historical observa-
tions, the physics of the weather evolution and the topol-
ogy of the Earth’s surface, yielding a novel physics-
assisted and topology-informed deep learning model for
weather prediction.

Compared to the black-box deep learning models, PAS-
SAT takes advantages of the physical constraints, char-
acterized by the advection equation and the Navier-
Stokes equation, and thus remarkably improves the qual-
ity of medium-term prediction.

Compared to the NWP models, PASSAT avoids mod-
eling and calculating the complex Earth-atmosphere in-
teraction. PASSAT is also able to utilize the historical
observations to improve the prediction accuracy.

PASSAT solves the differential equations and trains the
graph neural network on the spherical manifold other
than on the planar latitude-longitude grid, and thus ef-
fectively avoids the distortions brought by the latter.

We conduct experiments on the 5.625° ERAS data set,
demonstrating the competitive performance of PASSAT
compared to the state-of-the-art deep learning models
and the NWP model IFS T42.

2 Related Works

Numerical weather prediction (NWP). NWP is a funda-
mental physics-based method for weather prediction [Scher,
2018], utilizing the underlying differential equations to pre-
dict how the weather should evolve over the time. For ex-
ample, the operational Integrated Forecast System (IFS) con-
sists of several NWP models with different spatial resolu-
tions [Bouallegue et al., 2024]. Despite of its widespread
applications, modeling and calculating the complex Earth-
atmosphere interaction are challenging. In addition, solving
the differential equations is sensitive to the initial conditions,
and also computationally demanding [Kochkov er al., 2024].
Deep learning-based weather prediction. Different from
NWP, deep learning models learn from the historical ob-
servations to predict the weather. Though time-consuming
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during training, deep learning models are rapid during pre-
diction as they do not involve solving the differential equa-
tions. State-of-the-art deep learning-based weather predic-
tion models include FourCastNet [Kurth et al., 20231, SFNO
[Bonev et al., 20231, GraphCast [Lam et al., 20231, Graph-
EFM [Keisler, 2022], AIFS [Lang et al., 2024], Pangu [Bi
et al., 2023], Fengwu [Chen er al., 2023a], Fuxi [Chen et
al., 2023b], Stormer [Nguyen ef al., 2024], etc. FourCast-
Net and SFNO are based on the Fourier neural operator [Li
et al., 2021], GraphCast, Graph-EFM and AIFS are based on
the graph neural network [Wu et al., 2021], whereas Pangu,
Fengwu, Fuxi, and Stormer utilize the vision [Dosovitskiy et
al., 2021] and swin [Liu et al., 2021] transformers. Among
these models, SFNO, GraphCast, Graph-EFM, and AIFS take
the Earth’s topology into consideration. Nevertheless, all of
them disregard the underlying physics information.

Deep learning-based, physics-assisted weather prediction.
Integrating the differential equations with deep learning mod-
els significantly improves the precisions, efficiency and ro-
bustness of the latter. Notable recent works along this line in-
clude ClimODE [Verma et al., 2024] and NowcastNet [Zhang
et al., 2023]. Different to PASSAT, ClimODE characterizes
the evolution of the weather variables with the continuity
equation, other than the advection equation. On the other
hand, ClimODE updates the velocity fields with a neural net-
work, other than the Navier-Stokes equation. NowcastNet fo-
cuses on regional precipitation nowcasting, while PASSAT
focuses on global, multi-variable and medium-term weather
prediction. Besides, PASSAT solves the differential equa-
tions and trains its graph neural network on a spherical mani-
fold, other than on the planar latitude-longitude grid used by
ClimODE and NowcastNet, effectively avoiding the distor-
tions.

3 Methods

Considering the attributions of the weather evolution demon-
strated in Figure 1, we accordingly build a physics-assisted
and topology-informed deep learning model for weather pre-
diction, abbreviated as PASSAT. Given any initial time, PAS-
SAT: (i) generates the initial velocity fields of the weather
variables with the velocity branch of a spherical graph neural
network; and then autoregressively (ii) predicts the effects of
the Earth-atmosphere interaction with the interaction branch
of the spherical graph neural network; (iii) numerically solves
the advection equation on the spherical manifold; (iv) numer-
ically updates the velocity fields through solving the Navier-
Stokes equation on the spherical manifold, aided by the initial
velocity fields provided by (i). In the following, we discuss
how PASSAT captures the evolution of the weather variables
and their velocity fields, via integrating the two differential
equations and the spherical graph neural network (see also
Figure 3).

We disregard the impact of vertical actions and focus on
analyzing the advection and Navier-Stokes equations on the
spherical manifold. All the analyses and approaches pre-
sented below can be readily extended to scenarios where the
vertical actions are taken into account.

We begin by introducing the spherical manifold in Section
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Figure 3: Overview of PASSAT.

3.1 and describing the evolution of the weather variables in
Section 3.2. Then, we present the advection equation on the
spherical manifold, the spherical graph neural network and
the Navier-Stokes equation on the spherical manifold in Sec-
tion 3.3, Section 3.4 and Section 3.5, respectively. We also
introduce the time integration scheme in Section 3.6. Finally,
we summarize in Section 3.7.

3.1 Spherical Manifold

The historical observations used during training most deep
learning-based weather prediction models are often on planar
latitude-longitude grids, other than on the spherical surface
of the Earth. Ignoring this topology information leads to re-
markable distortions in both the neural networks and the dif-
ferential equations [Cohen et al., 2018; Mai erf al., 2023]. In
order to avoid such distortions, we project the weather vari-
ables from a planar latitude-longitude grid onto the Earth’s
surface. We assume the Earth’s surface to be an ideal unit
sphere, with the radius of 1 unit length (6371km).

We denote the unit sphere S = {s € R3| ||s||2 = 1} as the
Earth’s surface. Any spatial coordinate s on the unit sphere
corresponds to a point (¢, #) within the planar latitude-longi-
tude grid, where 0 is the latitude and ¢ is the longitude. Thus,
we use s and s(¢, 0) interchangeably. Given any spatial coor-
dinate s, e, (s) € R? and ey(s) € R? are two orthogonal unit
vectors originated from s and along the parallel and meridian
directions, respectively. We denote Vs as the spatial gradient
on the unit sphere and - as the inner product.

3.2 Evolution of Weather Variables

Weather prediction depends on understanding the evolution
of weather variables that we are interested in. Given any wea-
ther variable w, its evolution is characterized as follows.

The weather variable u is viewed as a differentiable, real-
valued function u : T' x S — R, within which T is the time
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set and S is the Earth’s surface. According to Figure 1, the
evolution of weather variable u is attributed to the advection
process and the Earth-atmosphere interaction. To be specific,
for any (¢,s) € T x S, we have:

t+5t
u(t + ot,s + 0s) ~ u(t,s) + / h(r,s+ ds)dr, (1)
t

where 6t > 0 is a small lead time, s = 0t x v(¢,s), v is
the velocity fields of u, and h is the tendency of u due to the
Earth-atmosphere interaction. Taking the first-order Taylor’s
approximation of (1) yields:

%(t, s) =~ —v(t,s) - Vsu(t,s) + h(t,s)

o 0
= (871; (t,))advection + (871: (t,8))interaction-  (2)

According to (2), the total tendency of weather variable u
can be decomposed into two part: (i) —v - Vgu, the tendency
due to the advection process and (ii) h, the tendency due to
the Earth-atmosphere interaction. Once the total tendency
9u(¢,s) is known, we can predict the value of  at any future
time ¢ + At via using proper numerical methods to solve:

t+At U
u(t + At,s) = u(t,s) + / E(T, s)dr. 3)
t
In PASSAT, we use Euler’s method for this time integration.
Therefore, the key of weather prediction is to compute the
tendencies of the advection process and the Earth-atmosphere
interaction. Though the tendency of the advection process
can be numerically estimated by solving the advection equa-
tion on the spherical manifold, the tendency of the Earth-
atmosphere interaction is difficult to model and calculate so
that we resort to a spherical graph neural network. We intro-
duces them one by one in the following.

3.3 Advection Equation on Spherical Manifold

The advection process is the evolution of the weather vari-
ables driven by their velocity fields. Given any weather vari-
able u, its velocity fields v : T'x S — R3 are differentiable
functions of time and spatial coordinate. As we disregard ver-
tical actions, the velocity fields can be express by v(t,s) =
vg(t,s)eq(s) + vy (t,8)e,(s), where vg and v, are the veloc-
ities of u along the meridian and parallel directions, respec-
tively. With particular note, at any initial time ¢ and spatial
coordinate s, u(t,s) is known but v(¢, s) is to be calculated.
As discussed in Section 3.2, the tendency of u due to the
advection process is given by solving the advection equation
[Chandrasekar, 2022], as:
ou
(E(t; S))advecti0n+ V(t; S) . Vsu(ta S) =0. 4)

advective derivative

Once the advective derivative is known, the tendency of w
due to the advection process is known too. On the spherical
manifold and the planar latitude-longitude grid, the advective
derivative has different forms, and the latter brings distortions
in weather prediction, as discussed in the following.
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Figure 4: Overview of PASSAT’s graph neural network. TOP: The
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Given a spatial coordinate s = s(¢, §) € S, on the spheri-
cal manifold, the advective derivative is in the form of [Lions
etal., 1992]:

vg(t,s) Ou
cosf 0o
For vy (t,s) and v4(t,s), PASSAT will estimate their initial

values utilizing the velocity branch of a spherical graph neu-

ral network, and calculate their future values through solv-

ing the Navier-Stokes equation. The differentials g—g (t,s) and

% (t,s) can be estimated using the difference quotients of u

on the planar latitude-longitude grid.
In contrast, on the planar latitude-longitude grid, the ad-
vective derivative is in the form of:

v(t,s)-Vsu(t,s) = vg(t, s)%(t7 s)+ (t,8). (5)

0 0
V(6,9) Vsu(t, ) = v (1,8) 5 (1, 8) 0 (1:8) 52 (1:5), (©)
where vy(t,s) and v (t,s) are respectively the velocities
along the meridian and parallel directions, but on the latitude-
longitude planar grid, not on the spherical manifold. We have

vy(t,8) = vp(t,s) and vy(t,s) = %.

ClimODE and NowcastNet both calculate the the advective
derivative according to (6), through estimating vy (¢, s) and
vy, (t, s) with neural networks. However, we can observe that
fixing the value of v4(t,s), v, (t,s) is not spatial-invariant
— it is large when s is close to the poles and small when s
is close to the equator. Such distortions will affect the pat-
tern recognition of the neural networks. In contrast, PASSAT
takes advantages of the spherical manifold, and thus avoids
the distortions.

3.4 Spherical Graph Neural Network

As discussed above, to calculate (%(t, S) ) advection, the ten-
dency of u due to the advection process, we need to estimate
the initial velocity fields of v(¢,s). On the other hand, we
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also need to estimate (%(t, S) )interaction, the tendency of u
due to the Earth-atmosphere interaction. We train a spherical
graph neural network to estimate these values.

The spherical graph neural network consists of a backbone
model along with two branches: the interaction branch that
estimates (57 (t,S) )interaction and the velocity branch that esti-
mates the initial velocity fields of v(¢, s); see Figure 4. Their
basic block has two components: node-edge connection and
node-node aggregation. The node-edge connection compo-
nent enables efficient message passing between nodes and
edges [Zhou et al., 2020], while the node-node aggregation
component performs graph convolution among nodes [Kipf
and Welling, 2016].

The spherical graph neural network incorporates the topol-
ogy information from the spherical manifold, and thus avoids
the distortions caused by the planar latitude-longitude grid.
For more details, please refer to the supplementary material.

3.5 Navier-Stokes Equation on Spherical Manifold

To calculate the future (‘31; (t,S))advection, We still need to esti-

mate the future velocity fields of v(t, s), for which we resort
to the Navier-Stokes equation [Lions et al., 1992]. On the
spherical manifold, the velocity fields of each weather vari-
able v(t,s) = vg(t, s)eg(s) + vy (t,s)ey(s) satisfy:

v, v vy OV
70—&-( S/ —2 9)+v¢tan9+
ot 00  cosB 0o~ .
. curvature
advection
190p .
;% + 2wvg sin 0 + gl = 0, (7
Coriolis force . L.
pressure gradient force viscous friction
Iy vy | vy Ovy
—, +(ve — ) —vuvg tan 0 +
ot 0t cosg ag )~ Veve tand
g . curvature
advection
1 0
L owupsind+ ——wy, =0, (8
pcosf Op cos2 6
N—— Coriolis force ~—

pressure gradient force viscous friction

We omit the pair (¢, s) for notational simplicity. In the Navier-
Stokes equation, p(t,s) is the atmospheric density, w =
0.2618 (radian/hour) is the Earth’s rotation speed, p(t,s) is
the atmospheric pressure, and g is a constant related to the
Reynolds constant. For computational efficiency, we simplify
the Navier-Stokes equation by retaining only the viscous fric-
tion in the Laplacian.

The Navier-Stokes equation governs the evolution of both
vp(t,s) and vg(t,s). After calculating 8”9(5 5) and a”‘g(tt’s)
from the Navier-Stokes equation, we apply numerical meth-
ods to predict vy (¢t + At,s) and vy (¢t + At, s) asin (3).

3.6 Time Integration Scheme

Up to now, at time ¢, we have known (5 ou i (t, S))lnteracﬁon (from

the spherical graph neural network) and ( 7 (£,5))advection
(from the advection equation) with the aid of v(t,s) (from
both the spherical graph neural network and the Navier-
Stokes equation). Therefore, we can the predict the value of u

at a future time ¢ + At according to (3). However, the numer-
ical methods to solve (3) are sensitive to the integration step
size. As we will see, in our weather prediction, At ranges
from 6 to 144 hours, at the temporal resolution of 6 hours.
Hence, choosing a proper integration step size is critical to
medium-term or long-term prediction.

With the above consideration, in PASSAT, we set the inte-
gration step size as 0.2 hours. However, such a small inte-
gration step size requires the interaction branch of PASSAT
to frequently estimate (%(t, S) )interaction — se€ (2) and (3) —
resulting in excessive back propagation during the training.
To address the issue of memory-intensive training, we esti-
mate ( 5t (t,3) )interaction ONly once every hour and keep it un-
changed within the next hour.

3.7 Summary of PASSAT

We summarize PASSAT in Algorithm 1. For simplicity, we
omit the spatial coordinate s, using 1’ to denote any weather
variable at time ¢ and v? to denote its velocity fields. We also
use u’ to denote all weather variables at time t. We use fyel
and fint to denote the velocity and interaction branches of the
spherical graph neural network, respectively. We use i’ to de-
note the estimated effect of the Earth-atmosphere interaction

for time ¢ and spatial coordinate s. Within the Navier-Stokes

equation, * %{; and 1 dape are unknown. We replace them with

the gradlents of geopotent1a1 2t at the 500hPa pressure level,
converting the units from m?second " to (6731km)?hour >
To ensure stability, the initial velocity fields estimated from
the velocity branch, with the unit of (6731km) /hour, are pro-
jected onto [—0.005, 0.005].

Algorithm 1: PASSAT: Predicting any weather vari-
ablew for7 =¢t+0.2,t +0.4,--- ,t+ At at time ¢
Input: u!
Output: v and v7 = vgeq + vjeq
forz=¢tt+1,--- ,t+At—1do
if 2 = t then
| Initial velocity fields: v! = fye1(u’)
end
Earth-atmosphere interaction: i* = fint(u?)
fort=2,2+0.2,24+04,2+4+ 0.6,z + 0.8 do
—Compute tendencies of u, vg, vg—

o™ _ T ou” v ou”
or Vo “50 cos® ¢ + 17
81)9 T Ovg Vg Ovg \2
or _ve % cos@ a¢ - (%) tan 6—
Do 0 P 0052 0
Yo _ _ vy vy Oy —
o7 vy 09 w050 9 T Ve tan9
L + 2wvj sin 0 —
cos 0 3(1) 0 /”Lcosz 0

Update u” s Ug, Vg————
w0 =T 402 x 2L

97
v T0? = v 4 0.2 x ZT;
v 0% =07 +0.2 x 2
end
end
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4 [Experiments
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Figure 5: Comparison between PASSAT and other models. The x-
axis represents the lead time in hours. Smaller RMSE and larger
ACC values indicate better performance. Note that some results of
IFS T42 exceed the bounds.

Data & Tasks. We conduct the experiments on the European
Centre for Medium-Range Weather Forecasts Reanalysis V5
(ERAS5) 5.625°-resolution data set, spanning from 1979 to
2018 and provided by WeatherBench [Hersbach et al., 2020;
Rasp et al., 2020]. The data samples from 1979 to 2015 are
used in the training set, 2016 in the validation set, as well as
2017 and 2018 in the test set. The interested weather variables
are temperature at 2m height (t2m), temperature at 850hPa

pressure level (t850), geopotential at 500hPa pressure level
(z500), u component of wind at 10m height (u10), and v com-
ponent of wind at 10m height (v10).

We use PASSAT and the baseline models to predict these

weather variables, at a temporal resolution of 6 hours (6am,
12am, 6pm, and 12pm of each day) and lasting for 24 steps
(144 hours). Performance metrics include root mean square
error (RMSE) and anomaly correlation coefficient (ACC). We
release an open-source Pytorch implementation of PASSAT
online'.
Baseline deep learning models. We compare PASSAT with
the following baseline deep learning models: (i) ClimODE
[Verma et al., 2024]; (i) FourCastNet [Kurth et al., 2023];
(iii) Pangu [Bi et al., 2023]; (iv) GraphCast [Lam et al.,
2023]; (v) SENO [Bonev et al., 2023]. For fair comparisons,
we unify the number of parameters of all models to the same
magnitude (around 1.15 million) and train these baseline deep
learning models from scratch according to their open-source
codes and NVIDIA’s Modulus?.

We do not compare with NowcastNet, Graph-EFM, AIFS,
Stormer, Fengwu, and Fuxi. Among them, NowcastNet inte-
grates the differential equations with the deep learning model,
Graph-EFM and AIFS both take the Earth’s topology into
consideration, while Stormer, Fengwu and Fuxi do not utilize
physics and topology information. However, NowcastNet ex-
clusively focuses on regional precipitation nowcasting, while
PASSAT focuses on global, multi-variable and medium-term
weather prediction. Graph-EFM and AIFS adopt hierarchical
grid-mesh graph structures, similar to GraphCast. Stormer,
Fengwu and Fuxi utilize attention-based structures similar to
Pangu, and their focus is on improving long-term predictions
via enhancing the training and inference strategies.

Baseline NWP models. PASSAT is also compared with the
following operational NWP models: IFS T42 and IFS T63
[Rasp et al., 2020]. IFS T42 and IFS T63 are the Integrated
Forecast System (IFS) model run at two different resolutions,
2.8° and 1.9° respectively. We can observe that they are both
finer than the 5.625° resolution of PASSAT, at the cost of
being computationally demanding in solving large systems
of differential equations.

Results. As demonstrated in Figure 5, PASSAT outperforms
the other deep learning models in all weather variables across
different lead times. The closest with PASSAT is GraphCast,
which takes the topology of the Earth’s surface into consider-
ation. However, GraphCast ignores the physics of the weather
evolution, and thus has to use a more complex graph structure
than PASSAT (twice in terms of the number of nodes and
three times in terms of the number of edges). ClimODE, de-
spite of its physics-assisted structure, does not perform well.
This phenomenon could be attributed to the following rea-
sons: (i) ClimODE characterizes the evolution of the weather
variables with the continuity equation, without considering
the Earth-atmosphere interaction; (ii) ClimODE updates the
velocity fields with a neural network, other than the Navier-
Stokes equation; (iii) ClimODE ignores the topology infor-
mation, and thus suffers from the distortions. In contrast,

"https://github.com/Yumenomae/PASSAT_5p625
*https://github.com/NVIDIA/modulus/tree/main/modulus/models
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PASSAT benefits from both the physics information and the
topology information, allowing it to achieve remarkably bet-
ter performance.
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Figure 6: Comparison between PASSAT and the three variants. The
x-axis represents the lead time in hours. Smaller RMSE and larger
ACC values indicate better performance.

The RMSEs and ACCs of IFS T42 and IFS T63 are from
[Rasp et al., 20201, only including t2m, t850 and z500 for
the lead times of 72 and 120 hours. Observe that PASSAT
outperforms IFS T42, a pure physical model solved at a finer
resolution (2.8°). Improving the resolution of the physical
model from 2.8° to 1.9°, IFS T63 surpasses PASSAT and the

other deep learning models, nevertheless at the cost of high
computational complexity.

5 Ablation Studies

We conduct ablation studies to evaluate the effectiveness of
the physics and topology information used in PASSAT. We
compare with three models: (i) PASSAT (without topology),
which constructs the graph neural network on the latitude-
longitude planar grid, other than on the spherical manifold;
(ii)) PASSAT (without physics), which uses the spherical
graph neural network to predict the weather in an end-to-end
manner; (iii) PASSAT (without topology and physics), which
uses the planar graph neural network to predict the weather in
an end-to-end manner.

The results are depicted in Figure 6. PASSAT significantly
outperforms the three variants across all weather variables,
highlighting the importance of incorporating both physics and
topology information. An interesting observation from our
ablation studies is that different variables benefit from differ-
ent sources of information. For t2m, the performance gains of
respectively using the topology information and the physics
information are almost the same. On the other hand, the rest
variables of t850, z500, ul0, and v10 benefit more from the
topology information than from the physics information.

We do not evaluate the individual effects of the advection
equation and the Naiver-Stokes equation, the two parts of
the physics information. First, without the advection equa-
tion, it is unnecessary to update the velocity fields with the
Naiver-Stokes equation. Second, estimating the future veloc-
ity fields with the spherical graph neural network, other than
the Naiver-Stokes equation, shall require frequent calls of the
velocity branch, leading to excessive back propagation and
thus unaffordable memory consumption during training.

6 Conclusions and Future Works

In this paper, we propose PASSAT, a novel physics-assisted
and topology-informed deep learning model for weather pre-
diction. PASSAT seamlessly integrates the advection equa-
tion and the Navier-Stokes equation that govern the evolution
of the weather variables and their velocity fields, with a graph
neural network that estimates the complex Earth-atmosphere
interaction and the initial velocity fields. PASSAT also takes
the topology of the Earth’s surface into consideration, during
solving the equations and training the graph neural network.
In the 5.625°-resolution ERAS data set, PASSAT outper-
forms both the state-of-the-art deep learning-based weather
prediction models and the operational numerical weather pre-
diction model IFS T42. Our ablation studies demonstrate that
both the physics information and the topology information
are essential to the performance gain.

As future works, we will extend PASSAT in the following
aspects: (1) Enhance PASSAT by incorporating more weather
variables; (ii) Refine PASSAT through training over a data
set with a finer resolution; (iii) Incorporate new time integra-
tion scheme that is more efficient than Euler’s method, dur-
ing both training and prediction. We expect that PASSAT is
able to motivate more research efforts in combining physics,
topology and historical observations for weather prediction.
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