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Abstract
Fourier Neural Operators (FNO) have emerged as
promising solutions for efficiently solving partial
differential equations (PDEs) by learning infinite-
dimensional function mappings through frequency
domain transformations. However, the sparsity
of high-frequency signals limits computational ef-
ficiency for high-dimensional inputs, and fixed-
pattern truncation often causes high-frequency sig-
nal loss, reducing performance in scenarios such
as high-resolution inputs or long-term predictions.
To address these challenges, we propose FreqMoE,
an efficient and progressive training framework that
exploits the dependency of high-frequency signals
on low-frequency components. The model first
learns low-frequency weights and then applies a
sparse upward-cycling strategy to construct a mix-
ture of experts (MoE) in the frequency domain,
effectively extending the learned weights to high-
frequency regions. Experiments on both regular
and irregular grid PDEs demonstrate that FreqMoE
achieves up to 16.6 percent accuracy improvement
while using merely 2.1 percent parameters (47.32x
reduction) compared to dense FNO. Furthermore,
the approach demonstrates remarkable stability in
long-term predictions and generalizes seamlessly
to various FNO variants and grid structures, estab-
lishing a new Low frequency Pretraining, High fre-
quency Fine-tuning” paradigm for solving PDEs.

1 Introduction
Efficient solutions to large-scale partial differential equa-
tions (PDEs) play a crucial role in numerous scientific
computing applications, ranging from weather forecasting
through Navier-Stokes equations to quantum simulations in
physics [Bi et al., 2022; Pathak et al., 2022; Li et al., 2023b;
Childs et al., 2021]. As spatial resolution and temporal
steps increase, traditional numerical solvers face prohibitive
computational costs, spurring the development of neural ap-
proaches that promise to balance accuracy with efficiency.

1The corresponding author is Haoyi Zhou (haoyi@buaa.edu.cn).

Figure 1: Motivation of FreqMoE. Traditional FNO directly trun-
cates high-frequency components (left), while FreqMoE(ours) effi-
ciently preserves them through sparse dynamic experts (right). This
design enables high-frequency modeling with negligible computa-
tional overhead.

Among these approaches, Fourier neural operators (FNO [Li
et al., 2021] and its variants (Geo-FNO [Li et al., 2023a],
FFNO [Tran et al., 2023], TFNO [Kossaifi et al., 2023]) have
emerged as particularly promising, leveraging the inherent
sparsity of physical fields in frequency domain. By operating
on a compact window of low-frequency signals while trun-
cating higher frequencies, these methods achieve scale-free
processing across arbitrary resolutions with reduced com-
putational complexity. However, this frequency truncation
presents a fundamental trade-off: while enabling computa-
tional efficiency, the loss of high-frequency information can
significantly degrade performance in high-resolution scenar-
ios and, as a result, accumulate errors in long-term predic-
tions [Lippe et al., 2023; Cao et al., 2024].

Recent efforts to overcome high-frequency limitations
have explored post-training refinement strategies. These
methods aim to recover truncated frequency information
through various approaches, such as diffusion-based iterative
refinement [Lippe et al., 2023] and numerical solver guid-
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ance [Cao et al., 2024]. However, existing solutions often
incur substantial computational overhead or are restricted to
specific scenarios, highlighting the need for a more computa-
tionally efficient approach.

To address these limitations, we propose FreqMoE, a light-
weight post-training framework inspired by upcycled MoE
Models [He et al., 2024; Zhang et al., 2024]. This frame-
work enables FNO trained on low-frequency domains to
adapt to high-frequency signals dynamically. Our method
leverages a pre-trained FNO as a base expert for low-
frequency components while initializing specialized high-
frequency experts(Fig.1). To handle the inherent spar-
sity of high-frequency components, we incorporate a gat-
ing mechanism to selectively activate the most relevant high-
frequency Experts during prediction. Our approach is mo-
tivated by a fundamental observation in physical systems:
high-frequency signals typically exhibit strong dependencies
on low-frequency components, as exemplified by the en-
ergy cascade phenomenon in fluid mechanics [McKeown et
al., 2023]. Capitalizing on this physical insight, we initial-
ize high-frequency experts re-using the base expert’s weights
through a LoRA-like strategy [Hu et al., 2022].

Specifically, we decompose the high-frequency expert’s
weights into two components: a shared base weight Rbase and
a low-rank delta weight ∆R. For the i-th high-frequency Ex-
pert, its weights are constructed as Ri = R + ∆Ri, where
the shared base weights R could be intialized by the pre-
trained dense FNO. This architecture offers significant com-
putational efficiency improvement through two key design
choices: (1) during post-training, low-rank delta weights are
parameter-efficient, and (2) during inference, only the Top-K
selected experts participate in prediction. The extremely low-
rank nature of ∆R ensures minimal computational overhead
in both stages, making our method particularly practical for
real-world applications.

Through extensive evaluation on both regular and irreg-
ular grid PDEs, we demonstrate the effectiveness of Fre-
qMoE in high-resolution and long-term prediction scenar-
ios. Our experiments reveal compelling advantages: in high-
resolution tasks (512×512), FreqMoE achieves up to 16.6%
accuracy improvement while using merely 2.1% parameters
(47.32× reduction) compared to conventional FNO. This ef-
ficiency extends to unstructured meshes, where FreqMoE
maintains superior performance with 27.37× parameter re-
duction. Furthermore, long-term rollout experiments show-
case FreqMoE’s stability in mitigating error accumulation,
particularly in challenging high-resolution scenarios.

The key contributions of this work are threefold:

1. We propose FreqMoE, a lightweight post-training
framework that dynamically enhances high-frequency
processing capabilities in neural PDE solvers. Our ap-
proach generalizes seamlessly across the FNO family
on both structured and unstructured grids, establishing
an efficient ”low-frequency pretraining, high-frequency
fine-tuning” paradigm.

2. Inspired by physical principles of frequency dependen-
cies in PDEs, we develop a LoRA-based expert ini-
tialization scheme that efficiently reuses low-frequency

weights. This design achieves remarkable parameter ef-
ficiency (47.32× reduction) while maintaining competi-
tive performance through sparse dynamic computation.

3. Through comprehensive evaluation on diverse PDE sys-
tems, we demonstrate that FreqMoE significantly out-
performs conventional FNO variants, achieving up to
16.6% accuracy improvement in high-resolution tasks
(512×512) and superior stability in long-term predic-
tions, all while maintaining minimal computational
overhead.

2 Related Works
2.1 Fourier Neural Operators
Fourier Neural Operators (FNO) [Li et al., 2021] have rev-
olutionized PDE solving by introducing FFT-based spec-
tral convolution layers to learn mappings between infinite-
dimensional function spaces. This foundational work has
sparked numerous architectural innovations: Geo-FNO [Li
et al., 2023a] and SFNO [Bonev et al., 2023] extended the
framework to handle irregular grids and spherical geome-
tries, while F-FNO [Tran et al., 2023] enhanced scalability
through separable spectral convolutions and advanced train-
ing strategies. T-FNO [Kossaifi et al., 2023] further im-
proved parameter efficiency and generalization by imple-
menting global tensor decomposition. Despite these advance-
ments, the issue of high-frequency truncation—a critical lim-
itation in FNO—remains largely unaddressed. Our work di-
rectly tackles this gap by enhancing high-frequency signal
processing capabilities, offering a complementary approach
that integrates seamlessly with existing FNO architectures to
further improve performance.

2.2 Sparse Upcycling Techniques
Sparse upcycling has emerged as a powerful paradigm for
efficient model enhancement, leveraging sparsely activated
Mixture-of-Experts (MoE) initialized from pre-trained dense
models. This approach has demonstrated remarkable suc-
cess across diverse domains, from language models (T5) [Ko-
matsuzaki et al., 2023] to vision-language systems (MoE-
LLAVA) [Lin et al., 2024] and medical applications (MoE-
Med) [Jiang et al., 2024], consistently outperforming sparse
models trained from scratch while significantly reducing
computational costs. Building on these principles, our work
pioneers the application of sparse upcycling to frequency-
domain learning. We introduce a novel framework that uti-
lizes pre-trained FNO to efficiently enhance high-frequency
components, achieving improved performance with minimal
additional training overhead.

3 Method
FreqMoE extends FNO with dynamic frequency processing
through a lightweight expert system. As shown in Fig. 2, our
framework splits the frequency spectrum into chunks and pro-
cesses high-frequency components via specialized experts de-
rived from pre-trained FNO. We first introduce the frequency-
domain MoE design (Sec. 3.2), then present our efficient ex-
pert initialization scheme (Sec. 3.3), followed by the training
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(a) Standard Fourier Neural Operator Architecture

(b) Modified Fourier Layer with FreqMoE (c) Initialization with Pretrained Weights

（New Weights）
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Figure 2: Methods overview of FreqMoE. (a) The standard Fourier Neural Operator (FNO) architecture consisting of input lifting (P),
a sequence of Fourier layers, and output projection (Q). (b) Our modified Fourier layer design with a mixture-of-experts mechanism,
where the gating networker dynamically assigns frequency components to specialized experts after FFT decomposition. High-frequency
components (lighter shades) are processed by high-frequency experts, while low-frequency components are handled by the base expert. (c)
Our expert initialization strategy, where pre-trained weights R are used as a shared base component Rbase and expert-specific delta weights
∆R are initialized with LoRA trick, enabling efficient parameter sharing and specialized frequency processing.

strategy that enables sparse computation. We begin by re-
viewing the basics of FNO and MoE systems.

3.1 Preliminary
Neural PDE Solvers with FNO. Fourier Neural Opera-
tor (FNO) learns a parameterized operator Gθ that maps
input functions to output solutions in infinite-dimensional
spaces. The core of FNO is its Fourier layer(Fig.2(a)),
which performs spectral convolution through: K(l)(z(l)) =
IFFT(R(l) · FFT(z)), where R(l) ∈ CH×H×M1...Md are
learnable weights operating on truncated frequency modes
{M(i)|i ∈ {1, 2, ...d}}. This frequency truncation, while
computationally efficient, leads to information loss in high-
frequency components.

Mixture-of-Experts (MoE). A standard MoE layer con-
sists of a gating networkPθ and N expert networks Eθj , com-

puting outputs as: MoE(x) =
N∑
j=1

TopK(Softmax(Pθ(x)j)) ·

E
(j)
θ (x). In our frequency-domain adaptation, experts spe-

cialize in different frequency chunks, with the gating network
determining the activation of high-frequency computations
during inference.

3.2 MoE in Frequency Domain
Traditional FNO truncates high frequencies for efficiency, but
this fixed cutoff limits model capacity. Our FreqMoE design
addresses this limitation by adaptively processing the fre-
quency spectrum based on two observations: high-frequency
signals in PDEs are naturally sparse, and their patterns are
often localized. These properties make the frequency domain
particularly suitable for expert-based processing.

Frequency Domain Partitioning. In the standard spectral
convolution, for an input feature map z ∈ RS , its Fourier

transform ẑ = FFT(z) ∈ CS is truncated to retain only the
lowest frequency bands for processing: oP = Rθ · ẑP , where
Rθ represents the learnable weights. We generalize this fixed
truncation scheme by partitioning the frequency spectrum
into J = S/P bands: {ẑ(i)P ∈ CP | i = 0, 1, . . . , J − 1}
where bands are ordered by increasing frequency, with ẑ

(0)
P

containing the lowest frequency components.
Expert Specialization. We assign N specialized experts
{Eθi | i = 1, . . . , N} (N ≤ J − 1) to process different high-
frequency bands, while keeping the original FNO weights Rθ

as the base expert for low-frequency components ẑ
(0)
P . This

design stems from a key insight in PDE solutions: low fre-
quencies capture global patterns that require careful process-
ing, while high frequencies reflect local details that can ben-
efit from specialized, targeted handling.

Adaptive Frequency Gating. To exploit the natural spar-
sity in high-frequency signals, we design a gating mechanism
gθ that selectively activates experts based on frequency con-

tent: gθ(ẑ
(i)
P ) = σ(

wθ·ẑ(i)
P

τ ) where τ is a temperature param-
eter and σ is the sigmoid function. The forward computation
follows:

o
(i)
P =


Rθ(ẑ

(i)
P ), i = 0

gθ(ẑ
(i)
P ) · Eθi(ẑ

(i)
P ), i = 1, . . . , N

0, otherwise
(1)

To encourage sparse expert utilization during training, we
add a sparsity loss on gate values:

Lsparse = E[
N∑
i=1

gθ(ẑ
(i)
P )]. (2)

This regularization pushes the model to activate only the
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most relevant experts for each frequency band, leading to
more efficient inference.

Inference-Time Sparsity. During inference, we lever-
age the sparse nature of expert utilization by activating only
the top-K experts (K ≤ N ) based on their gating values:
active experts = TopK(gθ(ẑ

(i)
P )i = 1N ,K).

The inference computation becomes:

o
(i)
P =


Rθ(ẑ

(i)
P ), i = 0

gθ(ẑ
(i)
P ) · Eθi(ẑ

(i)
P ), i ∈ active experts

0, otherwise.
(3)

This sparse activation strategy significantly reduces com-
putational overhead while maintaining model performance,
as high-frequency components typically require selective
rather than comprehensive processing. The final output in
the spatial domain is obtained through the inverse Fourier

transform: o = IFFT(o(i)P

J−1

i=0 ), where the unprocessed high-
frequency components are naturally zero-padded.

3.3 Sparsely Upcycle the Low-frequency Weight
After establishing the expert structure, a key challenge is how
to efficiently initialize these experts. Instead of training from
scratch, we propose a sparse upcycling strategy (Algorithm 1)
that leverages pre-trained FNO weights while keeping the pa-
rameter count low. This approach allows experts to inherit
low-frequency patterns while developing specialized high-
frequency processing capabilities.

Parameter-Efficient Weight Adaptation. For each expert
Eθi , we decompose its adapted weights Rθi into a shared base
component and an expert-specific delta:

Rθi = Rθ +∆Rθi , (4)
where Rθ ∈ CH×H×M1×...×Md represents the pre-trained

weights in the low-frequency domain. The expert-specific
adaptation ∆Rθi is computed through low-rank decomposi-
tion:

∆Rθi = α ·AθiBθi (5)

with A(i) ∈ Cr×H and Bθi ∈ CH×r×M1×...×Md being
low-rank adaptation matrices with rank r ≪ H . This formu-

lation reduces the adaptation parameters from O(H2
d∏
i

M(i))

to O(rH(1 +
d∏
i

M(i))) per expert.

3.4 Bridging Low and High Frequency Learning
FNO effectively addresses the challenge of learning in infinite
function spaces, yet it primarily captures low-frequency pat-
terns as resolution increases. This aligns well with PDE char-
acteristics where dominant features reside in low frequencies,
making it efficient to learn fundamental patterns. FreqMoE
builds upon this insight by establishing a bridge between low
and high frequencies through expert upcycling, enabling pat-
tern transfer across frequency bands.

This design naturally leads to an efficient learning
paradigm: Low-Frequency Pretraining, High-Frequency

Algorithm 1 Sparsely Upcycling of FNO

Input: Pretrained FNO Model F, number of experts N , rank
r, scaling factor α

Output: Upcycled FreqMoE Model
1: // Initialize expert parameters
2: for each Fourier layer l do
3: R

(l)
θ ← F.get pretrained weights(l)

4: Initialize gating network g
(l)
θ

5: for i in 1 to N do
6: Initialize expert R(l)

θi ← R
(l)
θ + α ·A(l)

θi B
(l)
θi

7: end for
8: end for
9: return New FreqMoE Model F

Fine-tuning(LPHF). Since inference over high-resolution
PDE solutions is computationally expensive, LPHF allows us
to learn core patterns from abundant low-resolution data, then
adapt to high frequencies with much fewer parameters. As
demonstrated in our experiments on both regular (CFD) and
irregular (AirFoil) grids, this paradigm significantly acceler-
ates neural operator inference while maintaining high accu-
racy across resolutions.

4 Experiments
We conduct systematic evaluations of FreqMoE across two
critical scenarios demanding effective high-frequency model-
ing: high-resolution inputs and long-term prediction rollouts.
Our experimental framework follows a progressive approach:
(1) Training base FNO models on low-frequency regimes,
then (2) transforming them into sparse FreqMoE architectures
through our parameter-efficient upcycling strategy (Section
3.3). We measure model effectiveness through activated pa-
rameter counts(# Params) and prediction accuracy (L2 rela-
tive error), with comprehensive ablation studies on frequency
adaptation mechanisms.

4.1 Datasets
To demonstrate FreqMoE’s versatility across different PDE
domains and discretization schemes, we select benchmark
problems from both regular and irregular grid settings.

Regular-grid PDEs. From PDEbench [Takamoto et al.,
2022], we choose vortex-dominated flows under Random and
Turbulent initializations. Evaluations at 128×128(CFD-Rand
128) and 512×512(CFD-Rand 512, CFD-Turb 512) resolu-
tions test progressive frequency handling capabilities, where
higher resolutions reveal finer turbulent structures.

Irregular-grid PDEs. Using Geo-FNO’s [Li et al., 2023a]
challenging scenarios: (1)Airfoil, transonic flows over param-
eterized NACA-0012 airfoils (Mach 0.8) with shock-induced
high frequencies on adapted C-grids ( 200×50). (2)Elastic-
ity, nonlinear material deformations with central voids (ra-
dius 0.2-0.4), modeled via 1000 FEM nodes capturing stress
concentrations.

4.2 Baseline and Implementation
We evaluate FreqMoE against two strong FNO variants, with
implementation details summarized below.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Relative L2 Error(L2RE)↓Models Modes # Params ↓ CFD-Rand 128 CFD-Rand 512 CFD-Turb 512
(4,4) 142.69K 0.0481 ± 0.0061 0.3856 ± 0.0434 0.2445 ± 0.0259

(16,16) 2.11M 0.0434 ± 0.0052 0.3981 ± 0.0434 0.2164 ± 0.0316FNO
(Dense) (32,32) 8.40M 0.0410± 0.0045 0.3742 ± 0.0427 0.2436 ± 0.0267

(32,32)∗ 177.53K 0.0404± 0.0047 0.3720 ± 0.0469 0.2320 ± 0.0264FreqMoE
(Sparse) (4,4)→(32,32)† 177.53K 0.0370 ± 0.0038 0.3122 ± 0.0257 0.1934 ± 0.0226

Params Reduction ↓ 47.32×

Table 1: Performance on Regular-Grid PDEs. Comparison of models with varying frequency modes, where # Params indicates the number
of parameters activated during inference. Underlined values represent the best performance achieved by FNO baselines. Results with blue
background show our FreqMoE, where superscript ∗ and † denote models trained from scratch and upcycled from dense FNO, respectively.
The bold values highlight our best performance.

FNO Baselines. For regular grids, we implement vanilla
FNO [Li et al., 2021] with four Fourier layers (width=32) un-
der three spectral configurations: (4,4), (16,16), and (32,32)
modes. Inputs include velocity components (Vx, Vy), pres-
sure, and density fields. Training adopts single-step predic-
tion with Adam optimizer (initial lr=0.001).

GeoFNO Baselines. For irregular grids, we extend Geo-
FNO [Li et al., 2023a] with task-specific designs:(1)Airfoil,
asymmetric modes (2,4) to (16,32) capture shock waves, us-
ing 4 input channels (coordinates + physical fields). (2)Elas-
ticity, symmetric modes (2,2) to (16,16) model stress concen-
trations, enhanced with polar coordinate encoding. Both vari-
ants employ the IPHI module for coordinate transformation,
trained with 50% learning rate decay every 50 epochs.

FreqMoE Configuration. Our architecture introduces
two key innovations: (1)Dynamic Expert Selection, expands
spectral capacity from (4,4)→(32,32) for regular grids and
(2,4)→(16,32)/(2,2)→(16,16) for irregular grids, activating
only Top-2 experts during inference. (2) Upcycling Strat-
egy, initializes weights from pre-trained base models via low-
rank factorization (rank=4), contrasted with scratch training.
Training stabilizes via expert sparsity loss (factor α = 0.1)
with identical hyperparameters to baselines for fair compari-
son. This design achieves parameter efficiency while preserv-
ing high-frequency resolution – critical for our later analyses
of activation patterns and long-term stability.

4.3 Comprehensive Evaluation and Insights
Our experiments systematically validate FreqMoE’s capabil-
ities through two analytical lenses: (1) The post-training per-
formance improvement in relative L2 error. (2) The inference
efficiency improvement via activated parameters reduction.
Key findings reveal that FreqMoE achieves superior high-
frequency modeling with 6-28× parameter reduction com-
pared to dense counterparts, while maintaining robust perfor-
mance in all scenarios.

High-Resolution Regular Grid Analysis. Our experi-
ments reveal fundamental limitations in conventional FNO’s
frequency scaling approach. As shown in Table 1, naively
expanding FNO from (4,4) to (32,32) modes yields dimin-
ishing returns - while the 32×32 model achieves marginal
gains on 128×128 resolution (4.81%→4.10% L2RE), it
degrades performance on high-resolution CFD-Turb 512

CFD Turb(Regular Grid)

Ground Truth Ground Truth

Airfoil(Irregular Grid)

GeoFNO Error(m=4) FNO Error(m=4)

GeoFNO Error(m=8) FNO Error(m=16)

GeoFNO Error(m=12) FNO Error(m=32)

FreqMoE ErrorFreqMoE Error

Figure 3: Visualization of prediction errors. Left Column: Irreg-
ular Grid Results from AirFoil. Right Column: Regular Grid Re-
sults from CFD-Turb 512. Red circles highlight regions with high-
frequency components, where our FreqMoE demonstrates better ca-
pability in capturing fine-grained spatial details compared to FNO.
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AirFoil ElasticityModels Modes # Params↓ L2RE↓ Modes # Params↓ L2RE↓

(2,4) 74.27k 0.0270 ± 0.0038 (2,2) 49.06K 0.0236 ± 0.0034
(4,8) 270.88k 0.0161 ± 0.0020 (4,4) 171.94k 0.0386 ± 0.0057
(8,16) 1.06M 0.0153 ± 0.0016 (8,8) 663.46k 0.0312 ± 0.0037

(12,24) 2.37M 0.0152 ± 0.0016 (12,12) 1.48M 0.0229 ± 0.0025

Geo-FNO
(Dense)

(16,32) 4.20M 0.0708 ± 0.0100 (16,16) 2.62M 0.0540 ± 0.0067

(16,32)∗ 148.06k 0.0432 ± 0.0038 (16,16)∗ 94.57k 0.0397 ± 0.0046FreqMoE
(Sparse) (2,4)→(16,32)† 148.06k 0.0154 ± 0.0013 (2,2)→(16,16)† 94.57k 0.0217 ± 0.0018

Params Reduction ↓ 27.37× ↓ 26.70×

Table 2: Performance on Irregular-Grid PDEs. Comparison of models on two representative irregular-grid tasks: AirFoil and Elasticity,
where # Params indicates the number of parameters activated during inference. Underlined values represent the best performance achieved
by Geo-FNO baselines. Results with blue background show our FreqMoE approach, where superscript ∗ and † denote models trained from
scratch and upcycled from dense Geo-FNO, respectively. The bold values highlight our best performance.

(a) Frequency Signals (b) Experts Contribution

1.0

0.9

0.8

0.7

0.6

0.5

0.4

Figure 4: Visualization of Experts. (a) Distribution of frequency
signals after FFT transformation. (b) Activation patterns of ex-
perts in FreqMoE, where each grid cell represents a frequency mode
chunk. Beyond capturing low-frequency signals in the top-left cor-
ner, FreqMoE dynamically activates experts to capture surrounding
high-frequency components.

(24.45%→24.36%) despite 59× parameter growth. This
exposes a critical tradeoff: dense spectral models over-
parameterize high-frequency components that rarely activate
in practice.

FreqMoE breaks this tradeoff through dynamic expert spe-
cialization. With only 177.53K active parameters (47×
fewer than (32,32) FNO), our sparse model reduces errors by
9.8%-16.6% across resolutions. The upcycled variant (4→32
modes) achieves particularly striking improvements: 20.6%
error reduction on CFD-Turb 512 compared to its dense coun-
terpart, demonstrating superior turbulence modeling. Spatial
error maps in Figure 3 validate this behavior - while dense
FNO accumulates errors in vortex cores (red circles), Fre-
qMoE maintains accurate predictions through adaptive fre-
quency allocation.This resolution-aware adaptation explains
FreqMoE’s dual advantage: preserving low-frequency stabil-
ity (4.10%→3.70% on CFD-Rand 128) while capturing high-
frequency details (24.36%→19.34% on CFD-Turb 512).

Results on Irregular-Grid PDEs. The challenges of ir-
regular grids exacerbate conventional Geo-FNO methods’
inefficiency in high-frequency processing. As Table 2

demonstrates, naively expanding Geo-FNO to (16,32) modes
for AirFoil catastrophically degrades performance (L2RE
surges from 0.0152 to 0.0708) despite 4.2M parameters
- revealing dense models’ vulnerability to spectral over-
parameterization. FreqMoE addresses this through sparse
high-frequency specialization: with merely 148K parame-
ters (28× fewer than (16,32) modes Geo-FNO), our model
achieves near-identical AirFoil accuracy (0.0154 vs 0.0152)
while reducing Elasticity errors by 5.2%. This efficiency
stems from dynamic frequency enhancement - preserving
critical high-frequency components around geometric discon-
tinuities (airfoil edges in Figure 3) without parameter bloat.
The 26.7× parameter reduction in Elasticity tasks particularly
highlights FreqMoE’s advantage in handling stress concentra-
tion areas where high-frequency signals dominate.

Sparsely Activation of Experts. As described in Sec-
tion 3.2, FreqMoE dynamically activates high-frequency ex-
perts based on input signals through its gating mechanism.
Figure 4 illustrates both the frequency distribution and ex-
pert activation patterns. The frequency visualization (Figure
4(a)) reveals that high-frequency components in PDE solu-
tions exhibit natural sparsity, with signal energy primarily
concentrated in the low-frequency region (top-left corner).
The expert activation map (Figure 4(b)) demonstrates how
FreqMoE’s gating mechanism responds to this spectral char-
acteristic - while maintaining consistent engagement with
low-frequency experts, it selectively activates high-frequency
experts only when corresponding signal components are
present. This adaptive activation pattern suggests that Fre-
qMoE can effectively identify the sparse high-frequency pat-
terns while preserving computational efficiency through tar-
geted expert utilization.

Analysis of Rollout Performance. The rollout experi-
ments demonstrate FreqMoE’s effectiveness in mitigating
error accumulation during long-term predictions. In low-
resolution scenarios (CFD-Rand 128), all models show rela-
tively stable performance, with FreqMoE maintaining a slight
edge in accuracy. However, the advantages of FreqMoE be-
come substantially more evident in high-resolution cases. For
CFD-Rand 512, while baseline FNO models exhibit rapid er-
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Figure 5: Long-term Prediction Performance on Different CFD Datasets. The plots show the L2 relative error evolution during rollout
prediction across three datasets of varying complexity. FreqMoE demonstrates superior stability in long-term predictions compared to baseline
FNO models with different mode configurations. This advantage becomes particularly pronounced in high-resolution scenarios (CFD-Rand
512 and CFD-Turb 512), where the error growth is significantly moderated.

ror accumulation regardless of their mode numbers, FreqMoE
maintains a significantly lower error trajectory, with 31.67%
reduction in final prediction error. This pattern is further am-
plified in the more challenging CFD-Turb 512 dataset, where
turbulent flows introduce additional high-frequency compo-
nents. Here, FreqMoE’s adaptive frequency modeling capa-
bility proves particularly valuable, effectively containing er-
ror growth even as prediction steps extend. This performance
gap suggests that FreqMoE’s dynamic expert activation suc-
cessfully preserves critical high-frequency information that
traditional FNO models typically lose, thereby preventing the
cascade of prediction errors in complex fluid simulations.

FNO(L2RE) FreqMoE(L2RE)
FNO(Time) FreqMoE(Time)

Figure 6: Performance and Efficiency across different frequency
modes. The solid lines (left y-axis) show the L2 Relative Error
(L2RE) achieved by different numbers of modes, while the dashed
lines (right y-axis) represent the corresponding inference time mea-
sured on a single NVIDIA V100 (32GB) GPU. FreqMoE consis-
tently maintains two active experts (Topk=2) across all modes.

Scale up frequency Modes sparsely vs densely. Figure 6
demonstrates the trade-offs between model performance and
computational cost when scaling frequency modes. Dense
FNO shows initial error reduction from modes 4 to 12, but
experiences performance degradation with higher modes due
to the inherent sparsity of frequency signals. FreqMoE
maintains steady improvement through dynamic expert selec-
tion. The inference time of dense FNO grows quadratically

with modes due to full spectral convolution, while FreqMoE
achieves linear complexity by fixing active experts (Topk=2),
where modes only affect gating computation.

5 Conclusion
We presented FreqMoE, a dynamic frequency enhance-
ment framework that addresses high-frequency signal loss
in Fourier Neural Operators through a sparse mixture-of-
experts paradigm. Our ”Low-Frequency Pretraining, High-
Frequency Fine-tuning”(LPHF) strategy efficiently bridges
frequency domains while maintaining remarkable parame-
ter efficiency. Key innovations include: (1) a frequency-
domain MoE architecture with dynamic expert activation,
(2) LoRA-based weight initialization that recycles pretrained
FNO weights, and (3) sparse upward-cycling training achiev-
ing 47.32× parameter reduction.

While our current approach uses predefined frequency par-
titioning and introduces minor routing overhead, future work
will focus on adaptive partitioning strategies and extend-
ing the LPHF paradigm to broader operator learning sce-
narios. FreqMoE establishes a foundational framework for
frequency-aware neural PDE solvers, opening new pathways
for efficient high-resolution scientific computing.
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siani, Dirk Pflüger, and Mathias Niepert. Pdebench: An
extensive benchmark for scientific machine learning. In
Sanmi Koyejo, S. Mohamed, A. Agarwal, Danielle Bel-
grave, K. Cho, and A. Oh, editors, Advances in Neural
Information Processing Systems 35: Annual Conference
on Neural Information Processing Systems 2022, NeurIPS
2022, New Orleans, LA, USA, November 28 - December
9, 2022, 2022.

[Tran et al., 2023] Alasdair Tran, Alexander Patrick Math-
ews, Lexing Xie, and Cheng Soon Ong. Factorized fourier

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

neural operators. In The Eleventh International Confer-
ence on Learning Representations, ICLR 2023, Kigali,
Rwanda, May 1-5, 2023. OpenReview.net, 2023.

[Zhang et al., 2024] Qizhen Zhang, Nikolas Gritsch,
Dwaraknath Gnaneshwar, Simon Guo, David Cairuz,
Bharat Venkitesh, Jakob N. Foerster, Phil Blunsom,
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