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Abstract

Graph Neural Networks (GNNs) are known to be
prone to adversarial attacks, among which back-
door attack is a major security threat. By inject-
ing backdoor triggers into a graph and assigning a
target class label to nodes attached to the triggers,
the attacker can mislead the GNN model trained
on the poisoned graph to classify test nodes at-
tached with a trigger to the target class. To defend
against backdoor attacks, existing defense meth-
ods rely on anomaly detection in feature distribu-
tion or label transformation. However, these ap-
proaches are incapable of detecting in-distribution
triggers or clean-label attacks that do not alter the
class label of target nodes. To tackle these threats,
we empirically analyze triggers from a multidimen-
sional aspect, and our analysis shows that there are
clear distinctions between trigger nodes and nor-
mal ones in terms of node feature values, node em-
beddings, and class prediction probabilities. Based
on these findings, we propose a Multidimensional
Anomaly Detection framework (MAD) that can ef-
fectively minimize the impact of triggers by prun-
ing away anomalous nodes and edges. Extensive
experiments show that at the cost of slight loss in
clean classification accuracy, MAD achieves con-
siderably lower attack success rate as compared to
state-of-the-art backdoor defense methods.

1 Introduction

Graph Neural Networks (GNNs) [Kipf and Welling, 2016;
Veli¢kovié et al., 2017] have achieved remarkable success in
many fields, such as social network analysis [Sankar er al.,
2021], recommender systems [Wu er al., 2022], knowledge
graph construction [Wang et al., 2017], and bioinformatics
[Zhao et al., 2021]. GNNs effectively capture complex re-
lationship within graph by aggregating information of nodes
and their neighbors. Due to the capabilities of learning from
graphs, GNNs are widely used for tasks like graph classifi-
cation [Xu et al., 2018], node classification [Hamilton et al.,
2017], and link prediction [Zhang and Chen, 2018].

Despite being a powerful technique for graph processing,
GNNss are prone to suffer from various security threats, such

as adversarial attacks [Ziigner et al., 2018; Li er al., 2021],
data privacy leakage [Duddu et al., 2020; Wang et al., 2023],
model inversion attacks [Zhang et al., 2022], and backdoor
attacks [Zhang er al., 2021]. In a backdoor attack, the at-
tacker implants malicious triggers into the training data, and
associates the triggers with some target labels during GNN
training. When inferring test nodes adjacent to those triggers,
the poisoned GNN model will classify the contaminated test
nodes to the target class pre-specified by the attacker, while
clean test nodes are predicted as normal.

Graph backdoor attacks have attracted tremendous atten-
tion from researchers, with stealthier and more effective at-
tacks having been invented [Xi et al., 2021; Dai et al., 2023;
Zhang er al., 2024a]. Meanwhile, backdoor triggers have
evolved from traditional Out-of-Distribution (OOD) triggers
to In-Distribution (ID) triggers [Zhang et al., 2024a]. Some
researchers even propose clean-label attacks, that do not mod-
ify the class label of target nodes [Xu and Picek, 2022;
Xing et al., 2024]. This poses severe threats to GNNs, for
instance, ID triggers are so similar to normal nodes that they
can easily bypass traditional anomaly detection methods.

To protect GNNs from backdoor attacks, many defense
methods have been invented [Downer ef al., 2024; Guan et
al., 2023; Jiang and Li, 2022; Yang et al., 2023; Yuan et al.,
2024], where most of them resort to either feature anomaly-
based detection [Dai et al., 2023; Zhang et al., 2024a] or
label transformation-based detection [Zhang et al., 2024b;
Sui et al., 2024]. Specifically, feature anomaly-based defense
methods identify potential trigger nodes (i.e., the nodes in
triggers) by detecting anomalies in node features, while la-
bel transformation-based ones rely on pruning trigger edges
(i.e., the edges associated with trigger nodes) that lead to the
transformation of labels of the target nodes. However, these
defense methods are incapable of dealing with ID triggers and
clean-label attacks, because it is tricky for them to discover
these kinds of triggers whose distribution is similar to that of
normal nodes.

In this paper, we conduct an in-depth investigation into
trigger nodes and normal nodes from multidimensional as-
pects, including node features, node embeddings, and class
prediction probabilities of nodes. And we find that there are
obvious anomalies in trigger nodes, which distinguish them
from the normal nodes. Based on these findings, we propose
a simple yet effective multidimensional anomaly detection
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(MAD) framework that can minimize the impact of triggers
through identifying and eliminating anomalous nodes and
edges. In summary, the contributions of this paper include:

* We systematically investigate trigger nodes and normal
nodes from various aspects, and we found that there are
clear distinctions between them, in terms of node fea-
tures, node embeddings, and class prediction probabili-
ties of nodes.

* By utilizing these findings, we propose a simple yet ef-
fective multidimensional anomaly detection framework
called MAD, that combines three anomaly detection
modules to defend against backdoor attacks for GNNs.

* We conduct extensive experiments on real datasets, and
the results show that MAD significantly reduces attack
success rate as compared to existing defense methods.

2 Related Work

2.1 Graph Neural Networks

Graph Neural Network (GNN) is a deep learning model de-
signed specifically for graph data [Kipf and Welling, 2016;
Veli¢kovié et al., 2017; Hamilton et al., 2017; Xu et al.,
2018], which is widely used for various tasks such as node
classification [Hamilton et al., 2017; Bojchevski et al., 2020;
Sun et al, 2022], graph classification [Xu er al., 2018;
Bouritsas et al., 2022; Wang and Ji, 2020], and link predic-
tion [Zhang and Chen, 2018; Yun et al., 2021; Song et al.,
2023]. GNNs model graph structure by aggregating infor-
mation of nodes and their neighbors, thus capturing complex
relationship between them. As GNNs keep evolving, many
variant models have been proposed to deal with different data
types and learning tasks, e.g., GraphSNN [Wijesinghe and
Wang, 20221, PathNN [Michel et al., 20231, LRGNN [Wei et
al., 2023], and ESC-GNN [Yan et al., 2024].

2.2 Graph Backdoor Attack

Graph backdoor attack is a newly emerging attack to GNNss,
where malicious triggers are injected into graph training data
such that a GNN trained on the backdoored data will make in-
correct predictions when encountering trigger data samples.
Currently, there are various backdoor attack methods, e.g.,
[Zhang et al., 2021] proposes to replace original subgraphs
with fixed triggers and modify the graph label to the target la-
bel. [Xi eral., 2021] generates adaptive triggers based on the
features of different samples, making the attack more flex-
ible and effective. [Dai et al., 2023] designs an adaptive
method to generate triggers that exhibit high cosine similar-
ity with the target node. [Zhang et al., 2024a] introduces ID
triggers that resemble the feature value distribution of normal
nodes, thus bypassing traditional anomaly detection methods.
To further improve the stealthiness of triggers, clean-label
graph backdoor attack methods are brought forward that do
not modify the label of target node [Xu and Picek, 2022;
Xing et al., 2024; Fan and Dai, 2024].

2.3 Defense Against Graph Backdoor Attacks

Current backdoor defense methods can be categorized into
detection methods [Downer et al., 2024; Guan et al., 2023]

and purification methods [Jiang and Li, 2022; Yang et al.,
2023]. Detection methods aim to identify the presence of
backdoor attacks on the graph, but cannot eliminate the trig-
gers. Purification methods, however, try to identify and re-
move the influence of trigger nodes and edges, to ensure
the correctness of GNNs. The majority of existing defense
methods are purification methods, which can be roughly di-
vided into feature anomaly-based defense methods [Dai et al.,
2023; Zhang et al., 2024a] and label transformation-based de-
fense methods [Zhang er al., 2024b; Sui et al., 2024].

Feature anomaly-based defense methods identify and elim-
inate trigger nodes by analyzing the difference between trig-
ger node features and normal node features. Specifically, [Dai
et al., 2023] proposed a method called Prune, which calcu-
lates cosine similarity between nodes and prunes the edge be-
tween two nodes of low similarity score. As an extension
of Prune, Prune+LD not only prunes edges but also discards
the label of node incident to trigger edges. Another defense
method called Outlier Detection (OD) was brought forward
by [Zhang et al., 2024al, which uses autoencoders to recon-
struct node features and incident relations between nodes.
Based on reconstruction errors, abnormal nodes can be iden-
tified. However, when facing ID triggers, the performance of
OD will degrade significantly.

Label transformation-based defense methods utilize the
difference between the predicted class label and the true
class label to determine the presence of triggers. Specifi-
cally, [Zhang er al., 2024b] proposed RIGBD to detect trig-
ger nodes through edge perturbation, which also includes a
robust training strategy to reduce the impact of triggers on
the target nodes. [Sui er al., 2024] introduced DMGNN that
combines counterfactual explanations and generates different
levels of perturbed graphs, then employs a denoising model
to discover trigger nodes or edges that cause label changes
during prediction. Both RIGBD and DMGNN, however, rely
on transformation information of class labels. Therefore, they
are incapable of dealing with clean-label backdoor attacks.

3 Preliminaries

In this paper, we focus on the problem of backdoor attacks for
node classification tasks. Let G = (V, £) be a graph, where
V is the set of nodes and &£ the set of edges. The node fea-
ture matrix is denoted by X € R™*¢, where n is the number
of nodes and d the dimensionality of node feature. The ad-
jacency matrix of G is A € R™ ", where A;; = 1 if there
is an edge between nodes v; and v;, and 0 otherwise. The
embedding of node v; at the [-th layer of GNN is denoted as
h!, where [ is the layer number. The predicted class proba-
bility vector of node v; is §; = (4},92,...,9F), where ¢/ is
the predicted probability that v; belongs to the j-th class. The
true class label of v; is represented by y;, and the loss func-
tion of GNN model, denoted as L(-), measures the difference
between the model’s prediction and the true class label.

3.1 The Threat Model and Defense Model

The Threat Model. The primary goal of the attacker is
to implant an unnoticeable backdoor trigger into a GNN
model. When activated, the target node attacked by the trig-
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Figure 1: Mean of normal node features versus that of trigger node
features generated by GTA, UGBA, DPGBA, and UGBA_C

ger will be classified to a pre-specified target class, whereas
clean/normal nodes not attacked by the trigger will be classi-
fied normally. The attacker has access to the training data and
can manipulate nodes, edges, and node features. The attacker
may have full control of class labels, i.e., he can modify the
target node labels, or he may carry out a clean-label attack,
where no label modification occurs during training. However,
the attacker has no access to the final GNN model.

The Defense Model. The defender’s goal is to detect and
then eliminate backdoor triggers while preserving the perfor-
mance of GNN model as much as possible. This involves the
discovery of abnormal nodes or edges, and the elimination of
those nodes and edges that may belong to triggers. The de-
fender has access to the GNN model, as well as intermediate
results generated during model training and testing. Mean-
while, the defender can also access the data, including node
features, but he does not know whether there are triggers in
the data, nor the target class of the backdoor attack.

3.2 Anomaly Analysis of Trigger Nodes

In this section, we investigate anomalous characteristics of
trigger nodes that distinguish themselves from normal nodes.

Anomaly in Node Features

Existing backdoor attack methods wish to craft triggers as
similar as possible to normal nodes, e.g., in-distribution (ID)
triggers [Zhang er al., 2024al. Triggers are usually generated
by using some artificial mechanisms, like Multi-Layer Per-
ceptron (MLP). This kind of trigger generator, however, will
inevitably result in triggers with unnatural feature values, be-
cause the linear layers and activation function in MLP prevent
the feature values of triggers from being smooth and similar
enough to that of the normal nodes.

To verify the difference between node features, we have
conducted experiments on the Pubmed dataset, to compare
normal nodes with trigger nodes generated by state-of-the-
art (SOTA) graph backdoor attack methods, i.e., GTA [Xi
et al., 20211, UGBA and UGBA_C [Dai et al., 2023], and
DPGBA [Zhang ef al., 2024a]. Specifically, we compute the
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Figure 2: Embeddings of normal and of target nodes versus that of
triggers generated by GTA, UGBA, DPGBA, and UGBA_C

mean of each dimension of the normal node features and that
of the trigger node features, respectively. From the results
depicted in Figure 1, it is obvious that across feature dimen-
sions, the mean value of the trigger nodes deviates drastically
from that of the normal nodes. This confirms that it is pos-
sible to tell apart the trigger nodes from the normal nodes by
scrutinizing the node features.

Anomaly in Node Embeddings

Backdoor triggers also attack target nodes by exploiting the
message-passing mechanism of GNNs, where nodes update
their embeddings through aggregating the features of neigh-
boring nodes. Since node embedding and predicted class are
highly correlated, after being poisoned by trigger nodes, the
target node will drift from its original class towards the target
class pre-defined by the attacker.

To verify the existence of classification drift, we have ex-
tracted outputs from the final layer of a GNN model, i.e., the
embedding representation before softmax operation, and vi-
sualized the result in a 2-dimensional space. The results are
depicted in Figure 2, from which we can see that the embed-
dings of trigger nodes and of target nodes significantly differ
from the embeddings of normal nodes. Hence, this indicates
that there is a clear distinction in node embeddings between
normal nodes, target nodes, and trigger nodes.

Anomaly in Class Prediction Probabilities of Nodes

For existing backdoor attack methods, their goal is to suc-
cessfully induce the GNN model to classify the target node to
the target class pre-defined by the attacker with high proba-
bility. This means that the trigger nodes and target nodes tend
to be classified to the target class with very high probability,
whereas most of the normal nodes do not gain abnormally
high probability for some specific class.

To demonstrate, we calculate the average prediction prob-
abilities of trigger nodes, target nodes, and normal nodes.
From Figure 3 we can see that the average probability of clas-
sifying trigger nodes and target nodes to target class O is ab-
normally high, i.e., a significant deviation from that of the
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Figure 3: Class prediction probabilities of normal, target, and trigger
nodes generated by GTA, UGBA, DPGBA, and UGBA_C

normal nodes. This anomaly in class prediction probability is
an important clue to trigger detection.

4 The Multidimensional Anomaly Detection
Framework

Given that trigger nodes generated by existing attack meth-
ods incur various anomalies, we may discover trigger nodes
by detecting whether there are anomalies in node features,
node embeddings, and class prediction probabilities, respec-
tively. In this section, we introduce MAD, a simple yet ef-
fective multidimensional anomaly detection framework to de-
fend against graph backdoor attacks.

As shown in Figure 4, MAD performs trigger detection in
three steps, namely, preprocessing, anomaly detection, and
trigger pruning. During preprocessing, we use a Graph Con-
volutional Network (GCN) encoder to generate embedding
for each node, which captures the relationship between nodes.
Meanwhile, a Shadow GNN is trained to obtain class predic-
tion probabilities for each node. At the anomaly detection
step we calculate the standard deviation of node feature val-
ues, Euclidean distance between node embeddings, and en-
tropy of class prediction probabilities, respectively. Then,
those nodes or edges with abnormal evaluation values are
marked as potential trigger nodes or edges. Finally, at the
pruning step we eliminate those potential triggers, by remov-
ing nodes of the trigger and edges incident to them. In the
following, we elaborate on how MAD works.

4.1 Feature Value Anomaly Detection

As shown in Section 3.2, feature values of trigger nodes differ
significantly from those of normal nodes. To detect anoma-
lies in feature values, we use standard deviation of feature
values as an indicator. Specifically, given a feature matrix

X e R™*4 where n is the number of nodes and d the di-
mensionality of node feature, the feature vector of node v; is
x; = (41, %42, - - -, Tiq), and the standard deviation o; of x;
is calculated as:

d
1
0i = d Z(%] — i)? (1)
j=1
where p; is the mean of feature vector x;, computed as:
1A
i =5 Z Tij 2
j=1

Typically, the feature values of trigger nodes differ drasti-
cally from that of the normal nodes, since triggers are gener-
ated by some artificial mechanism, e.g., Multi-Layer Percep-
tron (MLP), resulting in unnatural feature values after being
transformed by linear layers and activation function of MLP.
Hence, nodes with suspiciously large standard deviation in
feature values are likely to be trigger nodes. By setting an ap-
propriate threshold on the standard deviation of feature val-
ues, we may pinpoint those potential triggers. In Section 5,
we empirically investigate the setting of the threshold.

4.2 Node Embedding Anomaly Detection

To detect anomalies in node embeddings, we first train a
Graph Convolutional Network (GCN) encoder to generate
embedding for each node, which captures both feature infor-
mation and structural information of nodes. Specifically, we
generate node embedding E through multiple graph convolu-
tion layers, which can be represented as:

E = GCN(X, A) 3)

where X is the node feature matrix, A the adjacency matrix
of the graph. The GCN model captures structural information
through .4 and obtains feature information through X.

To train the GCN model, we minimize the following loss
function Lgcn, which ensures that the predicted label of a
node approaches its true label:

Loen = Z {(softmax(w;,h;), ;) 4)
v; €V
where w; is a weight for node v;, h; the embedding of v;,
softmax(w;, h;) the predicted label of v;, y; the true label
of v;, and £(-, -) the loss function (e.g., cross-entropy loss).
Once the GCN encoder is trained, we can obtain node em-
beddings using the GCN encoder. After computing similar-
ities between the node embeddings, we are able to identify
potential triggers. Specifically, for two neighboring nodes v;
and v;, we compute the Euclidean distance between their em-
beddings as follows:

d(h;, h;) = [|h; — hyf2 ®)
where h; and h; are the embedding of nodes v; and vj, re-
spectively, and || - ||2 the Euclidean distance function.

By computing the Euclidean distance between embeddings
of adjacent nodes, we are able to find abnormal edges that
connect two nodes far apart in the embedding space. We can
mark those edges as trigger edges with high probability, be-
cause generally trigger nodes appear farther away from nor-
mal nodes in the embedding space.
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Figure 4: The proposed multidimensional anomaly detection framework (MAD) for graph backdoor attack defense

4.3 Class Prediction Probability Anomaly
Detection

In the preprocessing step, we train a shadow graph neural net-
work (ShadowGNN) model to obtain class prediction proba-
bilities for each node. The training process of ShadowGNN
is similar to that of the GNN model under attack, the differ-
ence is that the former serves as a surrogate model to predict
class labels for nodes. Specifically, the input to ShadowGNN
includes the node feature matrix X and the adjacency matrix
A. Upon finish of training, ShadowGNN outputs class pre-

diction Y for all the nodes, as shown below:
Y = ShadowGNN(X, A) (6)

Here, an element §; = (1,92, ...,9%) € Y is the class pre-
diction probability vector for node v;, with §j] being the prob-
ability that v; belongs to the j-th class.

To measure anomaly in class prediction probability vector
1;, we calculate the entropy of ¢;, which is a metric used to
measure information purity, as computed below:

Z 9] log(# (7)

where H (y;) is the entropy of the class prediction probabil-
ity vector of v;. A smaller entropy value of a node indicates
higher certainty in the prediction for a node, i.e., the node is
predicted to belong to some specific class with remarkably
higher probability than to other classes. In contrast, a larger
entropy value suggests that the prediction probabilities of that
node are relatively even across all classes.

By calculating the entropy of the class prediction probabil-
ity for each node, we may mark those nodes with very small
entropy values as triggers, because the attacker’s goal is to
induce GNN model to predict a target node to a target class
with very high probability through the influence of triggers.
In Section 5, we empirically analyze the setting of the thresh-
old for the entropy value of class prediction probability.

4.4 Pruning Anomalous Nodes and Edges

Having detected suspicious nodes and edges with anomalies
in feature values, embeddings, and class prediction probabili-
ties, MAD employs a simple yet efficient strategy to eliminate

Dataset #Nodes #Edges #Feature #Classes
Cora 2,708 5,429 1,443 7
Pubmed 19,717 44,338 500 3
Flickr 89,250 899,756 500 7
OGB-arxiv 169,343 1,166,243 128 40

Table 1: Dataset Statistics

those anomalous nodes that may be triggers. Specifically, for
the identified anomalous nodes, we delete these nodes and all
edges incident to them as well, so as to minimize the impact
of trigger nodes on the normal ones. For the detected anoma-
lous edges, on the other hand, we simply remove them from
the graph as these edges may be generated by the attacker. In
this way, we cut off the bogus link that may be introduced to
connect the trigger node and target node, thus diminishing the
influence of triggers on the GNN model during training.

5 Experimental Evaluation

We focus on node classification task and empirically evaluate
our MAD framework, and we aim to answer three questions:

* Ql: Is MAD capable of defending against existing
SOTA graph backdoor attack methods?

* Q2: How effective is each of the three anomaly detection
modules of MAD?

* Q3: How do the thresholds used in the three anomaly
detection modules impact the performance of MAD?

5.1 Setup

Datasets. Four datasets are used, where Cora, Pubmed, and
OGB-arxiv are academic citation networks, while Flickr is
a large-scale social network. Statistics of these datasets are
summarized in Table 1.

Backdoor Attack Methods for GNN. We employ four
SOTA backdoor attack methods, namely, GTA, UGBA,
DPGBA, and UGBA _C. Specifically, GTA generates adaptive
triggers; UGBA achieves stealthy backdoor attacks by opti-
mizing the selection of poisoned nodes and generation of trig-
gers. DPGBA uses ID triggers to bypass traditional anomaly
detection, while UGBA_C is a clean-label attack method.
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Dataset Attack method None Prune Prune+LD OD RIGBD DMGNN MAD
GTA 88.80(83.60 17.63|83.06 18.35/80.17 00.04/83.40 05.90/79.40 00.50/82.10 03.76|83.31
UGBA 96.70|83.58 98.89]82.66 95.30(79.90 00.03|83.60 07.20/80.50 01.10|81.70 02.07|83.43
Cora DPGBA 97.69(83.60  90.20/80.20  88.30(79.30 93.90|83.50 12.30(/79.90 01.40|81.10 00.53|84.10
UGBA_C 86.13|83.38 88.18|83.28 91.50(80.27 06.04|83.62 — — 03.76|83.83
GTA 90.94/84.93 28.10/85.05 22.00(83.76  00.03|84.70 06.30(/80.10 00.90|83.60 00.70|85.06
UGBA 88.99|85.12 89.87|85.09 90.06/83.75 00.01|85.00 05.50|78.20 01.50(82.40 00.82(85.10
Pubmed DPGBA 91.91/85.00 89.40/80.70 88.20(80.10 91.80(85.10 11.80|78.50 02.10/81.90 00.68|84.85
UGBA_C 82.52|184.96 89.20|85.03 87.76/83.73 03.78|85.18 — — 00.34(85.08
GTA 88.52|44.70  00.00/42.71 00.00[44.99 00.00|45.10 07.90/41.90 01.30/46.20 00.00(44.84
UGBA 95.36[45.16  90.34]42.99 96.81]42.14 00.00|45.40 08.70(40.30 01.70/44.90 00.00/45.16
Flickr DPGBA 96.43|144.96 87.20/40.50 85.60[(41.10 94.80(45.80 12.80/40.80 02.50/43.80 00.00(44.96
UGBA_C 99.57|44.20 97.91/42.14 96.60(44.41 00.00|42.50 — — 00.00(44.34
GTA 93.51/64.36  00.01/63.97 00.03|64.30 00.01|64.90 06.50/60.90 00.70/67.10 00.00|64.67
UGBA 98.38|65.56 93.07|62.58 90.95/63.19 00.01]|64.50 08.20(61.70 00.90/65.80 00.00|65.33
OGB-arxiv DPGBA 93.87]65.35 88.90/60.30 89.50(61.50 92.40(65.40 11.40(60.30 01.30|64.90 00.01|64.70
UGBA_C 78.64/65.39  81.11|63.75 79.21]64.15 00.22|64.91 — — 00.28|63.89

Table 2: Comparison between MAD and state-of-the-art backdoor defense methods (ASR (%) | Clean Accuracy (%))

Baseline Defense Methods.

We compare MAD against five

SOTA backdoor defense methods, i.e., Prune [Dai et al.,
20231, Prune+LD, OD [Zhang et al., 2024al, RIGBD [Zhang
et al., 2024b], and DMGNN [Sui et al., 2024].

Evaluation Metrics. We use Attack Success Rate (ASR)
and Clean Accuracy (CA) to evaluate the effectiveness of
backdoor defense methods. Specifically, ASR is defined as
the proportion of target nodes that are successfully classified
as the target class specified by the attacker, while CA is the
prediction accuracy of GNN on normal nodes.

Implementation Details. Each of the experiment datasets
is divided into a training set and a test set, where the former
and the latter contain 80% and 20% of data samples, respec-
tively. We inject backdoors to graph data strictly following
the same way as in SOTA backdoor attack methods. Mean-
while, we define the attack budget as the number of nodes
poisoned by triggers, which is set to 10, 40, 80, and 160 for
Cora, PubMed, Flickr, and OGB-arxiv, respectively.

As discussed in Section 4, for the computed standard de-
viation of feature values, Euclidean distance between node
embeddings, and entropy of class prediction probabilities, we
denote their corresponding threshold as ¢, t4;s¢, and £z, re-
spectively. Specifically, we set ¢, to be the cut-off value of
nodes with top 3% highest deviations of node features for
Cora and Pubmed, while ¢, is set to be that of the nodes
with top 1% highest deviations of node features for Flickr and
OGB-arxiv, because the two datasets are larger in size. Simi-
larly, we set £ 4;5; in the same way as ¢, i.e., the cut-off value
of node pairs with top 3%, 3%, 1%, and 1% highest Euclidean
distance between node embeddings for the four datasets, re-
spectively. As for tz;, however, it is defined as the cut-off
value of nodes with the top 3%, 3%, 1%, and 1% smallest
entropy for the four datasets, respectively. Nodes that exceed
the three thresholds are regarded as potential trigger nodes or
edges, and they must be removed from the graph. We employ
three GNN models, i.e., GCN, GAT, and GraphSAGE when
testing, and we report the average ASR and CA.

None BWMAD,;, maMAD None BEMAD;; muMAD
MAD, "MADy MAD, = MADy
100 - 100
2\"/ 80 ;\Z,‘ 80
P <
2 60 5 60
40 40 I
20 20
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Cora Pubmed Flickr OGB-arxiv Cora Pubmed Flickr OGB-arxiv
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Figure 5: Performance of each anomaly detection module of MAD

5.2 Performance of MAD (Q1)

To answer Q1, we compare MAD with five SOTA baseline
defense methods, namely, Prune, Prune+LD, OD, RIGBD,
and DMGNN, when defending against four existing attack
methods, i.e., GTA, UGBA, DPGBA, and UGBA_C. The re-
sults are shown in Table 2, and the column 'None’ stands for
the case where no backdoor defense method is used in GNN.

From Table 2 we can see that MAD overwhelmingly out-
performs Prune, Prune+LD, RIGBD, and DMGNN, except
that MAD incurs slight loss in CA on Flickr and OGB-arxiv,
as compared to DMGNN under GTA and UGBA attacks.
Note that Prune and Prune+LD result in very high ASR in
most cases, meaning that they are incapable of effectively
eliminating triggers generated by SOTA attack methods. The
rationale is that trigger nodes generated by UGBA, DPGBA,
and UGBA _C exhibit high cosine similarity with their neigh-
boring nodes, making it difficult for Prune and Prune+LD to
differentiate between trigger nodes and normal nodes.

Note that although OD achieves very low ASR on all the
datasets under the attacks of GTA, UGBA, and UGBA_C,
the ASR of OD remains at as high as 91.8% when defend-
ing against DPGBA attack. This demonstrates that OD is
effective in defending against OOD triggers (generated by
GTA, UGBA, and UGBA_C), yet it cannot deal with ID trig-
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Figure 6: Impact of thresholds on performance of GNN model when employing MAD to defend against DPGBA attack

gers (generated by DPGBA). In contrast, the maximal ASR of
MAD is only 0.68% when defending against DPGBA. There-
fore, MAD is capable of defending both OOD triggers and ID
triggers, while maintaining high CA for GNN models.

5.3 Module Performance Analysis (Q2)

To systematically evaluate the performance of each of the
three anomaly detection modules of MAD, we conduct ex-
periments separately for each module. Specifically, we mod-
ify the second step of MAD by keeping the feature anomaly
detection module while removing the rest two, and we de-
note this modified MAD framework as MAD,,. Similarly, we
keep the node embedding anomaly detection module and the
class prediction probability anomaly detection module in turn
while discarding the rest two modules, and we denote these
two modifications as MADg; s and MAD, respectively.

Figure 5 depicts the results of five defense strategies, i.e.,
MAD, MAD,, MADy;s:, MADg, and ‘None’ that denotes
the case where no defense method is employed in GNN, when
facing DPGBA attack. As shown in Figure 5(a), it is obvi-
ous that for None, DPGBA incurs a remarkably high ASR
(> 90%) on the GNN model over all datasets, whereas af-
ter adopting one of our defense methods, i.e., MAD, MAD,,
MADy;s: and MADpy, ASR of DPGBA drops tremendously
over all datasets. Note that for OGB-arxiv, MADy;; results
in about 15% ASR of DPGBA. The reason might be that
OGB-arxiv has a larger number of classes, leading to less dis-
tinguishable embedding distance between nodes.

Meanwhile, as shown in Figure 5(b), no matter which of
the five defense methods is adopted by GNN model, the clas-
sification accuracy (CA) remains relatively stable when fac-
ing DPGBA attack. That is, our four defense methods suc-
cessfully defend GNN model against DPGBA while intro-
ducing negligible degradation of CA. It is worth noting that
although achieving slightly lower CA on the Flickr dataset,
MAD gains the lowest ASR over all the four datasets, as com-
pared to MAD,, MAD;¢, and MADy.

5.4 Impact of Thresholds on MAD (Q3)

In this section, we investigate the impact of thresholds ¢,
taist, and try of MAD on the GNN model when confronting
DPGBA attacks. We vary the thresholds in such a way that
they increase from the cut-off value of top 0.1% nodes to that
of top 3% nodes. Due to space limitations, we only report
results on Cora and Flickr. As shown in Figure 6, CA of the
GNN model remains relatively stable with the three thresh-
olds. For t,, ASR remains very low before 0.018 and 0.05
for Cora and Flickr, respectively, after which ASR increases
significantly. A similar trend can be observed for ¢4;5;. On

the contrary, ASR drops steadily from more than 80% to less
than 1.0% when tg decreases to 0.2 and 0.4 for Cora and
Flickr, respectively. Hence, to achieve the best performance
of MAD to defend against backdoor attacks, one may need
to tune the thresholds to find corresponding optimal values
according to the dataset at hand.

Trigger Size 1 2 3 4 5
None 86.1 903 915 91.7 913
MAD 09 12 11 12 13

Table 3: ASR(%) under different sized triggers

5.5 Impact of Trigger Configuration on MAD

We conducted experiments with different trigger configura-
tions, i.e., varying trigger size (the number of nodes in a
trigger, which is normally set to 3 in literature that employs
MLP to generate triggers), and attack budget (the number of
nodes poisoned by triggers), against the latest attack method
DPGBA on Pubmed. From Table 3 and 4 we can see that un-
der different configurations, the ASR obtained by our MAD
is below 1.3%, as compared to more than 86% when there is
no defense (Note) against the latest attack method DPGBA.

ATK Budget 20 30 40 50 60
None 89.8 90.1 915 923 919
MAD 07 038 1.1 1.2 1.2

Table 4: ASR(%) under different attack (ATK) budgets

6 Conclusion

In this paper, we studied the problem of defending graph
neural network (GNN) against backdoor attacks. We found
that there are anomalies in node features, node embeddings,
and class prediction probabilities of the triggers generated by
state-of-the-art (SOTA) backdoor attack methods, which dis-
tinguish the trigger nodes from the normal nodes. We de-
signed a simple yet effective multidimensional anomaly de-
tection framework (MAD) for GNN models to defend against
potential triggers through the identification and elimination of
anomalous nodes and edges. Extensive experiments on real
datasets confirmed that at the cost of slight loss in clean ac-
curacy, MAD achieves considerably lower attack success rate
as compared to SOTA defense methods. This is especially so
when defending against the latest attack method DPGBA.
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