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Abstract

Most Probable Explanation (MPE) is a fundamen-
tal problem in statistical relational artificial intel-
ligence. In the context of Probabilistic Answer
Set Programming (PASP), solving MPE is still an
open research problem. In this paper, we present
three novel approaches for solving the MPE task in
PASP that are based on: i) Algebraic Model Count-
ing, ii) Answer Set Programming (ASP), and iii)
ASP with quantifiers (ASP(Q)). These approaches
are implemented and evaluated against existing
solvers across different datasets and configurations.
Empirical results demonstrate that the novel solu-
tions consistently outperform existing alternatives
for non-stratified programs.

1 Introduction
Statistical Relational Artificial Intelligence (StarAI) [Raedt et
al., 2016] serves as umbrella term encompassing a wide range
of approaches that integrate probability into logic-based lan-
guages. These approaches have recently gained renewed mo-
mentum thanks to the advent of the field of neuro-symbolic
integration [d’Avila Garcez et al., 2019]. Here, we focus on
the Probabilistic Answer Set Programming (PASP) formal-
ism [Cozman and Mauá, 2020; Mauá and Cozman, 2020]
and on the fundamental task of Most Probable Explanation
(MPE) [Raedt et al., 2016], which, interestingly, is still an
open problem for PASP [Azzolini et al., 2022]. Given a prob-
abilistic answer set program and evidence e (in the form of
conjunction of ground literals), MPE requires computing the
world which has the highest probability and where e is cau-
tiously or bravely true. These states are called lower and up-
per MPE states, respectively.

In this paper, we present three novel approaches for solv-
ing the MPE task in PASP that are based on: i) Knowledge
compilation [Darwiche and Marquis, 2002], ii) Answer Set
Programming (ASP) [Gelfond and Lifschitz, 1991; Brewka
et al., 2011], and iii) ASP with quantifiers (ASP(Q)) [Amen-
dola et al., 2019].

Knowledge compilation (KC) [Darwiche and Marquis,
2002] is a standard technique adopted in StarAI: the program
is compiled into a form where the considered task can be

solved more efficiently. After compilation, the initial prob-
lem boils down to solving a counting problem on the com-
piled form, which can often be expressed as Algebraic Model
Counting (AMC) [Kimmig et al., 2017]. The expressivity
of some languages and the complexity of some tasks require
stacking two layers of AMC (2AMC) [Kiesel et al., 2022]. In
this paper, we provide a 2AMC encoding of MPE as well as
a practical implementation into the aspmc [Eiter et al., 2021;
Eiter et al., 2024] solver. Then, we discuss an encoding in
ASP which targets the computation of the upper MPE states
only, that can be also adopted for the computation of the MPE
state in probabilistic logic programs (i.e., stratified programs,
where the lower and upper MPE states coincide). Lastly,
building on the inherent complexity of the task, we also pro-
pose an encoding for computing the lower MPE state using
ASP(Q) [Amendola et al., 2019]. ASP(Q) extends traditional
ASP by introducing the concept of quantifiers over answer
sets that makes the modeling of problems in the entire Poly-
nomial Hierarchy [Stockmeyer, 1976] as natural as modeling
NP-hard problems in standard ASP. Our proposals have been
assessed through an extensive evaluation considering multi-
ple datasets targeting different probabilistic scenarios, and
revealed to be the best performing ones in the case of non-
stratified programs.

2 Background
Answer Set Programming. We assume the reader to be
familiar with the basic concepts of Logic Programming. A
rule r is an expression of the form h1; . . . ;hn :− b1, . . . , bm
where h1; . . . ;hn, with n ≥ 0, is a disjunction of atoms re-
ferred to as head and b1, . . . , bm, with m ≥ 0, is a conjunc-
tion of literals referred to as body. If n = 0 then r is a strong
constraint; otherwise, if m = 0 then r is a fact. A choice rule
is an expression of the form {a1; . . . ; an}, with n > 0, where
each ai is a ground atom. Intuitively, a choice rule is a short-
hand for a set of normal rules of the form “ai :− not nai”,
“nai :− not ai”, where ∀i ∈ {1, . . . , n}, nai is a fresh atom
not appearing elsewhere. Given a rule r, we denote by Hr

the set of atoms appearing in the head and by Br the set of
literals appearing in the body. Given a set of literals L, we
denote by L+ (resp. L−) the set of positive (resp. negative)
literals in L. A weak constraint is an expression of the form
:∼ b1, . . . , bm [w, T ], where b1, . . . , bm, with m ≥ 0, is con-
junction of literals, w is a term, and T is a (possibly empty)
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tuple of terms (in this case, T is omitted). An answer set pro-
gram (ASP, and we use the same acronym to denote Answer
Set Programming, the context will disambigaute the mean-
ing) is a finite set of safe rules (i.e., variables appear at least
in one positive literal of the body) and weak constraints. An
ASP is plain if it contains no weak constraints. An ASP ex-
pression (i.e., literal, rules, etc.) is ground if it contains no
variables.

Given a program P , the Herbrand Universe, denoted by
UP , is the set of constants that appears in P . The Herbrand
Base, denoted by BP , is the set of ground atoms that can be
built from predicates appearing in P and constants in UP .
Given a rule r ∈ P , ground(r) denotes the set of ground in-
stantiations of r obtained by substituting variables with con-
stants in P . The grounding of P , denoted as ground(P ),
is the union of the grounding of rules in P . The depen-
dency graph of P , denoted by GP , is a labeled directed graph
whose nodes are atoms in BP and there is a positive (resp.
negative) edge from an atom b to an atom h if there exists
r ∈ ground(P ) such that b ∈ B+

r (resp. not b ∈ B−
r ) and

h ∈ Hr. A program P is said to be stratified if GP does not
contain loops involving negative edges, whereas P is head-
cycle-free, if, for each r ∈ P and each pair of atom a, b ∈ Hr,
does not exist a positive loop in GP involving both a and b.
In what follows, ASP are assumed to be head-cycle-free.

The semantics of ASP is defined in terms of answer
sets [Gelfond and Lifschitz, 1991]. More precisely, an an-
swer set of a program P is an interpretation I (i.e., a subset
of BP ) that (i) satisfies all the rules in ground(Π) (i.e., for
each r ∈ ground(P ),Hr∩I ̸= ∅wheneverB+

r ⊆ I and {a |
not a ∈ B−

r }∩I = ∅); and (ii) I is a⊂-minimal model of its
(Gelfond-Lifschitz) reduct [Gelfond and Lifschitz, 1991]. Let
AS(P ) be the set of answer sets of P , then P is coherent if
AS(P ) ̸= ∅; otherwise it is incoherent. The cost of an answer
set M is defined as C(P,M) =

∑
(w,T )∈ws(P,M) w, where

ws(P,M) = {(w, T ) | :∼ b1, . . . , bn, [w, T ] ∈ ground(P ),
w is a numeric constant, and M |= b1, . . . , bn}. An an-
swer set M ∈ AS(P ) is optimal if there does not ex-
ist M ′ ∈ AS(P ) having a strictly lower cost (i.e., such
that M is dominated by M ′). For further details on the
ASP semantics, we refer the reader to the dedicated litera-
ture [Gelfond and Lifschitz, 1991; Buccafurri et al., 2000;
Calimeri et al., 2020].
Example 1. Let us consider the following program:

a :- not na. na :- not a. :∼ a. [1]

Here we have two answer setsM1 = {a} andM2 = {na}.
Since a is true inM1, its cost is 1. Conversely, since a is false
in M2, its cost is 0. Thus, only M2 is optimal.
Answer Set Programming with Quantifiers. ASP with
Quantifiers (ASP(Q)) extends ASP by introducing quantifiers
over answer sets [Amendola et al., 2019; Mazzotta et al.,
2024]. Namely, an ASP(Q) Π is an expression of the form:

□1P1 · · ·□nPn : C : Cω (1)

where for each i ∈ {1, . . . , n}, □i ∈ {∃st, ∀st} and Pi is a
plain ASP, C is a plain stratified program with strong con-
straints, and Cω is a set of weak constraints. An ASP(Q) is

said to be existential if □1 = ∃st; otherwise, it is universal.
The coherence of an ASP(Q) Π is defined as follows:

• ∃stP : C : Cω is coherent, if there exists M ∈ AS(P )
such that C ∪ fixP (M ) admits an answer set;

• ∀stP : C : Cω is coherent, if for every M ∈ AS(P ),
C ∪ fixP (M ) admits an answer set;

• ∃stP Π′ is coherent, if there exists M ∈ AS(P ) such
that Π′

P,M is coherent;

• ∀stP Π′ is coherent, if for every M ∈ AS(P ), Π′
P,M is

coherent.

where Π′ is an ASP(Q) of the form (1), ΠP,M denotes the
ASP(Q) obtained from Π by replacing P1 with P1 ∪fixP (M )
(i.e., ΠP,M = □1(P1∪fixP (M ))□2P2 · · ·□nPn : C : Cω),
and fixP (M ) denotes the set of facts and strong constraints
{a | a ∈ M} ∪ {← a | a ∈ BP \M}. For an existential
ASP(Q) Π, M ∈ AS(P1) is a quantified answer set of Π if
(□2P2 · · ·□nPn : C : Cω)P1,M is coherent. We denote by
QAS (Π) the set of quantified answer sets of Π.

For an ASP(Q) of the form (1), the set of weak constraints
Cω , referred to as global weak constraints, are used for spec-
ifying preferences criteria over quantified answer sets. More
formally, let Π be an existential ASP(Q) of the form (1) and
M1,M2 ∈ QAS (Π). We say that M1 is dominated by M2

if C(P ∗
1 ,M2) < C(P ∗

1 ,M1) where P ∗
1 = P1 ∪ Cω . A quan-

tified answer set M ∈ QAS (Π) is optimal if does not exist
M ′ ∈ QAS (Π) such that M is dominated by M ′.

Example 2. Let us consider an ASP(Q) Π = ∃P1∀P2 : C :
Cω , where P1 is the ASP from Example 1, P2 is the program:

b :- not nb. nb :- not b.

C = { :− a, nb}, and Cω = :∼ a. From Example 1, P1 ad-
mits M1 and M2 as answer sets. If we fix M1 in P2 we obtain
two answer sets, M3 = {a, b} and M4 = {a, nb}. Since M4

violates the constraint in C then M1 is not a quantified an-
swer set. Instead, by fixing M2 in P2 we obtain two answer
sets, M5 = {na, b} and M6 = {na, nb}. Since both M5 and
M6 satisfy the constraint in C, then M2 is the only quantified
answer set for Π and so it is also optimal.

Probabilistic Answer Set Programming. One possible
formalism to encode uncertain data with a logic-based lan-
guage is Probabilistic Answer Set Programming under the
credal semantics [Cozman and Mauá, 2020; Mauá and Coz-
man, 2020], PASP, for short. A PASP is an ASP extended
with probabilistic facts that follows the syntax [De Raedt et
al., 2007] p :: a with p ∈ [0, 1] and a an atom. We as-
sume that probabilistic facts cannot appear as the head of
rules. For a PASP P , we denote with F(P) the set of atoms
{a | p :: a ∈ P} and with P(P) the underlying ASP. A se-
lection σ is a set of atoms associated with probabilistic facts,
i.e., σ ⊆ F(P). We denote by Σ the set of all selections, i.e.,
Σ = 2F(P). The probability of a selection σ is computed as
P (σ) =

∏
ai∈σ pi

∏
ai ̸∈σ(1 − pi). A selection σ identifies a

world ψσ composed of the rules of P and a fact ai for each
ai ∈ σ. The probability of a world ψ is equal to the prob-
ability of the corresponding selection, i.e., P (ψσ) = P (σ).
To simplify the notation, when it is clear from the context,
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we will use P (ψ) and drop the subscript. The log-probability
of a selection can be computed by considering summations
as log(P (σ)) =

∑
ai∈σ log(pi) +

∑
ai ̸∈σ log(1− pi). Then,

the probability of a world ψ, P (ψ), can be computed from
log(P (ψ)) as elog(P (ψ)). A PASP P with n probabilistic
facts in ground(P) has 2n worlds, and the credal seman-
tics requires that each world has at least one answer set.
A query is a conjunction of ground literals. The proba-
bility of a query q belongs to a range [P(q),P(q)], where
the two bounds are called lower and upper probability, re-
spectively, with P(q) =

∑
ψi|∀M∈AS(ψi), M |=q P (ψi) and

P(q) =
∑
ψi|∃M∈AS(ψi), M |=q P (ψi). Note that |AS(ψi)| >

0 as required by the credal semantics. That is, the worlds
where the query is true in every answer set (i.e., where the
query is cautiously entailed) contribute to both the lower and
the upper probability, while the worlds where the query is true
only in some answer sets (i.e., the query is bravely entailed)
contribute only to the upper probability. To clarify, consider
the following example.
Example 3. The following program is one of the possible
encodings for the graph 3-coloring task.

r(X) :- n(X), not g(X), not b(X).
g(X) :- n(X), not r(X), not b(X).
b(X) :- n(X), not r(X), not g(X).
edg(X,Y) :- e(X,Y).
edg(X,Y) :- e(Y,X).
:- edg(X,Y), r(X), r(Y).
:- edg(X,Y), g(X), g(Y).
:- edg(X,Y), b(X), b(Y).

Consider a graph with four nodes, where two of them have a
fixed color:

n(1). n(2). n(3). n(4). r(1). g(4).

Suppose that we are uncertain about the presence of edges
between nodes. We describe this with the probabilistic facts:

0.6::e(1,2). 0.1::e(1,3).
0.2::e(2,4). 0.7::e(3,4).

Also suppose that we want to compute the probability that
blue is assigned to at least one of the two uncolored nodes.
This can be encoded with the rules blue :− b(2) and
blue :− b(3) and by asking for the probability of blue. This
program has 24 = 16 worlds. For example, in the world
where all edges except e(1, 2) are present, we have two an-
swer sets representing two possible color assignments for
node 2, either red or blue, while the color of node 3 is fixed to
blue in both. So, this world contributes to both the lower
and upper probability. Overall, the probability of blue is
[0.1816, 1].
MPE in PASP. Let us introduce the MPE problem in PASP.
Definition 1. Given a PASP P and a conjunction of ground
literals e called evidence, the cautious MPE problem consists
in finding the selection σ with the highest associated prob-
ability where e is entailed in every answer set of the corre-
sponding world ψσ , i.e.:

MPE(e) = argmax
σ∈Σ|∀M∈AS(ψσ),M |=e

P (σ),

while the brave MPE problem consists in finding the selec-
tion σ with the highest associated probability where the e is
entailed in at least one answer set of the corresponding world
ψσ , i.e.:

MPE(e) = argmax
σ∈Σ|∃M∈AS(ψσ),M |=e

P (σ).

The results of the two aforementioned problems are re-
spectively called lower and upper MPE states. We use
P (MPE(e)) and P (MPE(e)) to denote the probability of the
selection (world) representing the lower and upper MPE state,
respectively, and explicitly mark the atoms not present in such
states by prepending them with not. In what follows, we as-
sume w.l.o.g. that e is a single atom. Indeed, it is possible to
add a rule with the conjunction of literals in e in the body and
as head a new atom e′ that does not appear elsewhere in the
program and considering as evidence e′ (as in Example 3).

Example 4. Consider again Example 3. If we consider
as evidence blue as defined in Example 3, we obtain
MPE(blue) = {e(1, 2), not e(1, 3), e(2, 4), e(3, 4)}
with P (MPE(blue)) = 0.0756 and MPE(blue) =
{e(1, 2), not e(1, 3), not e(2, 4), e(3, 4)} with
P (MPE(blue)) = 0.3024. Note that, as in this exam-
ple, the lower and upper MPE states may not coincide.

Theoretical results from [Mauá and Cozman, 2020] proved
that the MPE problem is hard (i.e., for propositional PASP, it
lies between NP and Σp3, depending on the considered ASP
fragment) and early approaches to solve this task [Azzolini
et al., 2023] were based on projected answer set enumera-
tion [Gebser et al., 2009]. We now provide novel alternative
ways to handle the MPE computation.

3 Algebraic Representation of MPE
Second-level algebraic model counting (2AMC) [Kiesel et
al., 2022] is a generic framework that extends algebraic
model counting [Kimmig et al., 2017].

Definition 2 (2AMC). Given a propositional theory Π
whose variables are partitioned into (Vi, Vo), two com-
mutative semirings [Gondran and Minoux, 2008] Ri =
(Ri,⊕i,⊗i, ni⊕, ni⊗) and Ro = (Ro,⊕o,⊗o, no⊕, no⊗), two
weight functions, wi and wo, and a transformation func-
tion fio mapping the values of Ri to Ro, let T be T =
(Π, Vi, Vo,Ri,Ro, wi, wo, fio). 2AMC on T is defined as:

2AMC(T ) =
⊕o

Io∈µ(Vo)

⊗o

a∈Io
wo(a)⊗o

fio(
⊕i

Ii∈φ(Π|Io)

⊗i

b∈Ii
wi(b))

(2)

where µ(Vo) is the set of possible assignments to Vo and
φ(Π | Io) the set of assignments Ii of Vi such that (Ii, Io)
satisfies Π.

Each of the two layers in 2AMC is a tuple Ax =
(Vx,RX , wx). So, there is an inner layer Ai = (Vi,Ri, wi)
whose values are mapped via a transformation function fio to
values of the outer layer Ao = (Vo,Ro, wo). MPE inference
in PASP can be cast as a 2AMC, as follows.
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Definition 3 (MPE as 2AMC). Consider a PASPP with Her-
brand base BP and evidence e. P is transformed into a
propositional theory Π with a one-to-one correspondence be-
tween the answer sets and the models of Π. This is achieved
with the steps of grounding, simplification, cycle breaking,
and Clark’s completion, as described in [Eiter et al., 2024].
For the innermost layer Ai we have [Azzolini and Riguzzi,
2023a]: as semiring, Ri = (N2,+, ·, (0, 0), (1, 1)), where +
and · are applied component-wise, as variables BP \ F(P),
as weight function:

wi(a) =

{
(0, 1) if a = not e,
(1, 1) otherwise.

The two components store, respectively, the count of the
answer sets where the query is true and the count of all
the answer sets. As transformation function, we consider
fio(n1, n2) = (vlp, vup, {}, {}) where vlp = 1 if n1 = n2, 0
otherwise, and vup = 1 if n1 > 0, 0 otherwise.

For the outer layer Ao we have the semiring Ro =
(R2 × Σ2,max 4, times4, (0, 0,F(P),F(P)), (1, 1, {}, {})),
as variables F(P), and as weight function

wo(a) =


(p, p, {a}, {a}) if a = f , p :: f ,
(1− p, 1− p, {a}, {a}) if a = not f , p :: f ,
(1, 1, {a}, {a}) otherwise.

where max 4((v0, v1, S0, S1), (va, vb, Sa, Sb)) =
(vx, vy, Sx, Sy) with vx = v0 and Sx = S0 if
v0 > va, else vx = va and Sx = Sa; vy = v1
and Sy = S1 if v1 > vb, else vy = vb and
Sy = Sb. times4((v0, v1, S0, S1), (va, vb, Sa, Sb)) =
(v0 · va, v1 · vb, S0 ∪ Sa, S1 ∪ Sb). If v0 = va, then
Sx = min>(S0, Sa); if v1 = vb, then Sy = min>(S1, Sb),
where, in both cases, > is a fixed total order on Σ. The first
two components store, respectively, the value associated with
the lower and upper MPE states while the last two store the
probabilistic facts present in such states.

In other words, in the inner layer, we have the probabilis-
tic facts fixed, and we need to compute whether the current
world contributes to the lower or upper MPE state (i.e., if the
evidence is cautiously or bravely entailed) while in the outer
layer we range over the possible worlds.

4 Logic Based Encodings for MPE
In this section, we propose logic-based encodings to solve the
MPE problem in PASP. In particular, we propose a natural
ASP(Q) encoding to solve the cautious MPE problem and an
ASP one to solve the brave MPE problem. Both rely on the
following encoding of probabilistic facts as ASP rules.
Definition 4. Let P be a PASP. worlds(P) denotes the pro-
gram obtained by encoding every p :: a ∈ P as follows:

{a}. prob(w, ida) :− a. prob(w, ida) :− not a.
where ida is a unique identifier for the probabilistic fact p ::
a, w = log(p), and w = log(1− p).

In this definition, choice rules encode possible selections σ
while normal rules derive an atom storing either log(p) if a is
chosen in σ; otherwise log(1− p), for each p :: a ∈ P .

4.1 Cautious MPE Problem in ASP(Q)
Given a PASP P and evidence e, we encode the MPE(e) task
by means of an existential ASP(Q) such that quantified an-
swer sets are in one-to-one correspondence with selections
that cautiously entail the evidence e and the optimal quanti-
fied answer sets correspond to lower MPE states.
Definition 5. Let P be a PASP and e be the evidence,
then aspq(P, e) = ∃stP1 ∀stP2 : C : Cω , where P1 =
worlds(P), P2 = P(P), C = {← not e}, and Cω = {:∼
prob(W,A) [−W,A]}.

By exploiting such an encoding, each optimal quantified
answer set M of aspq(P, e) corresponds to a lower MPE
state in which all the atoms in F(P) ∩M are chosen to be
true and the remaining ones in F(P) are false. Thus, all the
lower MPE states can be obtained by enumerating optimal
quantified answer sets. The associated probability can be ob-
tained by considering the probabilities of the facts selected in
the quantified answer set.
Theorem 1. Let P be a PASP, e be an evidence, and Π =
aspq(P, e), then M is an optimal quantified answer set of Π
iff σ =M ∩ F(P) is a lower MPE state.
Proof Sketch. (⇒) By construction, each answer set M1

of P1 corresponds to a selection σ = M1 ∩ F(P). Then,
by fixing M1 in the program P2, answer sets of the program
P2 ∪ fixP1

(M1 ) are in one-to-one correspondence with an-
swer sets of the world ψσ identified by σ. According to the
coherence of ASP(Q), if for everyM2 ∈ AS(P2∪fixP1

(M1 ))
the constraint :− not e is satisfied, then M1 is a quantified
answer set. This means that for every answer set of ψσ the
evidence is entailed and so ψσ cautiously entails e. More-
over, the cost of M1 is obtained by summing up −W for
each atom of the form prob(W, Id) that is true w.r.t. M1.
By construction, for each p :: a ∈ P , either prob(w, ida) or
prob(w, ida) is true w.r.t. M1 and so the cost of M1 is equal
to −log(P (σ)). Since an optimal quantified answer set mini-
mizes such a cost, we are indeed maximizing log(P (σ)), and,
if M1 is optimal, then σ is a lower MPE state.

(⇐) Here the proof follows by noting that each lower
MPE state σ could be mapped to an optimal quantified an-
swer set M = σ ∪ {prob(log(p), ida) | p :: a ∈ P, a ∈
σ} ∪ {prob(log(1− p), ida) | p :: a ∈ P , a /∈ σ}.
Example 5. Let us consider the PASP problem of Example 3.
We can encode MPE(blue) with the following ASP(Q):

%@exists
{e(1,2);e(1,3);e(2,4);e(3,4)}.
prob(log(0.6),e12):- e(1,2).
prob(log(0.4),e12):- not e(1,2).
prob(log(0.1),e13):- e(1,3).
prob(log(0.9),e13):- not e(1,3).
prob(log(0.2),e24):- e(2,4).
prob(log(0.8),e24):- not e(2,4).
prob(log(0.7),e34):- e(3,4).
prob(log(0.3),e34):- not e(3,4).
%@forall
r(X) :- n(X), not g(X), not b(X).
g(X) :- n(X), not r(X), not b(X).
b(X) :- n(X), not r(X), not g(X).
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edg(X,Y) :- e(X,Y). edg(X,Y) :- e(Y,X).
:- edg(X,Y), r(X), r(Y).
:- edg(X,Y), g(X), g(Y).
:- edg(X,Y), b(X), b(Y).
blue :- b(2). blue :- b(3).
n(1..4). r(1). g(4).
%@constraint
:- not blue.
%@global
:∼ prob(W,A). [-W,A]

Answer sets of P1 represent selections with their asso-
ciated probability. For example, consider M1={e(1, 2),
e(1, 3), e(3, 4), prob(log(0.6), e12), prob(log(0.1), e13),
prob(log(0.8), e24), prob(log(0.7), e34)} ∈ AS(P1). By
fixing M1 into P2, we obtain two answer sets of P2 ∪
fixP1

(M1 ), where in the first both nodes 2 and 3 are blue,
while in the second nodes 2 and 3 are green and blue, re-
spectively, which are indeed the answer set of the world ψσ
with σ = {e(1, 2), e(1, 3), e(3, 4)}. Since in both cases
blue is true, the constraint in C is satisfied, M1 is a quan-
tified answer set, and σ cautiously entails blue. The cost of
M1 is −log(P (σ)) ≈ 3.3932. Similarly, M ′

1 = {e(1, 2),
e(2, 4), e(3, 4), prob(log(0.6), e12), prob(log(0.9), e13),
prob(log(0.2), e24), prob(log(0.7), e34)} ∈ AS(P1) is a
quantified answer set. M ′

1 is associated with the selec-
tion σ′ = {e(1, 2), e(2, 4), e(3, 4)} so the cost of M ′

1 is
−log(P (σ′)) ≈ 2.5829. M1 is dominated by M ′

1, and so
not optimal. No better quantified answer set exists, so M ′

1 is
optimal and σ′ is a lower MPE state with probability 0.0756.

4.2 Brave MPE Problem in ASP
The brave MPE problem can be encoded with an ASP whose
optimal answer sets correspond with upper MPE states.

Definition 6. Let P be a PASP and e be an evidence,
then asp(P, e) is the program obtained from worlds(P) by
adding P(P), the constraint :− not e, and the weak con-
straint :∼ prob(W, Id) [−W, Id].

Intuitively, rules in worlds(P) model the search for a pos-
sible selection and rules in P(P) model possible worlds. Fi-
nally, the constraint :− not e forces the entailment of the ev-
idence, whereas the weak constraint allows the maximization
of the sum of the log-probability associated with probabilistic
facts. Thus, to obtain all the upper MPE states it is sufficient
to enumerate all the optimal answer sets of asp(P, e).
Theorem 2. Let P be a PASP, e be an evidence, and P =
asp(P, e). Then, M is an optimal answer set for P if and
only if σ =M ∩ F(P) is an upper MPE state.

Proof Sketch. (⇒) By construction, there is a one-to-
one correspondence between the answer sets of worlds ψσ
that bravely entails the evidence e and the answer sets of
asp(P, e). Thus, for each M ∈ AS(asp(P, e)), there exists
a selection σ =M ∩F(P) such that, by removing atoms over
predicate prob/2 fromM , we obtainM ′ ∈ AS(ψσ) such that
M ′ |= e. Moreover, each answer set M of asp(P, e) has an
associated cost that, as for the ASP(Q) encoding, is obtained
by summing up −W for each atom of the form prob(W, Id)
that is true w.r.t. M . Thus, as for the previous encoding, we

are indeed maximizing log(P (σ)) and so an optimal answer
set corresponds to an upper MPE state.

(⇐) Here the proof follows by noting that an upper MPE
state σ could be mapped to an optimal answer set M =M ′ ∪
{prob(log(p), ida) | p :: a ∈ P , a ∈ σ} ∪ {prob(log(1 −
p), ida) | p :: a ∈ P , a /∈ σ}, where M ′ ∈ AS(ψσ).
Example 6. Let P be the PASP of Example 3.
MPE(blue) can be encoded as asp(P, blue). The re-
sulting ASP is the ASP(Q) of Example 5 where all
subprograms are merged into a unique ASP. For the
sake of compactness, we avoid reporting it explic-
itly. Here, M1 = {n(1), n(2), n(3), n(4), g(4), r(1),
e(1, 2), e(3, 4), prob(log(0.6), e12), prob(log(0.9), e13),
prob(log(0.8), e24), prob(log(0.7), e34), b(2), b(3), blue,
edg(1, 2), edg(3, 4), edg(2, 1), edg(4, 3)} is an optimal an-
swer set of asp(P, blue). M1 can be mapped to the selection
σ = {e(1, 2), e(3, 4)}. By removing atoms over the predicate
prob/2 from M1, we can obtain M ′

1 ∈ AS(ψσ) such that
M ′

1 |= blue. The cost of M1 = −log(P (σ)) ≈ 1.1960. No
answer sets better than M1 exists, so σ is an upper MPE
state with probability 0.3024.

5 Experimental Evaluation
The experiments were executed on a machine running at 3.7
GHz with 32 GB of RAM and a time limit, for each instance,
of 3600 seconds (1 hour). We used the bash command time
to extract the execution time and collected the real values.
Source code and datasets are available at https://t.ly/kqulc.

5.1 Datasets Description
We consider two types of datasets: stratified and non-
stratified. For both types, we randomly generated instances
of increasing size (a fixed seed ensures reproducibility).

Stratified Dataset. Stratified dataset refers to PASP where
the underlying ASP is a stratified program. Thus, in this cat-
egory we considered the well-known reachability problem,
with graphs following three different structures: Barabási Al-
bert, Erdős-Rényi, and complete. For each type, we generated
directed graphs with an increasing number of nodes (consid-
ered as the size of the instance), starting from 2 and up to
100. We considered two variations, having the same edges
but different probabilities: fixed to 0.4 and random (uniform)
between 0.001 and 0.999. We obtained 588 programs in total.

Non-Stratified Datasets. Here, we considered six differ-
ent benchmarks. For all, the evidence is the atom qr. For
each of the first four benchmarks, an instance of size i has
a total number of i probabilistic facts having the signature
aj/0 with j ∈ {0, . . . , i − 1}. An instance of size i of the
dataset p1 has i/2 rules of the form qrj ;nqrj :− ⋄ aj with
j even where ⋄ can be either not or omitted, i/2 rules of the
form qrk−1 :− ⋄ ak with k odd and ⋄ as before, and a rule
qr :−

∧
qri with i even. An instance of size i of the dataset

p2 has i/2 rules of the form qrj ;nqrj :− ◦, ⋄aj with j even
where ◦ can be qrk−1 or nqrk−1 and ⋄ can be not or omitted
(except when j = 0, where not is omitted), i/2 rules of the
form qrk :− ◦, ⋄ak with k odd and the rest as before, and i
rules qr :− qri. An instance of size i of the dataset p3 has i
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rules of the form
∨
j∈{0,i−1} qrj :− ⋄ai and a rule qr :− qrj

for each j ∈ {0, i − 1}. An instance of size i of the dataset
p4 has one rule with head qr;nqr and body composed of a
conjunction of random probabilistic facts where each one can
be also considered as negated, and a rule with head qr and
body as before. Note that here some of the probabilistic facts
may not be considered in the two rules. For these benchmarks
we randomly generated instances with sizes from 5 up to 100
by sampling values for ◦ and ⋄ with uniform distributions. In
addition, we considered both the well known graph coloring
(col) problem where the edges are considered as probabilistic
facts and the evidence is the color of a given node, and the
friend-smokers (smk) benchmark [Totis et al., 2023], repre-
senting a network of people where the smoking behavior is
influenced by friendship and existing pathologies. Here, the
evidence encodes whether at least one individual smokes. An
instance of size i of col has i probabilistic facts and encodes
a graph with i nodes. We generated instances starting with
size 7 and up to 100 by adding random edges between nodes.
An instance of size i of smokers involves i people and has
5i − 1 probabilistic facts in total. We generated instances
starting from size 2 and up to 30, also by adding pathologies
and connections between people. In all instances, we ensured
that every world has at least one answer set (as required by
the credal semantics) and the lower MPE state always exists.
Also here we consider two variations, with probabilities fixed
to 0.4 and random. We have 1014 programs in total.

5.2 Compared Algorithms
In these experiments, we compare the proposed approaches
with the ones available in the literature: PASTA [Azzolini et
al., 2022; Azzolini and Riguzzi, 2023b], cplint [Bellodi et al.,
2020], ProbLog [Shterionov et al., 2015], and plingo [Hahn
et al., 2024]. plingo is a recently introduced system to per-
form inference in a (subset of) ProbLog programs using the
ASP solver clingo [Gebser et al., 2019] as a backend. Essen-
tially, plingo rewrites weighted rules [Lee and Yang, 2017]
into ASP and then uses clingo to compute answer sets. To
model the MPE problem in plingo we need to specify proba-
bilistic facts with external atoms in this way: for a probabilis-
tic fact p :: a, we add a :− &problog(p). Furthermore, the
evidence e is encoded as &evidence(e). We implemented the
2AMC method of Section 3 into the aspmc [Eiter et al., 2021;
Eiter et al., 2024] solver, that we indicate with aspmc in the
following. For ASP, we used the solver clingo with the encod-
ing of Section 4.2. In ASP and ASP(Q) implementations, we
discretize log-probabilities as ⌊k · log(p)⌋ and use k = 103.
Moreover, for both ASP and plingo we used the clingo op-
tion --opt-strategy=usc [Andres et al., 2012] which
revealed to be an effective strategy for both solvers.

5.3 Results
The goal of our experiments was to empirically answer the
following questions: Q1) is knowledge compilation effective
in solving MPE in PASP? Q2) is ASP a good candidate for
MPE when considering stratified programs? Q3) does the
probability associated with facts influence the runtime? Q4)
is ASP(Q) a good approach for solving MPE in PASP? Q5)
does the structure of the program influence the runtime?
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Figure 1: Cactus plot for stratified datasets (y log scale).
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Figure 2: Cactus plot for non-stratified datasets.

Results on stratified datasets. In these datasets, every in-
stance has a unique answer set per world, so lower and up-
per probability coincide and also lower and upper MPE states
(that we simply call MPE states). In this setting, both logic-
based approaches can be used but, based on their own com-
plexity, we consider only the ASP-based one. Concerning
cplint and ProbLog, instead, it is important to point out that if
the program contains probabilistic facts that are not relevant
to the computation of the probability, these facts are ignored.
Thus, the states these two systems find are not the MPE states,
but they can be straightforwardly extended to be so. If S

′
is

the state computed with either one of the two tools, the MPE
state is given by S = S

′ ∪
⋃
ai∈F∩S′ p(ai) where for a prob-

abilistic fact pi :: ai, p(ai) returns {ai} if pi > 0.5, else it
returns {}, and the probability of such a state can be com-
puted accordingly.

Figure 1 reports the cactus plot for the experiments on strat-
ified datasets. We recall that instances in a cactus plot are
sorted by execution time and a point (x, y) indicates that a
given system solved the x-th instance in y seconds. PASTA is
the slowest algorithm, being it based on (projected) enumera-
tion. aspmc closely follows it, despite being based on knowl-
edge compilation. This is probably due to the grounding
phase, which also considers parts of the program not relevant
to the computation of the probability of the evidence. This
has a high impact, in particular on Barabási Albert graphs,
where often only a few edges are relevant for the computa-
tion. ProbLog can solve approximately twice the instances of
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aspmc PASTA ASP(Q) + ASP
Dataset sz. t. sz. t. sz. t.
p1r 33 4614 23 3675 23∗ 878
p1f 33 4351 24 6731 22 70
p2r 100 530 23 3846 84 21006
p2f 100 530 23 3886 100 167
p3r 20 2428 23 3401 89∗ 28044
p3f 20 2329 23 3432 100 3072
p4r 100 408 24 6422 100 52354
p4f 100 407 24 6445 100 215
colr 24 2565 23 5475 37 12713
colf 24 2813 23 5742 100 4592
smkr 7 884 5 3697 18 3142
smkf 7 879 5 3683 69 52452

Table 1: Largest solvable instance (sz.) and execution time in sec-
onds on all instances (t.) on non-stratified datasets. The ∗ in 23 of
p1r in ASP(Q) + ASP states that the solver solves up to size 21, can-
not solve size 22, and solves size 23. Similarly for size 89 of p3r .

cplint. ASP and plingo are the best performing approaches
with comparable execution times. For both, even the largest
instance is solved in approximately 1 second. This provides a
partial positive answer to Q1 and positive answer to Q2. KC
in ProbLog and cplint is more effective than KC in aspmc,
since it considers only the relevant part of the program.

Results on non-stratified datasets. In non-stratified
datasets each world may have one or more answer sets, thus,
we compare only aspmc, PASTA, and ASP(Q) + ASP on the
computation of both lower and upper MPE states. Our ap-
proaches based on ASP(Q) and 2AMC are, to the best of
our knowledge, the only ones, in addition to PASTA, that
can compute the lower MPE state in PASP. Note that, aspmc
and PASTA compute both upper and lower MPE states in one
single call, while ASP(Q) and ASP computes only the lower
and upper MPE states, respectively. Thus, for a fair compari-
son, we sum the execution times of the two for each instance.
However, it is important to point out that the execution time
of ASP is negligible (less than 1 second) and solves all of
them, so the discussion below mainly considers ASP(Q).

Table 1 shows the largest solvable instance and the cu-
mulative execution time on each dataset. The superscripts
r and f denote the instances with random and fixed associ-
ated probability, respectively. For PASTA the total execution
time and the number of instances solved seems not to be af-
fected by the choice of probability, except for p1f : here, the
instance of size 24 is solvable within the time limits while
the instance of same size with random probabilities cannot be
solved. The independence between the choice of the proba-
bility and of the execution time is expected in PASTA, since it
adopts enumeration and the number of generated answer sets
does not depend on the probabilities associated with proba-
bilistic facts. PASTA always halts for the time limit. For
aspmc, the execution always halts due to an out-of-memory
error. The number of solvable instances in ASP(Q), differ-
ently from the other solvers, is highly dependent from the
probabilities associated to probabilistic facts: on four datasets
with fixed probabilities, it can solve all the instances, while

this does not happen when random probabilities are consid-
ered. This is due to the upper-bound improving algorithm
employed by the ASP(Q) system which starts from a quan-
tified answer set with a given cost and searches for a better
one until the program becomes unsatisfiable. In this scenario,
proving unsatisfiability can be hard, especially when many
worlds have costs that are better than the current upper-bound
but none of them cautiously entail the query (i.e., they do not
contribute to lower MPE state). ASP(Q) always halts due to
timeout. For some datasets, ASP(Q) has dramatically better
performance: in p3f , aspmc stops at size 20, PASTA gets to
size 23, while ASP(Q) can solve all. This is reflected in the
total number of solved instances, as shown in the cactus plot
of Figure 2. This answers positively Q4 in general and Q3 for
ASP(Q) (but not for PASTA and aspmc). Overall, KC is also
beneficial here (Q1), but the clever encoding of ASP(Q) that
prunes dominated solutions during the search scales better.

6 Related Work
Related work falls into two categories: alternative semantics
for ASP extended with constructs representing uncertainty
and alternative MPE encodings. Other semantics, still tar-
geting ASP, are: P-log [Baral et al., 2009], LPMLN [Lee and
Wang, 2016; Lee and Yang, 2017], smProbLog [Totis et al.,
2023], and the L-credal semantics [Rocha and Gagliardi Coz-
man, 2022; Mauá et al., 2024]. These differ on how the un-
certainty is distributed among the different answer sets of the
program. dPASP [Geh et al., 2024] is a tool to perform in-
ference in PASP, but it does not support MPE. The authors
of [Lee and Yang, 2017] were the first to propose the use of
weak constraints to compute the most probable stable model,
albeit in the LPMLN semantics. Alternative encodings can be
used to model MPE in PASP, among these, disjunctive ASP
and advanced techniques such saturation [Eiter and Gottlob,
1995; Dantsin et al., 2001], but they can be considered less
intuitive than ASP(Q). Moreover, the stable-unstable seman-
tics [Bogaerts et al., 2016], and quantified answer set seman-
tics [Fandinno et al., 2021], can be also used to model prob-
lems of such complexity but they do not support explicitly
optimization statements that allow for a natural maximiza-
tion of the probability of probabilistic worlds. Finally, note
that all the available systems that can perform MPE for PASP
(including those handling syntactic fragments of the formal-
ism) are described and empirically compared in Section 5.

7 Conclusion
In this paper, we proposed three alternative techniques for
solving the MPE problem in PASP. We start from an approach
based on knowledge compilation and second-level algebraic
model counting. Then, we proposed two logic-based encod-
ings, one in ASP for the upper MPE state, and one that lever-
ages ASP(Q), specifically targeting the lower MPE state. A
broad experimental evaluation shows that ASP(Q) + ASP are
the most effective solutions to solve MPE on non-stratified
programs. There are many directions for future work, such as
studying the considered tasks under different semantics and
speeding up even more the execution time adopting multi-
shot [Gebser et al., 2019] approaches.
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nis Deratani Mauá. The joy of probabilistic answer set
programming: Semantics, complexity, expressivity, infer-
ence. International Journal of Approximate Reasoning,
125:218–239, 2020.

[Dantsin et al., 2001] Evgeny Dantsin, Thomas Eiter, Georg
Gottlob, and Andrei Voronkov. Complexity and expressive
power of logic programming. ACM Computing Surveys,
33(3):374–425, 2001.

[Darwiche and Marquis, 2002] Adnan Darwiche and Pierre
Marquis. A knowledge compilation map. Journal of Arti-
ficial Intelligence Research, 17:229–264, 2002.

[d’Avila Garcez et al., 2019] Artur S. d’Avila Garcez,
Marco Gori, Luı́s C. Lamb, Luciano Serafini, Michael
Spranger, and Son N. Tran. Neural-symbolic computing:
An effective methodology for principled integration of
machine learning and reasoning. Journal of Applied
Logics, 6(4):611–631, 2019.

[De Raedt et al., 2007] Luc De Raedt, Angelika Kimmig,
and Hannu Toivonen. ProbLog: A probabilistic Prolog and
its application in link discovery. In Manuela M. Veloso,
editor, 20th International Joint Conference on Artificial
Intelligence (IJCAI 2007), volume 7, pages 2462–2467.
AAAI Press, 2007.

[Eiter and Gottlob, 1995] Thomas Eiter and Georg Gottlob.
On the computational cost of disjunctive logic program-
ming: Propositional case. Annals of Mathematics and Ar-
tificial Intelligence, 15(3-4):289–323, 1995.

[Eiter et al., 2021] Thomas Eiter, Markus Hecher, and
Rafael Kiesel. Treewidth-aware cycle breaking for alge-
braic answer set counting. In Meghyn Bienvenu, Gerhard
Lakemeyer, and Esra Erdem, editors, Proceedings of the
18th International Conference on Principles of Knowledge
Representation and Reasoning, KR 2021, pages 269–279,
2021.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

[Eiter et al., 2024] Thomas Eiter, Markus Hecher, and
Rafael Kiesel. aspmc: New frontiers of algebraic answer
set counting. Artificial Intelligence, 330:104109, 2024.

[Fandinno et al., 2021] Jorge Fandinno, François Laferrière,
Javier Romero, Torsten Schaub, and Tran Cao Son. Plan-
ning with incomplete information in quantified answer set
programming. Theory and Practice of Logic Program-
ming, 21(5):663–679, 2021.

[Gebser et al., 2009] Martin Gebser, Benjamin Kaufmann,
and Torsten Schaub. Solution enumeration for projected
boolean search problems. In Willem-Jan van Hoeve and
John N. Hooker, editors, Integration of AI and OR Tech-
niques in Constraint Programming for Combinatorial Op-
timization Problems, pages 71–86, Berlin, Heidelberg,
2009. Springer Berlin Heidelberg.

[Gebser et al., 2019] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, and Torsten Schaub. Multi-shot ASP
solving with clingo. Theory and Practice of Logic Pro-
gramming, 19(1):27–82, 2019.

[Geh et al., 2024] Renato Lui Geh, Jonas Gonçalves, Igor C
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