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Abstract

Flood extent mapping is crucial for disaster re-
sponse and damage assessment. While Earth im-
agery and terrain data (in the form of DEM) are
now readily available, there are few flood anno-
tation data for training machine learning models,
which hinders the automated mapping of flooded
areas. We propose ALFA, an interactive active-
learning-based approach to minimize the annota-
tors’ efforts when preparing the ground-truth flood
map in a satellite image. ALFA calibrates the
prediction consistency of a segmentation model
(1) across training cycles and (2) for various data
augmentations. The two consistencies are inte-
grated into the design of both the acquisition func-
tion and the loss function to enhance the robustness
of active learning with limited annotation inputs.
ALFA recommends those superpixels that the un-
derlying model is most uncertain about, and users
can annotate their pixels with minimal clicks with
the help of elevation guidance. Extensive experi-
ments on various regions hit by flooding show that
we can improve the annotation time from hours
to around 20 minutes. ALFA is open sourced at
https://github.com/saugatadhikari/alfa.

1 Introduction

Climate change is drastically increasing the intensity and
occurrence of floods [Matgen et al., 2020]. In the past
two decades, flooding has negatively impacted over 2.3 bil-
lion people [Wahlstrom et al., 2015]. Therefore, accurate
and timely mapping of flood extent is crucial for effectively
planning rescue and rehabilitation efforts [Oddo and Bolten,
2019]. Thanks to the rapid advancement in Al and the abun-
dant geospatial data collected, such as satellite imagery from
NASA and ESA and digital elevation model (DEM) data from
USGS, it is the right timing to harness them to improve the
performance of flood extent mapping.

Although annotated natural images are abundant, most
Earth imagery data are unannotated. A popular annotated
dataset for flood mapping is Senl1Floods11 [Bonafilia ef al.,
2020] which was curated by a startup called ‘Cloud to Street’
(now Floodbase) but it is very small, and [Bonafilia et al.,
2020] reports that models trained on SenlFloodsl1 have a
quite low test mean IoU for the water class.

Two solutions can improve the performance of flood map-
ping. One solution is to train a more advanced Al model with
a larger annotated dataset, and this paper aims to facilitate the
productivity of flood annotation with a new strategy to enable
the curation of larger annotated datasets. The other solution
is to fine-tune a large geo-foundation model pre-trained with
a vast number of satellite images in a self-supervised manner,
but the fine-tuning stage still requires an annotated dataset of
reasonable size. In fact, NASA and IBM recently released
a pioneering geo-foundation model called Prithvi [Jakubik ez
al., 2023], whose fine-tuning on SenlFloods11 has signifi-
cantly improved the performance of flood mapping as com-
pared with the results by training a model from scratch on
Sen1Floods11 [Bonafilia et al., 2020].

In this paper, we propose to facilitate the annotation of
more satellite imagery (e.g., via crowdsourcing) by design-
ing a novel flood annotation tool based on active learning.
Given a large pool of unlabeled data, active learning (AL)
minimizes the amount of data to be labeled to train an under-
lying machine learning model, in order to yield a comparable
performance as if using much more labeled data. AL oper-
ates in cycles: in each cycle, the most informative or valuable
data points are selected for labeling (through an acquisition
function) and then the model gets retrained. Our use of AL is
different from conventional methods since:

e Conventional AL minimizes the annotation cost since
finding an expert to annotate each data point is expen-
sive, but there is no time restrictions. In contrast, we al-
low non-experts to annotate satellite images but we aim
to minimize the annotation time; retraining should be
fast to support interactive user annotating, so the under-
lying model should be lightweight.
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Figure 2: A screenshot of the interface of our 3D annotation tool, where pixels annotated in red (resp. blue) are flooded (resp. dry) ones. The
tool supports rotation, movement, zoom-in and zoom-out of a terrain. (a) An area needing careful user annotation. (b) A click of flooded
pixel that propagates the label downstream. (c) A click of dry pixel that propagates the label uphill.

@ Flooded C
@ Dry

Figure 1: Physical law of gravity: if pixel A is dry, then its higher
adjacent pixel B must be dry; while if pixel D is flooded, then its
lower adjacent pixel £ must be flooded [Sami et al., 2024].

e The problem domain in convention AL is the entire
dataset, from which a small subset of data items are se-
lected for user annotation. In contrast, our problem do-
main is each individual satellite image, wherein infor-
mative regions are selected for annotation. For different
satellite images, the underlying model can be the same
while the trained model parameters can be different.

e The end goal of conventional AL is the trained under-
lying model, but our end goal is annotating each image
while the underlying model is just used to automatically
label each pixel as ‘flooded’ or ‘dry’ (trained based on
users’ limited annotations), so it is desirable to overfit
the underlying model (e.g., a lightweight U-Net variant)
on the current image to minimize annotation efforts and
improve annotation quality. The annotated images are
collected usually to collectively train or fine-tune a more
powerful model, such as a geo-foundation model often
based on masked autoencoder (MAE) [He et al., 2022].

Besides active learning, we also utilize terrain guidance as
illustrated in Figure 1 to improve the productivity and quality
of flood annotation, as elevation data can be readily obtained
from the digital elevation model (DEM) data downloadable
from USGS [USGS, 2023].

The end product is an annotation tool called Active

Learning for Flood Annotation (ALFA), which is open
sourced at https://github.com/saugatadhikari/alfa. Our anno-
tation tool takes the satellite image of a flooded area along
with its associated elevation map (from DEM data), and visu-
alizes the terrain in 3D. The tool supports rotation, movement,
zoom-in and zoom-out of the terrain, so that users can anno-
tate the pixels in red (to mean ‘flooded’) or blue (to mean
‘dry’) from different views. Elevation-guided breadth-first
search (BFS) [Adhikari er al., 2022] is adopted to speed up
annotation, where (i) when an annotator marks an individual
pixel p as flooded, the label propagates to nearby pixels with
lower elevations by ‘pit-filling’ BFS stopping when reaching
pixels with elevation higher than that of p, and (ii) when an
annotator marks an individual pixel as dry, the label propa-
gates to nearby pixels by ‘hill-climbing’ BFS stopping when
reaching pixels with elevation starting to drop. The labels
of some pixels covered by tree canopy may be derived in this
way from nearby pixels using the physical law of gravity.
Figure 2 shows the upper-left portion of our tool’s inter-
face from a particular view, and more elements of the in-
terface will be introduced later in Figure 3 when we intro-
duce our AL-based annotation pipeline. Figure 2(a) shows an
area with many houses that are partitioned into multiple is-
lands due to flooding, and such areas would need very careful
and fine-grained user annotations with many flood/dry clicks,
so directly annotating an entire satellite image is very time-
consuming, typically hours even for domain experts. Fig-
ures 2(b) and (c) show how the elevation-guided BFS can
automatically label many pixels after just one click.

Our main contributions are summarized as follows:

e To keep the number of region candidates tractable (for
computing acquisition functions), ALFA recommends
superpixels (wherein pixels tend to have the same label)
rather than individual pixels for annotation, but users can
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utilize elevation guidance to click on only a few pixels
to cover many pixels with their labels automatically de-
rived, including those outside the recommended super-
pixels.

e We identify two label-free consistency metrics that can
guide active learning: (1) view consistency, which states
that if the label prediction of a pixel changes with data
augmentation, then it is more informative for annotation
to retrain the underlying model; (2) temporal consis-
tency, which states that if the output of the underlying
model at a pixel location changes a lot across different
cycles, then it is more informative for annotation. Both
consistency metrics are integrated into the design of our
acquisition function and loss function, and our solution
is applicable to active learning in general (not specific to
flood mapping) if we replace pixels with data items.

e Our acquisition function not only integrates the confi-
dence (e.g., measured by entropy) and consistencies, but
also considers a ‘tree score’ specific to our flood anno-
tation domain to minimize the probability that regions
covered by tree canopy get recommended (since they are
ambiguous and users cannot give labels properly).

e We conduct extensive studies to verify that ALFA can
significantly improve the annotation productivity and
quality. ALFA is open sourced at https://github.com/
saugatadhikari/alfa.

2 Related Work

Due to page limit, we only briefly mention the related work.
Appendix A online [Adhikari ef al., 2025] gives more details.

Superpixel Algorithms. A superpixel is a group of con-
tiguous pixels that share almost the same color, and rep-
resentative algorithms include SLIC [Achanta et al., 2012]
and SEEDS [den Bergh et al., 2015]. We adopt SEEDS
since it generates higher quality superpixels than SLIC and
is faster [den Bergh et al., 2015].

Image-based Active Learning. The image-based AL for se-
mantic segmentation considers an entire image as the basic
unit to be recommended for annotation. Related works in-
clude [Dai et al., 2020], [Sinha et al., 2019], [Yang et al.,
20171 and [Huang et al., 2024]. All these works recommend
entire images for annotation which is different from our set-
ting where we recommend regions inside an image.

Region-based Active Learning. The region-based AL
for semantic segmentation divides each image into non-
overlapping local regions and recommends regions for anno-
tation. Some works divide the image into uniform patches
for recommendation, such as EquAL [Golestaneh and Ki-
tani, 2020] and DIAL [Lenczner et al., 2022]. However, a
patch may contain pixels from different classes, so it is not
an ideal unit for annotation. PixelPick [Shin ef al., 2021] rec-
ommends sparse pixels for annotation based on uncertainty
sampling using entropy measures. This method is inferior to
ours since we recommend region units with label homogene-
ity, and each click can label many pixels (by elevation-guided
BFS) to reduce the time to annotate a satellite image. To our
knowledge, ViewAL [Siddiqui ef al., 2020] is the only work

that recommends superpixels. It studies the segmentation of
3D objects in multi-view datasets by enforcing that the same
surface point in a scene should receive the same label when
observed from different viewpoints. In contrast, we target a
satellite image associated with a land surface derived from
DEM data, rather than 3D objects in a multi-view dataset.

Geo-foundation Models. Recently, several geo-foundation
models have been proposed based on MAE to pre-train with
the vast amount of unannotated satellite imagery, such as
Prithvi [Jakubik er al., 2023], SatMAE [Cong et al., 2022]
and SpectralGPT [Hong er al., 2024]. The self-supervision
during pre-training is achieved by masking out a fraction of
patches for recovery. Our annotated images can be used to
fine-tune these geo-foundation models.

3 Methodology

We regard each satellite image as a 2D grid I of size H x W,
and denote a pixel by p = (z, y), where x and y are the
pixel coordinates in I. We also assume that an elevation map
h(I) is available, and the elevation of pixel p is h(p). Our
AL framework uses EvaNet [Sami er al., 2024] as the un-
derlying segmentation model, which is a U-Net variant that
(1) uses (de)convolution operations which integrates the el-
evation map h by a location-sensitive gating mechanism to
regulate how much spectral features flow through adjacent
layers, and that (2) uses a loss function L.,, which inter-
gates the physical rule that if a location is flooded (resp. dry),
then its adjacent locations with a lower (resp. higher) eleva-
tion must also be flooded (resp. dry). We use EvaNet due
to its lightweight training workload and its capability to uti-
lize the elevation map to improve segmentation quality, and
please refer to [Sami er al., 2024] for its detailed design.

Since EvaNet takes an input image of size 128 x 128, we
partition I into 128 x 128 patches as in [Sami et al., 2024]
and each patch is passed through EvaNet for segmentation.
The segmentation results of all patches can be stitched back
to obtain the segmentation results of the entire I.

Figure 3 overviews the workflow of ALFA, where the pre-
trained parameters of EvaNet are initially used, and the super-
pixels of I are precomputed using SEEDS [den Bergh et al.,
2015]. In each AL cycle, each patch of I is passed through
EvaNet to obtain an output tensor with 2 channels, one for
‘flood’ scores and the other for ‘dry’ scores. The results from
all patches are stitched together to get a flood score map and
a dry score map, both of size H x W. Let the flood (resp.
dry) score of a pixel p be sgooda(P) (resp. sary(p)), then a
channel-wise softmax is conducted to normalize the score
maps into probability maps: phood(P)

eSflood (P

cSﬁond(P)J,_eSd y(p)
Sary (P)
& Sdry

(resp. pary (P) = m) The probability maps can

already be used to measure the confidence of model predic-
tions to select the most uncertain superpixels for user annota-
tion, but we can further improve the robustness of the uncer-
tainty measure by considering view consistency and temporal
consistency, which we will discuss in detail later.

As the lower-right corner of Figure 3 shows, the high-
uncertainty superpixels (highlighted in green) are recom-
mended for user annotation, and users may click pixels within
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Figure 3: Overview of ALFA. The framework takes an RGB satellite image and the corresponding elevation map as input and produces flood
and dry probability maps. The probability maps are used to compute an uncertain score for every superpixel, considering model confidence,
and the consistency measures. The most uncertain superpixels are then selected for user annotation, and the annotated pixels are then used to
retrain ALFA’s segmentation network with a loss function that considers both elevation guidance and the consistency measures. The retrained
network is then used to produce new flood and dry probability maps to start another cycle.

these superpixels to annotate with a ‘flood” or ‘dry’ label.
Since the label is propagated using elevation-guided BFS,
the annotated pixels may propagate outside the recommended
pixels. When a user finishes the annotation activities in the
current cycle, it can click a “retrain” button so that the EvaNet
will be retrained using all the annotated pixels so far, to be
used by the next AL cycle. Note that (1) the loss function
only considers annotated pixels for supervision, and it inte-
grates both elevation guidance (i.e., L., ) and the consistency
measures to improve training performance (we will discuss
the details later), and that (2) the number of annotated pixels
is small but increases after each cycle, so model retraining is
very efficient with a GPU.

At any time during the annotation, users may visualize
(1) the current prediction by EvaNet, (2) the recommended
superpixels in the current cycle, and (3) all the annotated pix-
els so far, by clicking the corresponding button in the inter-
face (or pressing the corresponding key on the keyboard) to
facilitate annotation. Users are also allowed to erase old pixel
annotations to fix annotation errors made previously.

We retrain for 3 epochs in each cycle, taking 80—120 sec-
onds in total. To utilize the time during retraining, users can
continue to annotate more pixels by comparing the previous
EvaNet prediction and the satellite image to locate wrongly
predicted pixels/regions to annotate with the correct labels.

In the sequel, we first introduce our consistency measures,
then the acquisition function, and finally the loss function.

Pixel-level Uncertainty. Given the current predictions by
the EvaNet model, we define the uncertainty score for each
pixel. We consider three uncertainty measures: (1) confi-
dence, (2) view consistency, and (3) temporal consistency, all
defined based on the dry and flood probability maps.

For confidence, we consider two alternative measures
based on probability offset and entropy, respectively:

uoff(p) = |05 - pﬂood(p)| 5 (1)

uent(p) = _pﬂood(p) 1ngﬂood(p) - pdry(p) 10g pdry(p)7 (2)

Original Horizontal Flip Vertical Flip

Figure 4: Six views of a patch by flip and rotation. The red pixels
correspond to the same pixel in different views.

Probability offset measures how much the flooding proba-
bility deviates from 0.5 (i.e., 50% flooding 50% dry). For
Uoft(P) (resp. uent(P)), the larger (resp. smaller) its value is,
the more confident the EvaNet prediction is for p.

For view consistency, we penalize those pixels whose pre-
dictions vary with data augmentation. For each patch (i.e.,
input to EvaNet), we consider the 6 views (5 augmentations)
as shown in Figure 4, all passed through EvaNet to get their
probability maps. For a pixel p in the original patch, we de-
note the predicted flood (resp. dry) probability of its corre-
sponding pixel in the i view by pgt))od( ) (resp. pdty( ), and
denote the corresponding entropy by ugz (p) asin Eq (2), then
we can define the bias of p in the i view in two alternative
ways:

bl();))b (p) = piglo)od

Zpéi,ld o
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Based on our experiments (see Table 5 in Appendix C on-

line [Adhikari er al., 2025]), bé;{ performs better than béi’())b

when used to calculate view inconsistency, so we assume that
bg& is adopted from now on.

After we compute the biases in the 6 different views, we
can aggregate them in two alternative ways:

6
pave(P) = % > (bﬁfﬁ(p))27 ©)
=1

which basically computes the variance of ué? (p), and

pax(P) = max b (p). ©)
which computes the maximum bias caused by data aug-
mentation. Based on our experiments (see Table 6 in Ap-
pendix C [Adhikari ef al., 2025]), pmax performs better when
measuring view inconsistency, so we assume that ppx is
adopted from now on.
For temporal consistency, we measure how much the pre-
dicted probabilities differ between two consecutive AL cy-
cles:

utemp(p) = (pﬂood(p)'a - pﬂood(p)|cfl)2 +
(pdry (p)'e - pdry(p)|cfl>27 (7)

where |. denotes the prediction in the ¢ cycle. As [Huang
et al., 2024] shows, temporal output difference is an effective
measure of model uncertainty about its prediction.

Besides these measures, we also consider the concept of
‘tree score’ to avoid recommending pixels covered by tree
canopy, as their labels are hard to determine by human eyes.
Specifically, we train a standard U-Net model (called as
ForestNet) on satellite images carefully annotated with forest
maps, and use it to predict the pixel-level forest pixel proba-
bilities for our test regions. Let pye. (p) denote the tree proba-
bility score for pixel p by ForestNet, and let uons be the con-
fidence score that can be either uqg (Eq (1)) or —uen (Eq (2)),
then the overall uncertainty score for p is:

U(P) = _Uconf(p) +A1- pmax(p) + A2 ulemp(p) — A3 'ptree(p)7 (8)

where pmax(P) is the view inconsistency score defined in
Eq (6), and utemp(p) is the temporal inconsistency score de-
fined in Eq (7). Hyperparameters A1, A2 and A3 balance the
importance between the various uncertainty measures, and
our goal is to recommend pixels with large u(p).

Superpixel-level Uncertainty Score Aggregation. Since
ALFA recommends superpixels rather than pixels, we need
to compute uncertainty score for each superpixel by aggre-
gating the uncertainty scores of its pixels. Given superpixel
S containing |S| pixels, we define its uncertainty score in two
alternative ways, by average or maximum aggregation:

1
us) =g > ulp), )

pEeSs

u(S) = glggu(p)- (10)
Based on our experiments (See Table 6 in Appendix C [Ad-
hikari ef al., 2025]), the average scheme works the better and
is thus used by default. This is reasonable since averaging is
more robust to noise. We recommend top-N superpixels for
annotation by the users, and the default value of N is set to
25 which is observed to work well in our experiments.

Retraining by Semi-Supervised Learning. We retrain the
EvaNet using (1) the supervised loss head L., originally
proposed in [Sami et al., 2024] that penalizes label predic-
tions of pixel pairs that violate elevation guidance (e.g., a
‘flooded’ pixel with a nearby ‘dry’ pixel with a lower ele-
vation), as well as (2) two unsupervised loss heads based on
view consistency and temporal consistency, respectively.

Let the current AL cycle number be ¢, and let the set of all
pixels not yet labeled by users be U,, then both unsupervised
loss heads are computed over pixels of U..

The view consistency loss of the current cycle is given by

1
= > pue(P), (1)

peU.

Eview

which minimizes the prediction variance of every unlabeled
pixel among the 6 different views.

Temporal consistency is enforced by minimizing the pre-
diction difference between the current model at cycle ¢ and
a baseline model obtained by applying an exponential mov-
ing average (EMA) to the historical parameters as inspired by
Mean Teacher [Tarvainen and Valpola, 2017]:

w=o w+(1—-a) we1, (12)

where w._1 is the retrained EvaNet parameter at cycle (¢ —
1), w is the parameter of the baseline model, « is the EMA
decay rate, and Eq (12) updates w of cycle (¢ — 2) with the
retrained parameter at cycle (¢ — 1). This design is found to
perform better than minimizing the prediction difference at
consecutive cycles ¢ and (¢ — 1) [Huang et al., 2024].

Let us denote by wemp(P)|Ema the sum of squared predic-
tion differences as formulated in Eq (7) except that the model
predictions at cycle (¢ — 1) is replaced by the predictions by
the baseline model with parameter w. The temporal consis-
tency loss at cycle c is hence given by

1
Liemp = Ak p;J Utemp (P)|EMA (13)

The overall loss objective at cycle c is hence given by:
Crelrain = »Ceva + ﬁl ' »Cview + 52 . »Clempv (14)

where (31 and (35 are hyperparameters to balance loss terms.

4 Experiments

Datasets. We obtain high-resolution aerial imagery from
NOAA NGS during Hurricane Matthew in North Carolina
(NC) in 2016 [NOAA, 2016] and Hurricane Harvey in Texas
(TX) in 2017 [NOAA, 2017] along with their accompanied
DEM data. Table 1 summarizes our regions: R1-R4 are from
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Initial Metrics Final Metrics Dry Flood

Region Method Accuracy | mloU | Accuracy ‘ mloU | Precision Recall F;score | Precision Recall F; score
Random Sampling 98.92 97.57 98.99 97.69  98.33 98.89 99.52  99.20
RI: Confidence Only 98.80 97.29 98.69 97.60  98.15 98.85 99.37  99.11
Grimesland, NC PixelPick 65.89 48.87 93.92 87.46 97.86 8534  91.17 92.06 98.91 95.36
ALFA-E 99.15 98.08 98.27 99.13  98.70 99.58 99.15 99.36
ALFA-PO 99.06 97.90 97.99 99.14 98.56 99.58 99.02  99.30
Random Sampling 93.00 86.56 96.80 9141  94.03 87.96 9541 91.54
R2: Confidence Only 93.68 87.65 94.81 94.71 94.76 91.97 92.12  92.05
Greenville-Central, NC PixelPick 62.51 42.64 93.10 86.55 93.51 95.18 9433 92.47 89.95 91.19
ALFA-E 93.66 87.69 96.04 9335 94.67 90.30 94.14  92.18
ALFA-PO 93.86 87.99 95.13 94.67  94.90 91.95 92.64  92.29
Random Sampling 88.77 77.24 70.23 98.72  82.07 99.47 8527 91.83
R3: Confidence Only 68.28 50.78 44.79 93.96  60.67 96.54 59.25 73.43
Goldsboro, NC PixelPick 40.33 25.25 75.41 58.35 51.59 90.07  65.60 95.26 70.26  80.87
ALFA-E 83.27 68.89 61.26 97.18 75.15 98.75 78.37  87.39
ALFA-PO 91.08 80.96 75.71 96.78  84.96 98.74 89.07 93.66
Random Sampling 94.81 89.68 98.98 92.7 95.74 88.82 98.38  93.35
R4: Confidence Only 96.51 92.78 96.77 97.71 97.24 96.06 9447  95.26
Greenville-East, NC PixelPick 37.08 18.54 72.13 56.16 87.45 65.05  74.60 58.65 84.16  69.13
ALFA-E 94.08 88.29 97.72 9276  95.17 88.68 96.33 92.35
ALFA-PO 98.12 96.03 97.85 99.19 98.51 98.59 96.29 9743
Random Sampling 88.65 77.08 97.19 70.89  81.98 85.55 98.82 91.71
RS: Confidence Only 91.80 83.36 95.21 81.60 87.88 90.25 97.65 93.80
Thompsons, TX PixelPick 63.56 31.78 89.91 80.11 90.28 81.04 8541 89.73 95.00 92.29
ALFA-E 88.25 77.04 89.73 76.52  82.60 87.59 9498  91.13
ALFA-PO 94.33 88.49 92.64 91.73  92.18 95.29 95.82  95.55

Table 2: Comparison with baselines (unit: %). We find that ALFA-PO is the overall winner, so is used for ALFA by default.

I Region Height Width  %Annotated
R1 Grimesland, NC 1856 4104 61.19%
R2 Greenville-Central, NC 2240 4704 86.75%
R3 Goldsboro, NC 2700 5500 83.03%
R4 Greenville-East, NC 2800 5100 66.12%
R5 Thompsons, TX 2212 4512 55.23%

Table 1: Regions and their statistics. Height and width are in pixels.

Matthew 2016 and RS is from Harvey 2017. The ground-truth
annotations of these regions are obtained using the Flood-
Trace tool [Dyken ef al., 2024], and some ambiguous pixels
(e.g., those covered by tree canopies) are left unlabeled. See
Appendix B [Adhikari ef al., 2025] for more details.

Evaluation Metrics. Flood segmentation is a pixel-wise bi-
nary classification problem so we use commonly used mea-
sures such as accuracy, precision, recall, F; score and in-
tersection over union (IoU). The last four measures are cal-
culated in two contexts: (1) “dry” is the positive class, and
(2) “flood” is the positive class; we report mloU as the mean
of “dry” IoU and “flood” IoU. We only use the labeled pixels
of test regions to compute these measures.

Setting. In each AL cycle, EvaNet is retrained on an A100
GPU for 3 epochs, and SEEDS [den Bergh et al., 2015] is
used to compute superpixels for each satellite image. Ap-
pendix B [Adhikari er al., 2025] describes the detailed model
hyperparameters, and Appendix C reports the detailed hyper-
parameter tuning results. Our user study includes five domain
experts in the active learning pipeline, and all reported results
are averaged over those of the experts.

Comparison with Baselines. While we are the first to ap-
ply AL for flood mapping, we here establish some reason-

able baselines for comparison: (1) random sampling, where
superpixels are recommended by uniform sampling; (2) us-
ing only the confidence measure for recommendation without
considering consistencies; here, we use uqs (c.f. Eq (1)) as
the uncertainty measure since it works generally better than
Uent (¢.f. Eq (2)); (3) PixelPick [Shin er al., 20211, which rec-
ommends sparse pixels for labeling rather than superpixels.
These baselines are compared against two ALFA variants:
(1) ALFA-E, which uses u.y as the confidence measure, and
(i1) ALFA-PO, which uses u¢ instead.

All methods initially use the off-the-shelf EvaNet
model [Sami et al., 2024] for generating initial predictions,
and the corresponding results are shown as ‘Initial Metrics’
in Table 2. The remaining metrics show the performance of
these methods after 5 AL cycles. We can see that ALFA-PO
consistently gives the highest accuracy, F; score and mloU
on R2-R5, while ALFA-E is slightly better than ALFA-PO
on R1. Among the baselines, random superpixel recommen-
dation gives much lower performance than ALFA on R3-RS.
PixelPick is frequently among the lowest performing meth-
ods since only sparse pixels are recommended and labeled,
providing much fewer annotated pixels for retraining. Since
ALFA-PO is the overall winner, ALFA-PO is used for ALFA
by default hereafter.

Ablation Study. To verify the effectiveness of our consis-
tency measures in both the acquisition function and the loss
function, and the effectiveness of using ForestNet, we com-
pare with 5 ALFA variants: (1) without view consistency in
the acquisition function, (2) without temporal consistency in
the acquisition function, (3) without tree score in the acqui-
sition function, (4) without the view consistency loss term,
(5) without the temporal consistency loss term. Without loss
of generality, Table 3 shows the ablation study results on test
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Dry Flood

Region Method Accuracy | mloU Precision Recall F; score | Precision Recall F; score
ALFA w/o View Consistency for Recommendation 95.77 91.17 98.35 90.00  93.99 9446  99.12 96.73
ALFA w/o Temporal Consistency for Recommendation 98.91 97.54 | 9850  98.14  98.32 99.10  99.28  99.19
RI: ALFA w/o ForestNet for Recommendation 95.43 90.56 96.32 91.05 93.61 94.95 97.98  96.44
Greenville, NC ALFA w/o View Consistency Loss 96.69 93.05 98.80 92.13 95.35 95.59 99.35 97.43
ALFA w/o Temporal Consistency Loss 95.76 91.13 | 98.79  89.57 93.96 9424 9936 96.74
ALFA 99.06 | 97.89 | 9799 99.14 98.56 99.58 99.02  99.30
ALFA w/o View Consistency for Recommendation 89.52 79.73 86.76 97.52 91.82 95.35 77.38 8543
ALFA w/o Temporal Consistency for Recommendation 93.35 86.64 91.25 90.41  90.83 94.53 95.03  94.78
R5: ALFA w/o ForestNet for Recommendation 91.61 83.45 89.08 87.74 88.4 93.03 93.84 9343
Thompsons, TX ALFA w/o View Consistency Loss 91.08 82.41 89.41 85.68  87.50 91.98 94.18  93.07
ALFA w/o Temporal Consistency Loss 91.20 82.13 96.01  79.14  86.76 89.13 98.12 9341
ALFA 94.33 88.49 | 9264 9173 92.18 9529 9582 9555

Table 3: Ablation study (unit: %). We perform ablation study on both the acquisition function and the loss function.
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Figure 5: Percentage of annotated pixels v.s. average F; score. Both
of them improve with the number of AL cycles.

regions R1 in NC and R5 in TX. We can see that the consis-
tencies and ForestNet are all beneficial in ALFA.

Effect of AL Cycles. We study how the EvaNet performance
as measured by the average F; score (i.e., average of the flood
and dry F; scores) improves with the AL cycles. Figure 5
shows the results, where the x-axis corresponds to the per-
centage of pixels annotated so far at the end of an AL cycle,
and the curve for each region has 5 data points corresponding
to 5 AL cycles on the region. We can see that both the per-
centage of annotated pixels and the average F; score improve
with more AL cycles, and the average F; score can reach a
high value in just 5 cycles. Also, since each pixel click may
cover different number of pixels via elevation-guided BFS,
the percentage of increased annotated pixels varies with the
cycles and regions. Other than R4 where the improvement
seems to converge, the other regions show a clear perfor-
mance improving trend so running more cycles is likely to
further boost the performance.

Effect of AL in Speeding up Annotation. We show the to-
tal time taken by manual annotation (with elevation-guided
BFS) and AL-assisted annotation (with ALFA) for all test re-
gions in Figure 6. The time reported here is the median time
obtained from the user study. We can see that AL assistance
significantly speeds up the annotation. We also consider an-
other baseline where users use AL-assisted annotation for 2
cycles and then fix EvaNet mistakes manually. Without loss
of generality, the results on R1 and RS are presented in Ta-
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Figure 6: Comparison of median manual annotation time v.s. median
AL-assisted annotation time based on user study.

Region H Method ‘ Time (min) ‘ Avg Fy score
R1 AL Only 22 98.93
AL + Manual 46 98.95
R5 AL Only 20 93.86
AL + Manual 45 92.66

Table 4: ALFA for 5 cycles (AL Only) v.s. ALFA for 2 cycles fol-
lowed by manually fixing EvaNet prediction errors (AL + Manual).

ble 4, where we can see that to reach a similar level of aver-
age Fy score, using AL throughout the annotation process can
reduce time from over 40 minutes to around 20 minutes.

5 Conclusion

We presented ALFA, an active learning framework for flood
annotation on earth imagery. ALFA integrates prediction
confidence, view consistency, temporal consistency and tree
score to calculate the uncertainty scores of individual pixels,
which are aggregated in the unit of superpixels to recommend
the most uncertain (hence informative) ones by the underly-
ing EvaNet flood segmentation model for user annotation by
elevation-guided BFS. ALFA also expands EvaNet’s super-
vised elevation-guided loss function with two unsupervised
loss terms for view consistency and temporal consistency,
respectively, to improve retraining performance. Extensive
experiments show that all our techniques are beneficial and
ALFA can obtain high-quality annotation for flood mapping
in a much short time than manual annotation.
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