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Abstract

Deep Operator Network (DeepONet) effectively
learns complex operator mappings, especially
for systems governed by differential equations.
Physics-informed DeepONet (PI-DeepONet) ex-
tends these capabilities by integrating physical con-
straints, enabling robust performance with limited
or no labeled data. However, combining operator
learning with these constraints increases computa-
tional complexity, which makes training more dif-
ficult and convergence slower, particularly for non-
linear or high-dimensional problems. In this work,
we present an enhanced PI-DeepONet framework,
that applies importance sampling to both of Deep-
ONet inputs (i.e., the functions and the collocation
points) to alleviate these training challenges. By
focusing on critical data regions in both input do-
mains, our approach showcases accelerated conver-
gence and improved accuracy across various com-
plex applications.

1 Introduction
Solving partial differential equations (PDEs) is critical for
describing and predicting natural phenomena such as fluid
dynamics, heat conduction, and wave propagation. It also
plays a key role in optimizing engineering designs, simulat-
ing complex systems, and advancing mathematical theories.
However, for most PDE problems, obtaining analytical solu-
tions is either infeasible or exceedingly difficult. Numerical
methods, such as finite difference and finite element methods,
offer efficient and approximate solutions for practical prob-
lems, providing effective approaches to addressing complex
systems. Nevertheless, traditional numerical methods often
rely on fine mesh discretization to enhance accuracy, result-
ing in exponentially growing computational costs, especially
for high-dimensional problems.

In recent years, numerous methods leveraging deep learn-
ing have emerged to solve partial differential equations
(PDEs) [Huang et al., 2022], aiming to circumvent some of

∗Corresponding author.
1Code is available at https://github.com/ruihuang-1/donis.

the limitations of traditional numerical approaches by exploit-
ing the fitting capabilities of neural networks. Among these,
Physics-Informed Neural Networks (PINNs) [Raissi et al.,
2019] integrate initial conditions, boundary conditions, and
equation residuals into the loss function, thereby incorporat-
ing physical prior knowledge to supervise the neural network
in approximating PDE solutions.

Another line of research focuses on training neural net-
works to approximate operators, referred to as neural oper-
ators, enabling a single model to solve a class of PDEs. Ex-
amples include DeepONet [Lu et al., 2021a], Fourier Neu-
ral Operator (FNO) [Li et al., 2020] and further develop-
ments [Jin et al., 2022; He et al., 2024; Kumar et al., 2025;
Wen et al., 2022; Li et al., 2023; Bonev et al., 2023]. The
operator-fitting approach inherently resembles parallel fitting
of a class of functions, posing greater challenges in terms of
labeled data requirements compared to PINNs. To address
this issue, subsequent studies have integrated operator learn-
ing with physical constraints to mitigate the reliance on costly
labeled data, as demonstrated in the framework of physics-
informed DeepONets (PI-DeepONets) [Wang et al., 2021]
and later studies [Goswami et al., 2022; Howard et al., 2023;
Jiao et al., 2024; Li et al., 2024].

Building on the integration of operator learning with phys-
ical constraints, further advancements have explored scenar-
ios where no labeled data is available, enabling fully self-
supervised operator learning. Existing research on fully self-
supervised PI-DeepONet can be broadly categorized into two
main approaches. The first focuses on decomposing the spa-
tiotemporal domain of the solution, reducing the complex-
ity of the operator by employing multi-step solving tech-
niques [Xu et al., 2023; Wang and Perdikaris, 2023]. The
second approach addresses the challenge of multiple tasks in
loss function. By incorporating initial and boundary condi-
tion constraints directly into the output layer or through post-
processing, approaches in [Brecht et al., 2023] avoids the im-
balance among different terms in the loss function. While the
aforementioned methods mitigate certain training challenges
associated with PI-DeepONet, their reliance on specific PDE
scenarios significantly restricts their generality and broader
applicability.

Meanwhile, importance sampling has been adopted to ac-
celerate the training of PINNs, owing to its ease of imple-
mentation and independence from the specific form of the
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PDEs. The work by [Nabian et al., 2021] incorporates im-
portance sampling into the collocation point selection process
of PINNs, and further enhances efficiency through a piece-
wise constant approximation. Subsequent work of the DMIS
framework [Yang et al., 2023] introduces a dynamic trian-
gulation strategy to optimize the accuracy of importance es-
timation, achieving an effective balance between speed and
precision.

Motivated by these findings, we propose a more prac-
tical and versatile approach to accelerate the training of
PI-DeepONet: PI-DeepONet with Importance Sampling
(DONIS). By harnessing the architectural flexibility of Deep-
ONet, DONIS introduces a two-step importance sampling
framework that sequentially applies importance sampling to
the function and collocation point inputs of DeepONet. This
strategy prioritizes mini-batch samples with greater influence
on the learning objective, enabling faster convergence and en-
hanced predictive accuracy.

Our main contributions can be summarized as follows:

• An easily implementable importance sampling method
for input functions in PI-DeepONet.

• A gradient-based importance estimation and sampling
strategy for collocation points in PI-DeepONet.

• Extensive experiments across multiple widely used
benchmark physical scenarios, demonstrating that our
method significantly improves the convergence speed
and prediction accuracy of PI-DeepONet.

2 Background
2.1 Deep Operator Network
Deep Operator Network (DeepONet) provides a neural net-
work framework for learning operators, which are mappings
between function spaces. Unlike traditional neural networks
that map vectors to vectors, DeepONet learns the functional
relationship between an input function f(z) and an output
function u(x), as defined by an operator G:

u(x) = G(f)(x). (1)

DeepONet achieves operator learning by decomposing the
task into two sub-networks: the branch network and the trunk
network. These networks work in tandem to approximate the
target function.

• The branch network encodes the input function f(z) by
sampling it at fixed sensor locations {z1, z2, . . . , zm}.
These samples are passed through a neural net-
work BranchNet, producing latent outputs b =
[b1, b2, . . . , bp].

• The trunk network encodes the target evaluation loca-
tion x via a neural network TrunkNet, producing latent
outputs t = [t1, t2, . . . , tp].

The final output of DeepONet is then computed as a linear
combination of the branch and trunk outputs:

u(x) ≈
p∑

k=1

bktk, (2)

where p is the number of latent modes. This formulation
allows DeepONet to capture the functional relationship en-
coded by the operator G.

The supervised training of DeepONet minimizes the loss
function:

Lsup =
1

N

N∑
i=1

∥ui(x)− G(fi)(x)∥2, (3)

where {fi,G(fi)} are labeled input-output pairs.

2.2 Physics-Informed Deep Operator Network
Physics-Informed Deep Operator Network (PI-DeepONet)
extends the DeepONet framework by embedding the gov-
erning physical constraints directly into the learning process.
This is achieved by incorporating the governing partial dif-
ferential equations (PDEs), boundary conditions, and initial
conditions as constraints in the loss function.

Consider a PDE of the form:

F(u; f) = 0 in Ω× (0, T ), (4)
u(x, 0) = u0(x) in Ω, (5)
B(u; f) = 0 on ∂Ω× (0, T ), (6)

where f is the input function, u is the solution, u0(x) is the
initial condition, F represents the PDE operator, and B rep-
resents the boundary conditions.

Our work focuses on scenarios constrained purely by phys-
ical laws, which are incorporated into the following loss func-
tion:

L =
1

Nr

Nr∑
i=1

∥F(u(xi
r, t

i
r); f(x

i
r, t

i
r))∥2

+
1

Nb

Nb∑
i=1

∥B(u(xi
b, t

i
b); f(x

i
b, t

i
b))∥2

+
1

N0

N0∑
i=1

∥u(xi
0, 0)− u0(x

i
0)∥2, (7)

where:

• {(yir, tir)}
Nr
i=1: Collocation points in the domain Ω ×

(0, T ),

• {(xi
b, t

i
b)}

Nb
i=1: Boundary points on ∂Ω× (0, T ),

• {xi
0}

N0
i=1: Points for the initial condition.

2.3 Importance Sampling
Importance sampling is a statistical technique for estimating
properties of a target distribution p(x) by sampling from a
more convenient proposal distribution q(x). It reweights sam-
ples from q(x) to approximate expectations under p(x).

The expectation of a function f(x) under the target distri-
bution is:

Ep[f(x)] =

∫
f(x)p(x) dx. (8)
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Function Batch 
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Sampling of Functions
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DeepONet

to update 

… …

Figure 1: The Training of DONIS. Within a training iteration, importance sampling is first used to select higher-priority functions, forming
the mini-batch of functions. Then, mini-batch of collocation points are sampled from regions of higher importance within the domains of
these selected functions.

Instead of sampling directly from p(x), importance sam-
pling draws samples {xi}Ni=1 from q(x) and approximates the
expectation as:

Ep[f(x)] ≈
1

N

N∑
i=1

α(xi)f(xi), (9)

where α(x) = p(x)
q(x) are the importance weights. A good q(x)

should closely approximate p(x) in regions where f(x)p(x)
contributes the most, reducing the variance of w(x).

In deep learning, importance sampling is utilized to en-
hance the efficiency of training by prioritizing samples that
have a greater impact on the learning objective. This ap-
proach accelerates convergence and improves overall training
efficiency. Specifically , the convergence rate of stochastic
gradient methods is optimized when the sampling distribu-
tion aligns with the 2-norm of the gradient of the loss func-
tion [Needell et al., 2014; Zhao and Zhang, 2015].

3 Our Method
In this section, we provide a detailed overview of the pro-
posed DONIS framework, which consists of two key com-
ponents: sampling of functions and sampling of collocation
points. The overall framework is illustrated in Figure 1.

3.1 Method Overview
In practical DeepONet training, a single step typically in-
volves mini-batch partitioning over both the function space
and the collocation point space. Consequently, the sampling
space is represented as the Cartesian product of the function

space and the collocation point space, with a total size of
|Nf | · |Nc|:

L =
1

|Mf | |Mc|

|Mf |∑
i=1

|Mc|∑
j=1

lr (f i,xj ;θ)

+
1

|Mf | |M b
c |

|Mf |∑
i=1

|Mb
c |∑

j=1

lb
(
f i,x

b
j ;θ

)

+
1

|Mf | |M0
c |

|Mf |∑
i=1

|M0
c |∑

j=1

l0
(
f i,x

0
j ;θ

)
, (10)

where f i ∈Mf represents a mini-batch of functions sampled
from Nf . The points xi ∈ Mc, xb

i ∈ M b
c , and x0

i ∈ M0
c

correspond to mini-batches of collocation points for the PDE
residual, BC, and IC respectively. The terms lr, lb, and l0 are
the respective loss functions for each.

In this sense, a straightforward and ideal approach to im-
portance sampling is to jointly compute the importance of all
samples of size |Nf | · |Nc| , and then samples a mini-batch of
size |Mf | · |Mc| accordingly. However, this not only incurs
significant computational costs, but also interfere with vec-
torization [Lu et al., 2022]. Instead, we propose a two-step
sampling approach that separates the sampling of functions
and collocation points, striking a balance between effective-
ness and computational cost. First, importance sampling is
applied to the function set, selecting functions with higher
importance to form the function batch for the current step.
Next, batches of collocation points are sampled from regions
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Algorithm 1 Importance Sampling of Functions

1: Input: Dataset of functions Nf = {f i}
|Nf |
i=1 and seed

points Sf = {an}
|Sf |
n=1.

2: Parameter: model weights θ.
3: Output: Batch of functions Mf = {f

′

i}
|Mf |
i=1

4: for i = 1 to |Nf | do
5: Calculate {lr (f i,an;θ) |an ∈ Sf}
6: Compute qfi according to Eq (11)
7: end for
8: Mf sampled according to qfi
9: return Mf

with higher importance within the domains of the selected
functions.

Apart from the two-step scheme described above, we
further reduce the computational overhead in two aspects.
Firstly, we replace gradient-based importance with the loss
value to avoid gradient computation. Both theoretical anal-
yses [Katharopoulos and Fleuret, 2017] and practical appli-
cations [Nabian et al., 2021; Yang et al., 2023] have shown
that using the loss value as a proxy for the 2-norm of the loss
gradient is a reasonable approximation. Secondly, because
boundary and initial conditions usually act as penalty terms,
the importance sampling methods discussed here focus solely
on collocation points within the spatiotemporal domain, cor-
responding to the PDE loss.

3.2 Importance Sampling of Functions
First, we consider sampling on the function set (DONIS-F),
where an input function and its corresponding set of collo-
cation points are treated as a single sample. As mentioned
earlier, we measure the importance of a sample based on
its loss value. Therefore, to measure the importance of a
function sample, we need to obtain the overall loss value of
the spatiotemporal domain Ω corresponding to this function.
Here, instead of computing the loss at every point of Nc, we
adopt an approximate method to bypass the costly process, as
demonstrated in Algorithm 1.

Here, we define the sampling probability qfi for a function
sample f i ∈ Nf as proportional to the loss (i.e., PDE residu-
als) lr over a set of seed points Sf = {an}

|Sf |
n=1:

qfi =

∑|Sf |
n=1 lr (f i,an;θ)∑|Nf |

m=1

∑|Sf |
n=1 lr (fm,an;θ)

, i ∈ {1, 2, . . . , |Nf |},

(11)
where seed points Sf is a sparse uniform grid across Ω.

By this means, we estimates the overall loss value for
each function in the function set, thereby ensuring that more
important functions are selected with higher probability for
training.

3.3 Importance Sampling of Collocation Points
After function sampling, the sampling space for the mini-
batch is significantly reduced. However, the sampling of

Algorithm 2 Importance Sampling of Collocation Points

1: Input: Batch of functions Mf = {f
′

i}
|Mf |
i=1 , sets of seed

points S = {Sc,i}
|Mf |
i=1 where Sc,i = {bi,l}

|Mf |,|Sc|
i=1,l=1 .

2: Parameter: Collocation points Nc = {c}|Nc|
k=1 , model

weights θ.
3: Output: Batch of collocation points Mc = {Mc,i}

|Mf |
i=1 ,

updated sets of seed points S ′
.

4: Mc ← {},S
′ ← {}

5: for i = 1 to |Mf | do
6: Calculate {lr (f i, bi,l;θ) |bi,l ∈ Sc,i}
7: Interpolate to approximate {l̂r (f i, ck;θ) |ck ∈ Nc}
8: Compute qci,j according to Eq (12)
9: Mc ←Mc,i sampled according to qci,j

10: Compute gi,j according to Eq (13)
11: S ′ ← S

′

c,isampled according to gi,j
12: end for
13: return Mc,S

′

functions primarily reflects the overall error. To better capture
localized errors, we extend this regime to collocation points
(DONIS-C).

Specifically, we need to estimate the importance of each
element in the collocation point set. Contrary to the input
functions in operator learning, the collocation points are dis-
tributed across a continuous spatiotemporal domain, which
facilitates the use of interpolation methods to accelerate this
process. Evidently, the effectiveness of interpolation heavily
relies on the distribution of the source points. We refer to the
source points as the seed points Sc, similar to Sf introduced
in the previous section.

Here, we present a dynamic interpolation algorithm to ac-
celerate importance sampling for collocation points demon-
strated in Algorithm 2, where the distribution of Sc is deter-
mined by the spatial gradient of the the loss value (i.e., PDE
residuals lr). Specifically, in each training step, we calculates
each loss value of points in Sc. Then, interpolation is em-
ployed to estimate the the loss value over the spatiotemporal
domain Ω, from which the mini-batch of collocation points is
sampled. We define the sampling probability qci,j for a col-
location point cj ∈ Nc corresponding to selected function
f

′

i ∈ |Mf | as proportional to the estimated PDE residuals l̂r:

qci,j =
l̂r

(
f

′

i, cj ;θ
)

∑|Nc|
k=1 l̂r

(
f

′

i, ck;θ
) , i ∈ {1, 2, . . . , |Mf |},

j ∈ {1, 2, . . . , |Nc|}, (12)

where l̂r denotes the approximate of lr by interpolation over
Sc.

Lastly, we compute the spatial gradient of the loss value,
and update Sc based on the magnitude of the gradient:

gi,j ∝
∣∣∣∇s l̂r

(
f

′

i, cj ;θ
)∣∣∣ , (13)

where∇s denotes the Sobel operator, and gi,j is the probabil-
ity of the j-th point of Nc being selected as a seed point for
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the i-th function.
Compared to a fixed uniform grid, seed points updated

based on the spatial gradient allows the interpolation results
to better align with the true data distribution, thereby enhanc-
ing the accuracy of the importance sampling algorithm. In
practice, this calculation is performed via the Sobel operator,
which gives an approximation of the spatial gradient, making
the algorithm more efficient with minimal hyperparameters.

3.4 Importance Reweighting
As shown in Eq (9), reweighting is necessary to ensure that
samples from the proposal distribution accurately represent
the target distribution. Hence, we modify the PDE loss in
Eq (10) when utilizing importance sampling for functions
and/or collocation points:

Lr =
1

|Mf | |Mc|

|Mf |∑
i=1

αi

|Mc|∑
j=1

βi,j lr (f i,xj ;θ),

f i ∈Mf ,xj ∈Mc, (14)

where αi is the importance weight of the i-th function, and
βi,j is the importance weight of the j-th point for the i-th
function:

αi =
pfi

qfi
=

1

|Nf |qfi
, (15)

βi,j =
pci,j
qci,j

=
1

|Nc|qci,j
. (16)

4 Experiments
In this section, we validate the proposed methods through a
series of experiments and evaluate their performance using
the specified metrics.The implementation of these methods is
built upon the DeepXDE library [Lu et al., 2021b], with the
complete code available in the supplementary materials for
reference. Table 1 presents the hyperparameters used in our
experiments.

4.1 Experimental Setting
We consider three partial differential equation scenarios: the
Allen-Cahn equation, viscous Burgers’ equation, and a non-
linear diffusion-reaction equation. Within each PDE prob-
lems, we compare the results of vanilla PI-DeepONet with

Parameter Value

Branch Net [128, 128, 128, 128, 128, 128]
Trunk Net [2, 128, 128, 128, 128, 128]
Epoch 30,000
Learning Rate 5× 10−4

|Nf | 1000
|Nc| 10000
|Mf | 50
|Mc| 2000

Table 1: Network and training parameters. |Nf | and |Nc| denotes
the size of dataset of functions and collocation points, |Mf | and
|Mc| is batch size of functions and collocation points.

0 5k 10k 15k 20k 25k
iterations

10 1

loss
PI-DeepONet
DONIS (ours)

0 5k 10k 15k 20k 25k
iterations

10 2

10 1

MSE
PI-DeepONet
DONIS (ours)

Figure 2: Convergence curves and prediction errors of Allen-Cahn
equation.

PI-DeepONet DONIS-C DONIS-F DONIS0.0

0.1

0.2

Figure 3: Prediction errors of Allen-Cahn equation over Ω.

MSE L2 RE

PI-DeepONet 8.35e-03 1.07e-01
DONIS-C (ours) 8.24e-03 1.06e-01
DONIS-F (ours) 8.20e-03 1.06e-01
DONIS (ours) 6.81e-03 9.62e-02

Table 2: Metrics of Allen-Cahn equation

three variants: PI-DeepONet with importance sampling on
collocation points (DONIS-C), importance sampling on func-
tions (DONIS-F), and importance sampling on both colloca-
tion points and functions (DONIS).

Metrics. We first train the model without any labeled data
within the spatiotemporal domain Ω and then evaluate its
performance using results obtained from traditional numer-
ical solvers. The evaluation is conducted based on the Mean
Square Error (MSE) and the L2 relative error as metrics.

Hyperparameters. General hyperparameters are shown in
Tabel 1.

4.2 Allen-Cahn Equation
We first consider the one-dimensional Allen-Cahn equation
in the form of:

∂u

∂t
= ϵ2

(
∂2u

∂x2

)2

−
(
u3 − u

)
, x ∈ [0, 1], t ∈ [0, 1], (17)

with periodic boundary conditions. ϵ, which controls inter-
face thickness, is set to 0.01.

We aim to train an operator mapping the initial condition
u0(x) to the solution, i.e., G : u0(x) 7→ u(x, t), t ∈ [0, 1],
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0 5k 10k 15k 20k 25k
iterations

10 2

10 1

loss
PI-DeepONet
DONIS (ours)

0 5k 10k 15k 20k 25k
iterations

10 3

10 2

10 1 MSE
PI-DeepONet
DONIS (ours)

Figure 4: Convergence curves and prediction errors of Burger’s
equation.

PI-DeepONet DONIS-C DONIS-F DONIS0.0

0.1

Figure 5: Prediction errors of Burger’s equation over Ω.

MSE L2 RE

PI-DeepONet 2.31e-03 9.14e-02
DONIS-C (ours) 2.08e-03 8.67e-02
DONIS-F (ours) 1.61e-03 7.64e-02
DONIS (ours) 1.42e-03 7.16e-02

Table 3: Metrics of Burger’s equation

where the initial conditions are generated based on the Expo-
nential Sine Squared kernel:

k(x, x′) = exp

−2 sin2
(

π|x−x′|
T

)
ℓ2

 , (18)

where l = 2, T = 1.
We set the size of seed points as 50 for Sf and 200 for Sc

for this problem.
Figure 2 illustrates that DONIS accelerates loss conver-

gence and achieves lower prediction error over the course of
the training procedure. Figure 3 and the metrics in Table 2
demonstrate a consistent reduction in prediction error when
applying DONIS-C, DONIS-F, or both in combination. Over-
all, DONIS reduces MSE by 18% and brings L2 relative er-
ror down to below 10%. By leveraging importance sampling,
DONIS prioritizes functions and collocation points that exert
a greater influence on the learning objective, thereby facilitat-
ing faster convergence and improved predictive accuracy.

4.3 Burgers’ Equation
Next, we consider the one-dimensional Burgers equation:

∂u

∂t
+ u

∂u

∂x
= ν

∂2u

∂x2
, x ∈ [0, 1], t ∈ [0, 1], (19)

0 5k 10k 15k 20k 25k
iterations

10 4

10 3

10 2

10 1

loss
PI-DeepONet
DONIS (ours)

0 5k 10k 15k 20k 25k
iterations

10 5

10 4

10 3

10 2

10 1
MSE

PI-DeepONet
DONIS (ours)

Figure 6: Convergence curves and prediction errors of nonlinear dif-
fusion equation.

PI-DeepONet DONIS-C DONIS-F DONIS0.00

0.01

0.02

Figure 7: Predition errors of nonlinear diffusion reaction equation.

MSE L2 RE

PI-DeepONet 3.27e-05 1.26e-02
DONIS-C (ours) 3.16e-05 1.24e-02
DONIS-F (ours) 2.93e-05 1.19e-02
DONIS (ours) 2.32e-05 1.06e-02

Table 4: Metrics of nonlinear diffusion-reaction equation

with zero Dirichlet boundary conditions. The viscosity ν is
set to 0.01. Similarly, the goal is to train an operator mapping
the initial condition u0(x) to the solution, i.e., G : u0(x) 7→
u(x, t), t ∈ [0, 1], where the initial conditions are gener-
ated based on the Radial Basis Function (RBF) kernel:

k(x, x′) = exp

(
−∥x− x′∥2

2ℓ2

)
, (20)

where l = 0.5.
We set the size of seed points as 100 for Sf and 500 for Sc

for this problem.
As shown in Figure 4, for the Burgers equation, DO-

NIS achieves a significant improvement in prediction accu-
racy, even though its acceleration of convergence is less pro-
nounced. Table 3 reports a 39% reduction in MSE achieved
by DONIS. Notably, DONIS-F demonstrates superior perfor-
mance compared to DONIS-C in this experiment, which can
be attributed to the Burgers equation’s higher sensitivity to
variations in input functions (i.e., initial conditions).This sen-
sitivity arises from its nonlinear convection term, particularly
under conditions of weak diffusion.
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|Sf | MSE L2 RE

50 1.32e-03 6.90e-02
100 1.21e-03 6.62e-02
200 1.20e-03 6.58e-02
500 1.22e-03 6.63e-02

Table 5: Experiments on |Sf | in DONIS-F for the Burgers’ Equa-
tion.

|Sc| MSE L2 RE

100 2.26e-03 9.04e-02
200 2.28e-03 9.08e-02
500 2.08e-03 8.67e-02
1000 2.12e-03 8.75e-02

Table 6: Experiments on |Sc| in DONIS-C for the Burgers’ Equa-
tion.

4.4 Nonlinear Diffusion-Reaction Equation
Lastly, we consider a nonlinear diffusion-reaction equation in
the form of:

∂u

∂t
= 0.01

∂2u

∂x2
−0.01u2+f(x), x ∈ [0, 1], t ∈ [0, 1], (21)

subject to zero Dirichlet boundary conditions and an initial
condition given by u(x, 0) = 0. Here, we train an op-
erator mapping the source term f(x) to the solution, i.e.,
G : f(x) 7→ u(x, t), t ∈ [0, 1], where f(x) are generated
based on the RBF kernel shown in Eq (20).

We set the size of seed points as 50 for Sf and 200 for Sc

for this problem.
Figure 6 and 7, along with Table 4, illustrate the experi-

mental results for the nonlinear diffusion-reaction equation.
By fixing the boundary and initial conditions, the conver-
gence difficulty of the corresponding loss terms was signifi-
cantly reduced, which greatly simplified the convergence pro-
cess. Notably, despite the changes in problem formulation
and the reduction in training complexity, DONIS achieved
faster convergence and lower prediction error. Specifically,
DONIS-F, DONIS-C, and DONIS all demonstrated further
improvements with DONIS demonstrating a 29% reduction
in MSE as shown in Table 4.

4.5 Hyperparameter Analysis
In this section, we explore the effect of the seed points of
DONIS-F and DONIS-C to further optimize the performance
of DONIS.

Table 5 and 6 reveal that the accuracy of DONIS generally
improves as the sizes of |Sc| or |Sf | increase. This is because
a larger number of seed points enhances the accuracy of im-
portance estimation, thus improving the overall performance
of the method. However, once the number reaches a certain
threshold, the improvement becomes less significant, and the
computational cost increases considerably. Hence, specific
sizes of Sc and Sf |Sc| were chosen in our experiments to
strike a balance between accuracy and computational cost.

Figure 8: Dynamic interpolation algorithm during the training pro-
cess for Burger’s equation.

MSE L2 RE

DON 2.31e-03 9.14e-02
DONIS-C-fixed(ours) 2.21e-03 8.94e-02
DONIS-C(ours) 2.08e-03 8.67e-02
DONIS-fixed(ours) 1.67e-03 7.76e-02
DONIS(ours) 1.42e-03 7.16e-02

Table 7: Ablation study of dynamic interpolation algorithm in
DONIS-C for the Burgers’ Equation.

4.6 Ablation Study

In the following section, we present ablation experiments on
the dynamic interpolation algorithm used in DONIS-C. The
algorithm updates the seed points Sc by leveraging the spatial
gradient of the loss value, with the goal of enhancing the ac-
curacy of DONIS-C by ensuring that the interpolation results
better reflect the true data distribution. Figure 8 provides a
visualization of the updating process of Sc.

The results are summarized in Table 7, where methods
that do not employ the dynamic interpolation algorithm are
labeled with ”fixed”, indicating that the seed points Sc re-
main unchanged after initialization. As evidenced by the re-
sults, incorporating dynamic interpolation improves the per-
formance of DONIS-C, both when used independently and in
conjunction with DONIS-F.

5 Conclusions

In this paper, we propose a novel approach to accelerate the
training of physics-informed DeepONet: PI-DeepONet with
Importance Sampling (DONIS). Leveraging the architectural
flexibility of DeepONet, DONIS introduces a two-step impor-
tance sampling framework that sequentially applies impor-
tance sampling to the function inputs and collocation points
of DeepONet. In function sampling, the importance of func-
tion samples is approximated using the loss function evalu-
ated over a uniform grid. For collocation points, their im-
portance is estimated using a dynamic interpolation algo-
rithm. Evaluated on three widely tested PDEs and across
different operator mapping configurations, DONIS consis-
tently enhances the convergence speed of self-supervised op-
erator training while reducing prediction errors.These results
demonstrate the practical versatility of DONIS, making it a
robust and efficient framework applicable to a wide range of
operator learning tasks.
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