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Abstract

3D visual grounding aims to localize target ob-
jects in point clouds based on free-form natural lan-
guage, which often describes both target and refer-
ence objects. Effective alignment between visual
and text features is crucial for this task. How-
ever, existing two-stage methods that rely solely
on object-level features can yield suboptimal accu-
racy, while one-stage methods that align only point-
level features can be prone to noise. In this paper,
we propose DDPA-3DVG, a novel framework that
progressively aligns visual locations and language
descriptions at multiple granularities. Specifically,
we decouple natural language descriptions into dis-
tinct representations of target objects, reference ob-
jects, and their mutual relationships, while disen-
tangling 3D scenes into object-level, voxel-level,
and point-level features. By progressively fusing
these dual-decoupled features from coarse to fine,
our method enhances cross-modal alignment and
achieves state-of-the-art performance on three chal-
lenging benchmarks—ScanRefer, Nr3D, and Sr3D.
The code will be released at https://github.com/
HDU-VRLab/DDPA-3DVG.

1 Introduction
The goal of Visual Grounding (VG) [Deng et al., 2021;
Liu et al., 2024] is to precisely locate the object referred to by
a natural language description. In recent years, the progress
of 3D data acquisition devices has sparked growing interest
in using point clouds for various vision and language tasks,
such as Dense Captioning (DC) [Yuan et al., 2022; Wang
et al., 2022] and Visual Grounding (VG) [Yang et al., 2020;
Li and Sigal, 2021]. Among these, 3D visual grounding (3D
VG) plays a crucial role in environmental perception, rang-
ing from visual language navigation to autonomous robotics
[Chen et al., 2021; Chen et al., 2022; Gao et al., 2023;
Liu et al., 2023; Wang et al., 2023a]. However, bridging the
gap between the differing modalities of natural language and
3D scenes remains challenging.

∗Corresponding author.

Figure 1: In complex scenarios, coupled sentence-level and scene-
level features introduce ambiguity in 3D grounding. Our method de-
couples language/visual features into target/reference elements for
precise grounding.

Existing methods primarily follow two paradigms: the
two-stage paradigm [Zhao et al., 2021; Yang et al., 2021;
Zhang et al., 2023; Guo et al., 2023; Yuan et al., 2021] and
the one-stage paradigm [Luo et al., 2022; Jain et al., 2022;
Wu et al., 2023]. In the two-stage paradigm, a universal
3D detector first generates numerous candidates. These pro-
posals interact extensively with the text features to produce
language-modulated visual representations, which are then
scored by a regression head to yield the final prediction. Con-
versely, the one-stage paradigm typically uses Farthest Point
Sampling (FPS) to select a fixed set of points. Under the guid-
ance of text features, the points with the highest confidence
are progressively identified to achieve grounding.

Accurate alignment between visual representations and
language descriptions is central to the success of 3D VG.
Nonetheless, current approaches either keep the information
in natural language and 3D scenes fully entangled or, con-
versely, fragment it too finely for alignment—both result-
ing in suboptimal performance. For example, in two-stage
approaches, only object-level features are utilized, making
fine-grained target object localization difficult. In contrast,
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one-stage approaches rely exclusively on point-level features,
which can be too noisy to capture precise semantic cues
and often produce diffuse confidence distributions. A simi-
lar challenge occurs with natural language: if treated solely
at the sentence level, crucial distinctions between target and
reference objects may be masked. While recent work [Wu
et al., 2023] partially addresses imbalance and ambiguity by
explicitly modeling language as a dependency tree, the prob-
lem of effectively extracting meaningful guidance from natu-
ral language and representing visual features at an appropri-
ate granularity for cross-modal alignment remains unsolved.

In this paper, we propose a novel method, dubbed DDPA-
3DVG, that transforms 3D scene information into multi-
grained visual features under text guidance, while also de-
coupling natural language descriptions into coherent seman-
tic components to improve target localization. We then align
these dual-decoupled features from coarse to fine, achiev-
ing more precise 3D visual grounding. As illustrated in Fig-
ure 1, when dealing with complex 3D scenes containing mul-
tiple similar target and reference objects, existing methods
that rely on fully coupled features often suffer from ambigu-
ous alignments. By decoupling both the scene and language
into more focused elements, our approach makes the align-
ment process more systematic and precise, especially when
fusing text-guided localization with multi-granularity visual
representations. Specifically, we divide the 3D scene into
object-level, voxel-level, and point-level features, while split-
ting natural language into target object-related features and
reference object-related features. These dual-decoupled fea-
tures are then gradually fused from coarse to fine, allowing
the network to effectively match target and reference descrip-
tions with their corresponding visual features. Moreover, to
effectively capture both global and local context, we employ
static queries distributed across the entire scene alongside
position-learnable dynamic queries. During the alignment
process, these mixed queries interact progressively with the
dual-decoupled features, facilitating a more comprehensive
understanding of 3D spatial information and linguistic cues
while minimizing interference from irrelevant objects.

In summary, our main contributions are:

• Dual-Decoupling Strategy: We decouple both the 3D
scene and natural language to extract multi-granularity
visual features and semantically rich text features, facil-
itating more effective cross-modal alignment.

• Progressive Alignment Framework: We progressively
fuse these dual-decoupled features in a coarse-to-fine
manner, which significantly improves localization pre-
cision for the target object.

• Experiments on three challenging benchmarks, Scan-
Refer, Nr3D, and Sr3D, demonstrate that our method
achieves state-of-the-art performance, validating its ef-
fectiveness in 3D visual grounding.

2 Related Work
2.1 3D Vision-Language Tasks
Vision and language are essential modalities for understand-
ing and interacting with the world. In particular, 3D Vision-

Language tasks [Luo et al., 2022; Azuma et al., 2022] inte-
grate 3D visual perception with linguistic information, en-
abling more comprehensive analyses of complex environ-
ments. One representative example is 3D Visual Question
Answering (3D-VQA) [Ma et al., 2022; Azuma et al., 2022],
which relies on point clouds as input and requires models
to interpret object attributes and spatial relationships in or-
der to provide contextually accurate answers. Another ex-
ample is 3D Dense Captioning (3D DC) [Yuan et al., 2022;
Wang et al., 2022], aimed at generating text descriptions for
each object by identifying its position, attributes, and spatial
relations within the scene. By contrast, 3D Visual Ground-
ing [Luo et al., 2022; Wu et al., 2023] specifically targets
localizing a particular object based on a given linguistic ex-
pression. In this work, we concentrate on advancing the
model’s ability to integrate multi-grained 3D vision represen-
tations and decoupled linguistic elements, thereby attaining
more precise grounding performance.

2.2 3D Visual Grounding
3D visual grounding focuses on locating objects within
a 3D scene based on free-form natural language descrip-
tions. Two main paradigms have emerged in this area:
two-stage methods [Yang et al., 2021; Guo et al., 2023;
Yuan et al., 2021] and one-stage methods [Luo et al., 2022;
Jain et al., 2022; Wu et al., 2023]. Two-stage approaches
leverage off-the-shelf, pre-trained object detectors to gen-
erate object candidates, then match these proposals to lin-
guistic features to select the target region. For example,
3DVG-Transformer [Zhao et al., 2021] adopts a Transformer-
inspired architecture to incorporate contextual cues, thereby
enhancing proposal generation and cross-modal disambigua-
tion. Multi3DRefer [Zhang et al., 2023] extends the Scan-
Refer [Chen et al., 2020] dataset and task to support multi-
ple object references, introducing new evaluation metrics and
benchmarks to accommodate more general grounding scenar-
ios.

In contrast, one-stage approaches directly regress the
bounding box of the target object, bypassing explicit proposal
generation. 3D-SPS [Luo et al., 2022] was among the first to
refine localization guided by linguistic cues, while EDA [Wu
et al., 2023] relies on implicit text decoupling to separate key
linguistic components for greater alignment precision. How-
ever, EDA solely decouples text features, leaving visual fea-
tures unaddressed. In this work, we present DDPA-3DVG,
which explicitly decouples both visual and text representa-
tions, enabling more effective cross-modal alignment for en-
hanced 3D grounding accuracy.

3 Method
3.1 Overview
An overview of our DDPA-3DVG framework is illustrated in
Figure 2. First, we use a Vision Encoder and a Language En-
coder to extract the visual and text features, respectively. A
Cross-Modality Encoder then fuses these features (Sec. 3.2).
Next, the language descriptions are split into semantically
meaningful elements, generating text features for both the
target-related component and reference-related component.
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Figure 2: Overview of the Proposed DDPA-3DVG. Our method begins with the Feature Encoder module to jointly encode visual and
linguistic information. Next, the Language Decoupling module splits text features into separate reference and target components. Guided by
these decoupled text embeddings, the Vision Decoupling module then generates multi-grained visual features tailored to reference and target
objects, respectively. In the Progressive Alignment module, both decoupled visual and text features are gradually fused with input queries,
ultimately guiding the Prediction Head to accurately localize the target object. Two alignment losses are employed to optimize the decoupling
and alignment processes.

Leveraging these decoupled text features, we decompose the
3D scene into multi-grained visual representations (Sec. 3.3).
To further align the resulting decoupled visual and text fea-
tures, we progressively fuse them with the input queries via
cascaded reference and target decoders (Sec. 3.4). Finally,
the fused queries localize the target object through a position
alignment loss and a semantic alignment loss (Sec. 3.5).

3.2 Feature Encoder
For the language modality, we employ a pre-trained
RoBERTa [Liu et al., 2019] model to encode the input sen-
tences. On the visual side, we generate point-level features
fvp ∈ RN×D through PointNet++ [Qi et al., 2017], where
N represents the number of points in the point cloud and D
their feature dimensionality. Following [Jain et al., 2022],
we employ a Cross-Modality Encoder—consisting of multi-
ple cross-attention layers—to integrate the extracted visual
and text features. The output, f t ∈ Rl×D, where l is the
length of the input sentence, is then used in the subsequent
sentence decoupling stage; additionally, a set of static queries
Qs ∈ RNs×D is initialized for the following progressive
alignment phase.

3.3 Vision and Language Dual-decoupling
Language Decoupling
Drawing inspiration from EDA [Wu et al., 2023], we use ex-
isting NLP tools [Schuster et al., 2015; Wu et al., 2019] to
explicitly classify words in sentences into five categories:

1) Main Object (Target): The object to be localized. 2) At-
tributes: The target object’s properties (e.g., color, shape). 3)
Auxiliary Objects (References): Additional objects that help
localize the target. 4) Pronouns: Referents for the main ob-
ject. 5) Relations: Spatial relationships between the main

object and auxiliary objects.
While EDA builds a dependency tree to decouple sen-

tences, we further classify all words into two components
based on these categories: the target component (composed
of ”main objects” and ”attributes”), and the reference compo-
nent (including ”auxiliary objects”, ”pronouns”, ”relations”
and any remaining ones). First, we encode the five word cat-
egories as multi-hot vectors, where the corresponding word
position is marked as one. This process produces the codes
{Cmain,Cattri,Cauxi,Crel,Cpron,C∅}, where C∅ repre-
sents words that do not belong to any specific category. The
target and reference components are then encoded as Ctgt =
Cmain +Cattri and Cref = Cauxi +Crel +Cpron +C∅.

Next, we obtain the decoupled target and reference text fea-
tures by applying the respective components to the text fea-
tures f t:

f ttgt = f t ·Ctgt, f tref = f t ·Cref . (1)

This decomposition effectively separates the target object
from the reference elements, enhancing the network’s abil-
ity to interpret objects and their interrelationships within the
scene.

Vision Decoupling
To capture both coarse and fine spatial cues, we propose
multi-grained visual representations [Yuan et al., 2025a;
Yuan et al., 2025b] at the object, voxel, and point levels. This
approach benefits from high-level features for swift object
identification and low-level features for precise localization.

Multi-granularity Visual Representations. Object-
level features, commonly used in two-stage 3D VG ap-
proaches [Jain et al., 2022], are extracted by applying a pre-
trained 3D detector to the scene. The resulting bounding
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boxes yield class and box embeddings, concatenated to form
the object feature fvo.

Point-level features follow the one-stage 3D VG paradigm,
where each point in the cloud is encoded by PointNet++, and
FPS is applied to get point proposals. Local neighborhoods
are then aggregated to refine each point feature fvp.

To bridge object- and point-level representations, we intro-
duce voxel-level features. We divide the point cloud into a
W × L×H voxel grid:

i =
⌊ x

∆W

⌋
, j =

⌊ y

∆L

⌋
, k =

⌊ z

∆H

⌋
, (2)

where (x, y, z) are a point’s coordinates and (i, j, k) its voxel
index. Each voxel’s embedding f̄vv is taken as the average of
its points’ features. A shallow MLP calculates a usefulness
score for each voxel, retaining only the top R×Nvoxel based
on this score:

f̄vm = TopK
(
MLP(f̄vv), R×Nvoxel

)
. (3)

Position embeddings are then added, followed by a self-
attention layer for aggregating global context:

fvv = SelfAttention
(
f̄vv ⊙ f̄vm + PE(xv)

)
, (4)

where xv is the voxel’s position, ⊙ is element-wise multipli-
cation. Finally, our multi-grained visual features are:

fv =
[
fvo, fvv, fvp

]
. (5)

Text-guided Vision Decoupling. Since fv represents the
entire scene without text context, we further decouple it under
the guidance of language description. We first compute the
cosine similarity between each element in fv and the target
or reference text features f ttgt and f tref , then select the top-K
features with the highest similarity scores:

fvtgt, f
v
ref = TopK

(
fv, fv ⊗ f ttgt), TopK

(
fv, fv ⊗ f tref

)
, (6)

where ⊗ means the calculation of cosine similarity. The de-
coupled features thereafter become fvtgt = [fvotgt, f

vv
tgt, f

vp
tgt] and

fvref = [fvoref , f
vv
ref , f

vp
ref ]. This filtration discards distracting el-

ements in the scene and improves alignment accuracy by fo-
cusing on the most salient features.

3.4 Progressive Alignment
After the dual-decoupling of vision and language, we obtain
f ttgt, f

t
ref , f

v
tgt, and fvref . We then propose a progressive align-

ment module composed of two cascaded decoders: 1) A Ref-
erence Decoder that progressively fuses f tref with the multi-
grained visual features fvref . 2) A Target Decoder that further
refines f ttgt with fvtgt.

Within each decoder, text features are merged with the
object-, voxel-, and point-level features from coarse to fine.
To capture both global and local spatial cues, we synthe-
size queries from two sources: 1) static queries derived from
Farthest Point Sampling, initialized by Qs, and 2) dynamic
queries, learnable embeddings randomly initialized. During
training, dynamic queries adaptively focus on crucial regions
(e.g., the target object), while static queries help maintain
broad scene coverage.

For example, consider a scenario where the text describes
a reference object (“it is under a big painting that is gray, yel-
low, and brown”) and a target object (“this is a light brown
couch”). In the Reference Decoder, dynamic queries con-
verge around the “painting” and obtain its spatial relationship
“under” relative to the “couch.” In the Target Decoder, the
mentioned attributes of the couch guide the dynamic queries
to accurately localize the correct furniture piece.

3.5 Prediction Head and Alignment Loss
After the progressive alignment process, the final queries are
used to predict the target object’s bounding box via a single-
layer MLP and estimate the position labels, Cpred, for each
word through another MLP.

To enforce cohesive visual-text alignment, we define two
losses: position alignment loss and semantic alignment loss.
The position alignment loss is formulated as follows:

Lpos =
k∑

i=1

C i
lang log

(C i
lang

C i
obj

)
, (7)

where the ground truth language distribution, Clang ∈
{Cref ,Ctgt}, is determined by the text position labels of each
component. Cobj represents the semantic distributions of ob-
ject features for the i-th candidate among k objects and is
obtained by applying a softmax operation to Cpred.

The semantic alignment loss measures coherence between
object embeddings, o, and text embeddings, t. These em-
beddings are derived through linear projections of the output
queries and f t, respectively. This loss is defined as:

L{F,N}
sem =

1

|F+
i |

N∑
i=1

− log
( exp

(
s+i /τ

)
exp

(
s+i /τ

)
+ exp

(
s−i /τ

)),
(8)

where s+i and s−i denote the similarity scores between the
object embedding o and the text feature vector t for matched
and unmatched cases, respectively. F and N represent the
positive features and the number of objects or text embed-
dings, respectively. The final semantic alignment loss is com-
puted as Lsem = 1

2 (L
{fv,k}
sem +L

{ft,l}
sem ).

By minimizing these two losses, the model learns to align
natural language descriptions with 3D scene features more ef-
fectively and encourages the visual and text representations of
the same target to converge in feature space, thereby yielding
improved accuracy on 3D visual grounding tasks.

4 Experiment
4.1 Datasets and Evaluation Metrics
We evaluated the effectiveness of DDPA-3DVG using three
widely adopted and challenging datasets: ScanRefer [Chen et
al., 2020], Sr3D and Nr3D [Achlioptas et al., 2020]. Scan-
Refer is a 3D visual grounding dataset constructed upon 800
scenes from ScanNet [Dai et al., 2017], encompassing 51,583
text descriptions. Within each scene, if a target object is the
only instance of its class, it is labeled as unique; alternatively,
if there are multiple instances of that class, it is labeled as
multiple. For ScanRefer, the evaluation uses Acc@mIoU,
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Figure 3: Qualitative results on the ScanRefer dataset. Visual results showcase both common and complex scenarios. Refer to the supple-
mentary materials for additional details.

which measures the proportion of descriptions for which
the predicted bounding box’s Intersection over Union (IoU)
with the ground truth exceeds m, where m ∈ {0.25, 0.5}.
Similarly, Sr3D and Nr3D dataset [Achlioptas et al., 2020],
are also constructed from ScanNet. Nr3D contains 41,503
descriptions (annotated by humans) spanning 707 scenes,
whereas Sr3D comprises 83,572 machine-generated descrip-
tions. Both subsets use accuracy as the evaluation metric.
Furthermore, each scene is categorized as easy or hard based
on whether more than two instances of the same object class
are present.

4.2 Comparison with State-of-the-Art Methods
Quantility and Visual Results
As presented in Table 1, we benchmarked our proposed
DDPA-3DVG on the ScanRefer dataset against leading ap-
proaches. Our method achieves state-of-the-art accuracy rates
of 55.3% and 43.2% for IoU thresholds 0.25 and 0.5, respec-
tively, indicating robust performance. Notably, many earlier
methods have leveraged auxiliary 2D image data to enhance
point-cloud features [Chen et al., 2020; Zhao et al., 2021;
Cai et al., 2022], whereas our approach uses only sparse point
clouds and still surpasses these image-dependent baselines.
This result underscores the efficacy of the dual-decoupling
mechanism and progressive alignment module we propose.

Following [Wu et al., 2023], we further compared our ap-
proach with other one-stage methods (see the lower part of
Table 1). Even without relying on object-level visual fea-
tures, DDPA-3DVG outperforms competing alternatives, re-
inforcing the strength of the proposed design. We visualized
our grounding results in Figure 3 for qualitative comparison.
In typical scenes with fewer distractions, both EDA and our

proposed method achieve high-precision grounding. How-
ever, in more complex scenarios where target identification is
hindered by multiple interfering objects, our approach more
effectively mitigates these distractors, consistently delivering
correct predictions, which underscore our method’s aptitude
for understanding spatial contexts and accurately localizing
targets in cluttered scenarios.

To confirm the generalizability of DDPA-3DVG, we also
evaluated it on the SR3D and NR3D subsets of the ReferIt3D
dataset [Jain et al., 2022; Wu et al., 2023]. As reported in Ta-
ble 2, our method again outperforms other approaches, with
accuracies of 54.4% on SR3D and 69.0% on NR3D. These
results affirm the robustness of our approach across diverse
3D point-cloud environments.

To provide a more comprehensive look into the inner work-
ings of DDPA-3DVG, we illustrated the progression of both
static and dynamic queries in Figure 4 at four points during
training: steps 0, 25, 50, and 100. Initially, the dynamic
queries lie scattered throughout the 3D scene, showing no dis-
cernible structure. With successive training iterations, these
queries begin to converge toward the reference object, pre-
cisely guided by the linguistic clues provided in the text de-
scriptions. As the model refines its understanding of the spa-
tial relationships and semantic attributes, the dynamic queries
gradually adjust their positions from the reference zone to-
ward the actual target region in the scene.

This gradual realignment process is driven by our dual-
decoupling mechanism, which aims to isolate and refine rel-
evant visual and text features. By decoupling vision and lan-
guage at multiple levels, our method yields more discrimi-
native representations, allowing the dynamic queries to inter-
pret the scene context more precisely. The shift of the dy-
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Unique(∼19%) Multiple(∼81%) OverallMethods Modality 0.25 0.5 0.25 0.5 0.25 0.5
3DJCG [Cai et al., 2022] 3D+2D 83.5 64.3 41.4 30.8 49.6 37.3
BUTD-DETR [Jain et al., 2022] 3D 82.9 65.0 44.7 34.0 50.4 38.6
EDA [Wu et al., 2023] 3D 85.8 68.6 49.1 37.6 54.6 42.3
ViewRefer [Guo et al., 2023] 3D - - 33.1 26.5 41.3 33.7
3DRP-Net [Wang et al., 2023b] 3D 83.1 67.7 42.1 32.0 50.1 38.9
3DVLP [Zhang et al., 2024] 3D 85.2 70.0 43.7 33.4 51.7 40.5
DDPA-3DVG 3D 86.8 70.2 49.8 38.4 55.3 43.3

3D-SPS* [Luo et al., 2022] 3D 81.6 64.8 39.5 29.6 47.7 36.4
BUTD-DETR* [Jain et al., 2022] 3D 81.5 61.2 44.2 32.8 49.8 37.1
EDA* [Wu et al., 2023] 3D 86.4 69.4 48.1 36.8 53.8 41.7
DDPA-3DVG* 3D 86.5 69.9 48.6 37.4 54.3 42.2

Table 1: 3D visual grounding results on the ScanRefer dataset, with accuracy evaluated under IoU thresholds of 0.25 and 0.5. The upper
section of the table reports the performance of two-stage methods, while the lower section presents results for single-stage methods. Single-
stage methods (denoted with *) are implemented without the need for an additional 3D object detection step. For more comprehensive results,
please refer to the supplementary materials.

Methods Nr3D Sr3D

BUTD-DETR [Jain et al., 2022] 43.3 52.1
LAR [Bakr et al., 2022] 48.9 59.4
3D-SPS [Luo et al., 2022] 51.5 62.6
M3DRef-CLIP [Zhang et al., 2023] 49.4 /
EDA [Wu et al., 2023] 52.1 68.1
3DReftTR-SR [Lin et al., 2023] 52.6 68.5
DDPA-3DVG 54.4 69.7

Table 2: Comparison of 3D visual grounding results with state-of-
the-art methods on the SR3D and NR3D datasets. Performance is
evaluated using accuracy under the 0.25 IoU metric. For more ex-
perimental results, please refer to the supplementary materials.

namic queries over time provides tangible evidence of how
decoupled semantics and visual cues are integrated step by
step. Critically, our progressive fusion strategy—carried out
through specialized reference and target decoders—ensures
that the model systematically narrows down potential targets,
eventually pinpointing the correct object with higher accu-
racy. The consistent adjustment of query positions confirms
that combining vision-language dual decoupling with the pro-
gressive alignment module is instrumental in tackling chal-
lenging 3D grounding tasks, especially within complex envi-
ronments.

Grounding without Object Name
To assess our model’s ability to reason beyond direct lin-
guistic cues such as explicit object names, we adopted
the “Grounding without Object Name” task proposed by
EDA [Wu et al., 2023], wherein all target names in the Scan-
Refer validation set are replaced with the token “object”.
EDA further divided the language descriptions into four sub-
sets that focus on: (i) only attributes, (ii) only spatial re-
lationships, and (iii) both attributes and relationships. As
summarized in Table 3, our model, without additional train-
ing, achieves state-of-the-art results across all these subsets.

Subsets OverallMethods A. R. A. + R. @0.25 @0.5

ScanRefer 11.17 10.53 10.29 10.51 6.20
TGNN 10.52 13.32 11.35 11.64 9.51
InstanceRefer 14.74 13.71 13.81 13.92 11.47
BUTD-DETR 12.30 12.11 11.86 11.99 8.95
EDA 25.40 25.82 26.96 26.50 21.20
DDPA-3DVG 26.40 27.18 28.37 27.83 22.68

Table 3: Performance evaluation of 3D grounding on subsets with-
out object names. Accuracy of subsets is reported based on the
acc@0.25IoU metric. ”A.” and ”R.” represent attribution and re-
lationship.

This superior performance indicates that the reference object
and spatial relationship information extracted via our decou-
pling framework has a highly effective guiding impact on the
grounding process, enabling accurate localization even when
explicit object names are omitted.

Results about Convergence
Figure 5 presents the experimental results. In terms of conver-
gence, our method achieves faster convergence during train-
ing. Specifically, the number of epochs required for our
method to reach a performance of 52.7% is 37 fewer than that
of EDA, representing a 1.97× reduction in training epochs.
Additionally, after convergence, our method achieves an aver-
age accuracy improvement of 1.23% compared to EDA when
IoU is set to 0.25.

These results highlight the effectiveness of our dual de-
coupling of vision and language features and the progres-
sive alignment mechanism, which enables the model to align
cross-modal features more efficiently and effectively. This
not only accelerates the training process but also enhances
the overall model performance. In summary, our method out-
performs EDA in terms of both convergence efficiency and
effectiveness for 3D Visual Grounding.
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Figure 4: Illustration of the query convergence process during the learning phase. Target objects and reference objects are highlighted with
bounding boxes in colors corresponding to the text. Red points represent static queries, while blue points represent dynamic queries.

Figure 5: Comparison of convergence with EDA.

Unique(∼19%) Multiple(∼81%) Overall
O V P 0.25 0.5 0.25 0.5 @0.25 @0.5
✓ 71.9 51.63 35.7 24.3 43.8 33.1

✓ 72.4 51.1 36.3 24.8 44.6 34.0
✓ ✓ 85.5 69.1 48.3 37.7 54.1 41.8
✓ ✓ ✓ 86.8 70.2 49.8 38.4 55.3 43.3

Table 4: Effectiveness of multi-granularity visual representations.
O, V, and P denote object-level, voxel-level, and point-level repre-
sentations, respectively.

4.3 Ablation Studies
Effectiveness of Mutil-granularity Visual Representation
To evaluate the effectiveness of multi-granularity visual rep-
resentation, we trained four model variants under different
representations, as reported in Table 4. Incorporating the
object-, voxel-, and point-level features in a unified manner
consistently enhances performance. This improvement arises
from the enriched, hierarchically distinct 3D spatial informa-
tion provided by voxel-level embeddings, which supplement
the coarse-to-fine granularity of the visual features.

Effectiveness of Language Decoupling
To validate the effectiveness of language decoupling, we re-
moved the decoupling process and instead used sentence-
level features directly in the progressive alignment. When
reference- and target-related linguistic cues are entangled, the
decoder struggles to precisely align visual and linguistic fea-
tures, resulting in noticeably inferior performance, as shown
in Table 5. Specifically, accuracy decreases by 10.2% and
7.7%, respectively. This highlights the importance of sepa-
rating target and reference-related elements, as the proposed
feature decoupling provides fine-grained discriminative abil-
ity to guide precise visual grounding.

Unique(∼19%) Multiple(∼81%) Overall
0.25 0.5 0.25 0.5 @0.25 @0.5

w/o decoupling 86.4 68.8 48.9 37.2 54.5 42.3
DDPA-3DVG 86.8 70.2 49.8 38.4 55.3 43.3

Table 5: Removing language decoupling and using sentence-level
features in progressive alignment results in inferior performance,
demonstrating the importance of decoupling

Unique(∼19%) Multiple(∼81%) Overall
Qd Qs 0.25 0.5 0.25 0.5 @0.25 @0.5
✓ 72.2 48.6 32.6 16.8 38.5 21.6

✓ 84.0 67.8 48.2 37.3 53.6 41.9
✓ ✓ 86.8 70.2 49.8 38.4 55.3 43.3

Table 6: Effectiveness of mixed input queries. Qd denotes dynamic
points, while Qs denotes static points.

Effectiveness of Mixed Points
To investigate the benefits of mixed points in the decoder
queries, we performed an ablation experiment with three con-
figurations: (1) Qs only, (2) Qd only, and (3) the combination
Qs + Qd. As detailed in Table 6, leveraging both static and
dynamic point queries significantly improves localization ac-
curacy. Dynamic points converge around the target object
during training, whereas static points retain a broader recep-
tive field and correct for instances that dynamic points might
overlook. These two categories of points thus complement
each other, resulting in more robust grounding performance.

5 Conclusion
In this paper, we present DDPA-3DVG, an effective approach
for the 3D Visual Grounding task. We innovatively intro-
duce a voxel-based, multi-granularity visual representation,
endowing the model with hierarchical 3D spatial informa-
tion. Furthermore, we decouple text and multi-granularity
visual features into reference and target information using
Language Decoupling and Text-guided Vision Decoupling
modules. Our Progressive Alignment module then progres-
sively grounds the target object, effectively mitigating inter-
ference from the 3D scene and notably improving localiza-
tion precision. Though effective and demonstrating substan-
tial improvements over existing methods, our approach could
benefit from more efficient alignment modules and learnable
candidates to eliminate dependence on pre-trained detectors,
which remain valuable directions for future work.
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