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Abstract
The advancement of deep object detectors has
greatly affected safety-critical fields like au-
tonomous driving. However, physical adversarial
camouflage poses a significant security risk by al-
tering object textures to deceive detectors. Existing
techniques struggle with variable physical environ-
ments, facing two main challenges: 1) inconsistent
sampling point densities across distances hinder the
gradient optimization from ensuring local continu-
ity, and 2) updating texture gradients from mul-
tiple angles causes conflicts, reducing optimiza-
tion stability and attack effectiveness. To address
these issues, we propose a novel adversarial cam-
ouflage framework based on gradient optimization.
First, we introduce a gradient calibration strategy,
which ensures consistent gradient updates across
distances by propagating gradients from sparsely
to unsampled texture points, thereby expanding the
attack’s effective range. Additionally, we develop
a gradient decorrelation method, which prioritizes
and orthogonalizes gradients based on loss values,
enhancing stability and effectiveness in multi-angle
optimization by eliminating redundant or conflict-
ing updates. Extensive experimental results on var-
ious detection models, angles, and distances show
that our method significantly surpasses the state-of-
the-art, with an average attack success rate (ASR)
increase of 13.46% across distances and 11.03%
across angles. Furthermore, experiments in real-
world settings confirm the method’s threat poten-
tial, highlighting the urgent need for more robust
autopilot systems less prone to spoofing.

1 Introduction
Object detection is essential for applications like autonomous
driving, where robustness and reliability are crucial due to its
integration into safety-critical systems. Adversarial attacks
pose a serious threat by manipulating object textures to de-
ceive detection algorithms. This can lead to misclassifications

∗Corresponding author.

or undetected objects, resulting in potential severe real-world
consequences like accidents.

Physical adversarial camouflage presents significant chal-
lenges compared to its digital counterparts, as it requires
modifying real-world objects in a manner that ensures the
attack remains effective when transitioning from the digital
domain to uncontrolled physical environments. This process
involves optimizing an object’s surface texture to deceive de-
tection systems across varying angles and distances, align-
ing with the inherent variability in how cameras perceive ob-
jects under diverse perspectives. However, achieving robust
adversarial camouflage necessitates addressing several criti-
cal challenges. One key difficulty stems from the localized
nature of texture manipulation. Specifically, from any given
viewpoint, only the visible portions of the object’s texture can
be optimized. This viewpoint-specific focus often neglects
the broader context of the object’s surface, which may lead
to suboptimal performance when interactions across different
perspectives are considered holistically. Furthermore, incon-
sistencies in the object’s appearance, caused by variations in
viewing distance, angle, or environmental conditions, further
compound the complexity of this task.

Existing methods typically utilize differentiable renderers
to optimize adversarial textures by simulating object appear-
ances across diverse viewpoints and environmental condi-
tions. However, we identify two critical issues within this op-
timization pipeline that adversely affect attack performance.
The first issue arises from distance-dependent sampling den-
sity: as the distance between the camera and the object
changes, the number of pixels used to render the object varies,
as illustrated in Figure 1. This variation leads to inconsistent
gradient sparsity during backpropagation. This inconsistency,
in turn, results in uneven texture modifications across differ-
ent distances. The second issue stems from potential redun-
dancy or conflict among gradient directions within a mini-
batch, as illustrated in Figure 2. Gradients derived from simi-
lar viewpoints tend to generate redundant updates, while gra-
dients from distinct viewpoints may contradict and cancel one
another, thus impeding effective texture optimization.

To address these identified challenges, we propose a
novel adversarial camouflage framework built upon two core
strategies: Nearest Gradient Calibration (NGC) and Loss-
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Figure 1: Illustration of gradient inconsistencies due to variations in
sampling density across different distances.

Prioritized Gradient Decorrelation (LPGD). First, to miti-
gate the issue of inconsistent gradient sparsity, NGC propa-
gates gradients from sampled points to neighboring unsam-
pled points on the same surface, ensuring local continuity
and consistent sparsity in texture updates across varying dis-
tances. Second, to resolve the gradient redundancy and con-
flicts arising from diverse viewpoints within a minibatch,
LPGD prioritizes gradients according to their associated ad-
versarial loss and decorrelates them through orthogonaliza-
tion. This orthogonalization process ensures that each prior-
itized gradient provides complementary and non-conflicting
information, thereby overcoming challenges related to redun-
dancy and cancellation.

We conducted experiments in realistic simulated environ-
ments, demonstrating that our adversarial camouflage effec-
tively evades object detection across diverse viewpoints, dis-
tances, weather conditions, and multiple detectors. It outper-
forms state-of-the-art methods by 13.46% in attack effective-
ness across distances and 11.03% across angles. Real-world
experiments further confirm its practicality and robustness.

Our contributions are as follows:
• We identify two challenges in optimizing adversarial

camouflage, including inconsistent gradient sparsity due
to distance-dependent sampling density, and redundant
or conflicting gradients across viewpoints.

• We propose Nearest Gradient Calibration (NGC) to
propagate gradients from sampled to unsampled tex-
ture points, ensuring local continuity in gradient updates
across varying distances.

• We introduce Loss-Prioritized Gradient Decorrelation
(LPGD) to prioritize and decorrelate gradients via
orthogonalization, resolving redundancy and conflicts
across viewpoints.

• Extensive experiments demonstrate that our approach
achieves superior attack performance, enhanced robust-
ness to environmental variations, and improved transfer-
ability across diverse object detectors compared to state-
of-the-art methods.

2 Related Work
2.1 Object Detection
Object detection plays a pivotal role in computer vision,
evolving through various strategies. Anchor-based methods
include two-stage detectors [Girshick, 2015; He et al., 2017;

Figure 2: Illustration of gradient conflicts from different perspec-
tives

Ren et al., 2015], which use region proposals for classifi-
cation and bounding box regression, and single-stage mod-
els [Liu et al., 2016; Redmon and Farhadi, 2018], which
frame detection as a regression problem to achieve real-time
performance. Conversely, anchor-free methods [Duan et al.,
2019] eliminate predefined anchors by directly predicting
object centers and dimensions. Recent developments like
DETR [Zhu et al., 2021] introduce an end-to-end detection
approach utilizing transformer architectures. Nevertheless,
these methods are susceptible to adversarial attacks.

2.2 Adversarial Attacks
Adversarial attacks involve the deliberate alteration of images
to mislead deep neural networks [Szegedy et al., 2014], re-
sulting in incorrect predictions. These attacks are divided
into digital and physical based on the domain of perturba-
tion. Digital attacks directly apply crafted perturbations to
digital images, with techniques such as FGSM [Goodfellow
et al., 2014] and PGD [Madry et al., 2017] demonstrating
notable success, especially in classification. These strate-
gies have been adapted for object detection but lose effec-
tiveness in real-world scenarios. In contrast, physical at-
tacks [Wei et al., 2024; Zhu et al., 2023] introduce perturba-
tions in the real world, encompassing adversarial patches and
camouflage. Patch-based attacks apply perturbations to flat
surfaces, effective only from certain viewpoints, while adver-
sarial camouflage covers entire object surfaces, allowing for
multi-angle attacks.

2.3 Adversarial Camouflage
Current adversarial camouflage methods often utilize differ-
entiable 3D renderers to project 3D objects as rendered im-
ages from multiple angles, optimizing 3D textures end-to-
end via backpropagation. For instance, Wang et al. [Wang
et al., 2022] introduced Full-coverage Camouflage Attack
(FCA), optimizing a vehicle’s UV textures through a neu-
ral renderer for enhanced multi-viewpoint camouflage. Simi-
larly, the Dual Attention Suppression (DAS) attack by Wang
et al. [Wang et al., 2021a] reduces visibility to both mod-
els and human observers. Another approach involves opti-
mizing 2D texture patterns projected onto vehicle surfaces.
Suryanto et al. [Suryanto et al., 2022] proposed the Differ-
entiable Transformer Attack (DTA), employing a neural ren-
derer to simulate realistic effects like shadows. Additionally,
ACTIVE [Suryanto et al., 2023] improves camouflage aes-
thetics with enhanced texture mapping and background color
integration. Furthermore, RAUCA [Zhou et al., 2024] utilizes
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Figure 3: Overview of our proposed method. To optimize the texture, we first render the target vehicle image using the texture with a renderer
and integrate it into a realistic background generated by the CARLA Simulator. During optimization, we employ NGC to calibrate gradients
in sparsely sampled regions and use LPGD to resolve gradient conflicts through loss-prioritized orthogonalization on a minibatch. The refined
gradients are then summed and utilized to update the texture.

advanced rendering to account for environmental factors such
as diverse weather conditions. However, existing techniques
may not fully resolve challenges arising from sampling in-
consistency and conflicts in gradient updates, which can af-
fect overall attack effectiveness.

3 Method
3.1 Problem Definitions
Adversarial camouflage [Wei et al., 2024] aims to optimize
the texture of a target object to achieve objectives such as
evading detection or inducing misclassification. A 3D ob-
ject is represented by the tuple (M,T), where M denotes the
mesh structure and T represents its texture. The object’s im-
age, rendered under various camera parameters φ ∈ Φ (e.g.,
different camera angles and distances), is produced using a
differentiable renderer, R. The rendering process first com-
putes the UV coordinates as a function of the camera param-
eter φ, defined by:

UV(φ) = R(M, φ). (1)

The final image of the target object is obtained by sampling
color values from the texture T at the computed UV coordi-
nates:

IM(T, φ) = FS(UV(φ),T), (2)

where FS denotes the sampling function. Since the renderer
R does not incorporate background information, a common
approach for creating physically realistic images is to overlay
the rendered object onto authentic backgrounds. In this study,
we utilize background images generated by the CARLA sim-
ulator [Dosovitskiy et al., 2017]. The composite image is
created by replacing the background in the rendered image
using a segmentation mask S:

I(T, φ) = (S · IM(T, φ)) + (1− S) · IB, (3)

where IB represents the background image.
To conduct a physical evasion attack, the texture is opti-

mized to mislead the target model, causing detection failure

or misclassification. The adversarial texture is derived by
solving:

Tadv = argmin
T
L
(
Fθ(I(T, φ)), y

)
, (4)

where Fθ is the object detector with parameters θ, y is the
ground-truth label covering classification and localization,
and L is the suppression loss function. A lower loss implies
a reduced probability of predicting the target label correctly.
The objective is to hinder the model’s ability to accurately
predict the target label y.
Existing Obstacles. Achieving effective adversarial cam-
ouflage in multi-view settings requires accounting for varia-
tions in distance and viewing angles. Current methods [Wang
et al., 2022; Zhou et al., 2024] optimize textures by rendering
images under diverse conditions using differentiable render-
ers [Kato et al., 2018]. However, they fail to address two sig-
nificant challenges: ❶ Varying sampling densities at different
distances. This variation causes the gradients used for tex-
ture updates to exhibit inconsistent levels of sparsity across
distances. ❷ Conflicting texture update directions across dif-
ferent viewing angles. Naively merging these updates under-
mines the effectiveness of the attack.

3.2 Nearest Gradient Calibration
As illustrated in Equation 2, the rendered image samples col-
ors from the texture T using UV coordinates. The pixel count
representing the target object varies with rendering distance:
closer objects occupy more pixels, resulting in denser texture
sampling, whereas distant objects are represented by fewer
pixels, leading to sparser sampling. Typically, only sampled
points are updated during texture optimization. Due to vary-
ing rendering distances producing different sets of sampled
points, inconsistencies in texture updates can emerge across
different distances. This issue arises from emphasizing pixel-
level optimization while neglecting the continuity required to
preserve the integrity of local surface regions.

To address this problem, we propose a simple yet effective
method called Nearest Gradient Calibration (NGC). The
core idea of NGC is to extend the gradient of each sampled
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point to its neighboring unsampled points. This propagation
ensures that gradient updates over the texture remain locally
continuous, thereby preserving the consistency of texture up-
dates across varying distances.

We define the trainable region of the texture T as T′, which
is constrained by a mask K that restricts updates to specific
areas, such as the visible outer surface of a vehicle. Within
T′, the sampled subset of points is denoted as TU(φ), deter-
mined by the camera parameters φ. For simplicity, we refer
to TU(φ) as TU in the following sections. The remaining un-
sampled points are defined as TF = T′ \TU. Formally, this
relationship is expressed as:

T′ = T⊙K = TU ∪TF (5)

After each iteration of backpropagation, only the gradients
of the sampled points,∇TU , are computed.

∇TU = ∇TUL
(
Fθ(I(T, φ)), y

)
(6)

Ideally, adjacent points on the same surface should be up-
dated collectively to maintain continuity. However, the
renderer’s sampling mechanism may result in sparsely dis-
tributed gradients, leaving intermediate points without gradi-
ents. To address this, we propagate the sparse gradients to
their neighboring unsampled points using a nearest neighbor
search, implemented via the KD Tree algorithm [Zhou et al.,
2008]. For each unsampled point p ∈ TF, we calculate the
Euclidean distance to all points in TU to identify the nearest
neighbor q. The gradient of the nearest sampled point q ∈ TU
is assigned to p provided that ∥p − q∥2 ≤ τ , where τ is the
search radius. This ensures that gradients are assigned only to
unsampled points within a specified local range, maintaining
spatial locality. If no sampled point within the threshold is
found, the gradient for p remains zero. Formally, the gradient
assignment is defined as:

∀p ∈ TF, ∇p
TF

=

{
∇q

TU
, if ∥p− q∥2 ≤ τ,

0, otherwise,

where q = arg min
q′∈TU

∥p− q′∥2.
(7)

After assigning gradients to TF, we obtain the final extended
gradient ∇T′ . By applying NGC, gradients are smoothly
propagated across the texture surface, ensuring local conti-
nuity, as illustrated in Figure 3. This approach effectively ad-
dresses the inconsistencies caused by varying sampling den-
sities, resulting in more uniform and coherent texture updates
across different rendering distances. The detailed procedure
for this method is summarized in Algorithm 1.

3.3 Loss-Prioritized Gradient Decorrelation
In multi-view physical adversarial optimization, overlapping
texture regions observed from varying azimuth and elevation
angles present substantial challenges, primarily due to gra-
dient redundancy and conflicts. Gradient redundancy arises
when gradients from different viewpoints exhibit similar up-
date directions, leading to inflated gradient norms that desta-
bilize optimization. Conversely, gradient conflicts occur
when gradients act in opposing directions, resulting in par-
tial or complete cancellation of updates and diminishing their

Algorithm 1: Nearest Gradient Calibration (NGC)
Input : Texture T, Mask K, camera parameter set Φ,

Search radius τ
Output: Extended gradients∇T′

Define T′ = T⊙K;
Initialize KD-Tree K with TU;
for each optimization step do

Sample camera parameter φ ∈ Φ;
Identify sampled points TU(φ);
TF ← T′ \TU;
Compute gradients∇TU ;
Query nearest neighbors for p ∈ TF using K;
for each p ∈ TF do

Retrieve nearest q and distance d;
if d ≤ τ then

Assign∇TF(p)← ∇TU(q);
else

Assign zero gradient: ∇TF(p)← 0;
end

end
end
return∇T′ ;

effectiveness. If unaddressed, these issues can potentially re-
duce efficiency of adversarial optimization.

To address these problems, we propose the Loss-
Prioritized Gradient Decorrelation (LPGD) method, which
integrates gradient orthogonalization with prioritization
based on loss values. This method ensures that the optimiza-
tion focuses on the most challenging viewpoints and resolves
redundancy and conflicts among gradients to produce stable
and efficient updates.

In the LPGD method, gradients from k viewpoints, cor-
responding to the trainable part of the texture T′ in Equa-
tion 5, are first sorted according to their loss values, L(φi),
such that L(φ1) ≥ L(φ2) ≥ · · · ≥ L(φk). This pri-
oritization ensures that gradients from more challenging
viewpoints are processed first. Specifically, the gradients
{∇T′(φ1),∇T′(φ2), . . . ,∇T′(φk)} are ordered in this man-
ner before applying gradient orthogonalization.

Once gradients are prioritized, we proceed with gradient
orthogonalization to resolve redundancy and conflicts. This
step is crucial to ensure that each gradient contributes unique,
non-redundant information to the optimization process. We
apply a Schmidt orthogonalization [Leon et al., 2013] proce-
dure, which projects each gradient onto the orthogonal com-
plement of the subspace spanned by the previously processed
gradients. Formally, given the i-th gradient ∇T′(φi), its or-
thogonalized counterpart∇⊥

T′(φi) is computed as:

∇⊥
T′(φi) = ∇T′(φi)−

i−1∑
j=1

αij∇⊥
T′(φj),

where αij =
∇T′(φi) · ∇⊥

T′(φj)

∥∇⊥
T′(φj)∥2

.

(8)

This recursive projection removes any components of
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Algorithm 2: Loss-Prioritized Gradient Decorrela-
tion (LPGD)

Input : Viewpoints {φi}ki=1, corresponding gradients
{∇T′(φi)}ki=1, and losses {L(φi)}ki=1

Output: Optimized gradient∇∗
T′

Sort∇T′(φi) in descending order of L(φi);
Initialize∇⊥

T′(φ1)← ∇T′(φ1);
for each i = 2 to k do

for each j = 1 to i− 1 do
Compute αij =

∇T′ (φi)·∇⊥
T′ (φj)

∥∇⊥
T′ (φj)∥2

end
Update
∇⊥

T′(φi)← ∇T′(φi)−
∑i−1

j=1 αij∇⊥
T′(φj)

end
Compute∇∗

T′ ← 1
k

∑k
i=1∇⊥

T′(φi)
return∇∗

T′ ;

∇T′(φi) that are redundant or conflicting with respect to pre-
viously orthogonalized gradients, ensuring that all gradients
are mutually decorrelated. As a result, the gradients provide
complementary information about the texture updates, rather
than conflicting or overlapping contributions.

Once all gradients are orthogonalized, the final update di-
rection is determined by averaging the orthogonalized gradi-
ents. The final update direction is computed as:

∇∗
T′ =

1

k

k∑
i=1

∇⊥
T′(φi), (9)

where ∇⊥
T′(φi) are the orthogonalized gradients. By com-

bining orthogonalization with averaging, the method achieves
stable updates that respect the contributions of all viewpoints
without being dominated by redundant or conflicting gradi-
ents. The detailed procedure for this method is summarized
in Algorithm 2.

Notably, our proposed NGC and LPGD methods are com-
patible and can be combined in a straightforward manner.
NGC propagates the gradient of points q ∈ TU, i.e., ∇TU , to
points p ∈ TF, i.e.,∇TF , to obtain the extended gradient∇T′

at each iteration. Subsequently, LPGD decorrelates these ex-
tended gradients ∇T′ within a minibatch via loss-prioritized
orthogonalization to obtain the final gradients∇∗

T′ .

4 Experiment
4.1 Settings
Implementation Details. We utilize the CARLA simula-
tor [Dosovitskiy et al., 2017] to generate datasets. In line with
previous studies [Zhou et al., 2024], we capture simulated
images to construct a comprehensive training set. Our train-
ing set comprises 20,000 images captured from diverse angles
and distances to enhance texture generation. We focus on the
Audi E-Tron model, as explored in prior research [Wang et
al., 2021a; Wang et al., 2022; Suryanto et al., 2022; Suryanto

Figure 4: Optimized textures for each baseline method and the cor-
responding rendered samples.

et al., 2023]. For evaluation, adversarial camouflage is ap-
plied to the vehicle within CARLA, with images captured
at elevation angles of {0◦, 5◦, 10◦, 15◦, 20◦, 30◦, 45◦, 60◦},
along with 2-degree azimuth increments for a thorough
360◦ sweep. Extended evaluations encompass distances of
{5, 7.5, 10, 12.5, 15} meters and five distinct weather condi-
tions: noon, sunset, night, foggy, and rainy. In real-world
tests, the camouflage patterns are printed on 1:24 scale Audi
E-Tron models, with images captured from various angles
and distances for further analysis. Texture optimization is
conducted using the Adam optimizer with a learning rate of
0.1, employing ModernGL [Dombi, 2020] for differentiable
rendering and segmentation mask S generation. We opti-
mize the textures over three epochs, with all experiments per-
formed on a single NVIDIA A100 80GB GPU.

Comparison Baselines. Our framework is evaluated
against several state-of-the-art adversarial camouflage tech-
niques, including DAS [Wang et al., 2021a], FCA [Wang et
al., 2022], DTA [Suryanto et al., 2022], ACTIVE [Suryanto
et al., 2023], and RAUCA [Zhou et al., 2024]. For our eval-
uations, as illustrated in Figure 4, we transform both our op-
timized textures and those of the baselines into standardized
UV textures, which are constrained by a mask K applied to
the optimizable regions.

Evaluation Metrics. Following previous studies [Zhou et
al., 2024], we assess the attack effectiveness of adversarial
camouflage using the AP@0.5 benchmark [Everingham et
al., 2015], which is a standard measure capturing both recall
and precision at a detection IOU threshold of 0.5.

Target Detection Models. Consistent with prior stud-
ies [Zhou et al., 2024], we utilize YOLOv3 [Redmon and
Farhadi, 2018] as the white-box target detection model for
generating adversarial camouflage. To evaluate the effective-
ness of the optimized camouflage, we test it against a range
of popular object detection models, treating them as black-
box models, except for YOLOv3. This evaluation encom-
passes models such as the one-stage detector YOLOX [Ge et
al., 2021], two-stage detectors Faster R-CNN (FrRCN) [Ren
et al., 2016] and Mask R-CNN (MkRCN) [He et al., 2017],
as well as transformer-based detectors DETR [Carion et al.,
2020] and PVT [Wang et al., 2021b]. Each model is pre-
trained on the COCO dataset and implemented using the
MMDetection framework [Chen et al., 2019].

4.2 Evaluation in Physical Simulation Settings
In this section, we compare our method to state-of-the-art
(SOTA) adversarial camouflage approaches. Comprehensive
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Methods Elevation angle
Avg

0◦ 5◦ 10◦ 15◦ 20◦ 30◦ 45◦ 60◦

Normal 97.57 99.23 99.56 98.23 99.78 96.24 85.42 45.30 90.17
DAS 93.37 95.58 99.45 93.37 98.34 95.58 73.48 45.30 86.81
FCA 93.37 73.48 64.09 65.75 70.17 39.78 10.50 3.31 52.56
DTA 76.80 64.09 60.22 72.38 82.87 56.91 22.10 0.55 54.49
ACTIVE 65.19 66.30 36.46 32.60 37.57 19.34 0.0 0.0 32.18
RAUCA 38.67 23.20 4.97 9.94 13.26 13.81 1.66 0 13.19

Ours 12.53 2.51 2.24 0.0 0 0 0 0 2.16

Table 1: Evaluation results in various elevation angles. Values are
AP@0.5 (%) of the target vehicle averaged across different azimuth
angles with YOLOv3.

Figure 5: Samples under different evaluation conditions

experiments are conducted in the CARLA simulation plat-
form [Dosovitskiy et al., 2017] to assess attack performance
across various viewpoints, distances, weather conditions, and
transferability across different object detectors.

Robustness Across Multiple Angles. We evaluated the ef-
fectiveness of adversarial attacks across 360◦ azimuth an-
gles and elevation angles from 0◦ to 60◦. At each elevation,
images were captured encircling the target vehicle. Experi-
ments were conducted in a white-box setting with YOLOv3,
and results are shown in Table 1. Our findings indicate that
attacks are more challenging at lower elevation angles, as ev-
idenced by higher AP@50 scores due to non-camouflaged
features like vehicle tires aiding detection. At higher eleva-
tions, where such features are less visible and only camou-
flaged areas remain, detector performance declines, resulting
in more successful attacks. Our method consistently achieves
the best results, with the lowest AP@50 scores across all an-
gles, demonstrating robust performance across perspectives.
Specifically, compared to the state-of-the-art RAUCA [Zhou
et al., 2024], our approach improves attack performance by
an average of 11.03%.

Robustness Across Multiple Distances. We conducted ex-
tensive experiments to assess performance across distances
from 5 to 15 meters. Using the same protocol as for elevation
evaluation, we averaged attack performance over full 360◦

azimuth and 0◦–60◦ elevation angles. Results in Table 2
reveal two key insights. First, although detection capability

Methods Distance (m)
Avg

5 7.5 10 12.5 15

Normal 60.36 90.54 90.17 86.33 84.25 82.33
DAS [Wang et al., 2021a] 63.61 89.44 86.81 81.01 78.66 79.91
FCA [Wang et al., 2022] 51.59 68.65 52.56 32.94 44.82 50.11
DTA [Suryanto et al., 2022] 35.22 68.03 54.49 33.77 44.41 47.18
ACTIVE [Suryanto et al., 2023] 14.64 33.63 32.18 25.34 37.02 28.56
RAUCA [Zhou et al., 2024] 17.06 24.17 13.19 10.43 15.12 15.99

Ours 1.24 2.48 2.16 2.90 3.87 2.53

Table 2: Evaluation results in various distances. Values are AP@0.5
(%) of the target vehicle averaged across different elevation and az-
imuth angles with YOLOv3.

Methods Weather Setting
Avg

Noon Sunset Night Foggy Rainy

Normal 92.27 90.17 92.34 79.01 93.99 89.56
DAS [Wang et al., 2021a] 86.67 86.81 88.74 81.70 88.54 86.51
FCA [Wang et al., 2022] 66.99 52.56 73.55 59.81 64.64 63.51
DTA [Suryanto et al., 2022] 69.48 54.49 68.99 55.32 67.40 63.14
ACTIVE [Suryanto et al., 2023] 50.28 32.18 38.40 26.87 43.30 40.24
RAUCA [Zhou et al., 2024] 29.63 13.19 27.49 16.02 24.86 22.24

Ours 5.25 2.16 1.86 2.42 2.62 2.86

Table 3: Evaluation results under diverse weather conditions. Val-
ues are AP@0.5 (%) of the target vehicle averaged across different
azimuth angles with YOLOv3.

weakens with distance, attack performance doesn’t necessar-
ily improve due to loss of texture details at greater ranges,
which can diminish camouflage effectiveness. Second, our
method consistently achieves high attack success rates across
all distances, outperforming existing approaches by 13.46%,
highlighting the robustness and adaptability of the proposed
NGC strategy.

Robustness Under Different Weather Conditions. Fol-
lowing previous studies [Zhou et al., 2024], we evaluated our
method under varying weather conditions, including Noon
(high illumination), Night (low illumination), Sunset (mod-
erate illumination), as well as Foggy and Rainy conditions,
which reduce visibility. The results, summarized in Table 3,
show that most existing methods are sensitive to these con-
ditions. Extreme illumination (Noon and Night) leads to per-
formance degradation due to overexposure or reduced visi-
bility. Moreover, adverse weather conditions like Foggy and
Rainy also impact performance by obscuring critical visual
adversarial features. In contrast, our method demonstrates
significantly improved robustness across all tested condi-
tions. Notably, compared to state-of-the-art (SOTA) method
RAUCA [Zhou et al., 2024], our method achieves a consis-
tent improvement, with an average gain of 19.38% across all
weather scenarios. Despite this, high illumination (Noon) still
poses challenges due to overexposure, providing an avenue
for further enhancement.

Transferability Across Different Object Detectors. To
evaluate the ability of our method to transfer across various
object detectors, we carried out comprehensive experiments
on detectors with diverse architectures, including single-
stage, two-stage, and transformer-based models. These ex-
periments compared our approach with several state-of-the-
art (SOTA) methods. The outcomes, detailed in Table 4, re-
veal notable variations in method performance across differ-
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Methods Single Stage Two Stage Transformer
YOLOv3 YOLOX FrRCN MkRCN DETR PVT

Normal 90.17 95.30 95.68 97.71 97.56 90.36
DAS [Wang et al., 2021a] 86.81 88.60 85.84 87.50 83.91 79.63
FCA [Wang et al., 2022] 52.56 73.41 67.95 71.34 57.04 54.97
DTA [Suryanto et al., 2022] 54.49 79.63 66.16 79.77 25.90 65.19
ACTIVE [Suryanto et al., 2023] 32.18 49.45 46.13 50.48 31.49 41.09
RAUCA [Zhou et al., 2024] 13.19 30.80 23.34 33.77 13.53 35.43

Ours 2.16 22.65 14.57 28.11 6.28 28.25

Table 4: Evaluating of transferability across various object detectors.

(a) Elevation Angle (b) Distance (Relative)

Figure 6: Evaluation results in a real-world setting, assessed under
varying elevation angles (a) and distances (b).

ent detector types. Notably, our method not only surpasses
existing SOTA approaches in the white-box scenario but also
achieves consistently stronger results in most black-box tests,
highlighting its superior transferability.

4.3 Evaluation in Real-World Settings
In this section, we evaluate our method in real-world set-
tings by printing and applying the optimized texture onto a
car, as shown in Figure 5. The evaluation considers vary-
ing perspectives and distances. For perspectives, we tested
three elevation angles and averaged results over a full 360◦
azimuth. For distances, we assessed three distinct ranges.
Results in Figure 6 show that real-world conditions are more
challenging than digital simulations. Lower elevation angles
yield weaker performance, aligning with simulation trends.
As distance increases, AP drops, indicating improved attack
effectiveness—likely due to degraded detector performance
at longer ranges. Additionally, while camouflage detail fades
with distance, even robust features like uncovered tires be-
come less detectable.

4.4 Computational Complexity
The NGC module has a complexity of O(M logN), where
M = |TF | and N = |TU | denote the numbers of unsam-
pled and sampled points, respectively. This stems from KD-
Tree-based nearest neighbor search. The LPGD component
introduces a complexity of O(m2k), due to gradient orthog-
onalization over a texture of size m2 across k optimization
steps. In runtime tests, NGC introduces an 18.0% overhead
(+0.0209s) per iteration, while LPGD adds 4.6% (+0.0054s),
compared to the base forward and backward time (0.1163s).

FP+BP NGC LPGD

Complexity / O(M logN) O(m2k)
Time cost (s) 0.1163 +0.0209 +0.0054

Table 5: Computational complexity and time cost.

Model Baseline w/ NGC w/ LPGD w/ NGC + LPGD
Yolov3 11.75 3.45 8.63 2.16
Faster RCNN 40.95 18.33 31.63 14.57

Table 6: Ablation study on our proposed components.

(a) Effect of search radius τ (b) Effect of batchsize k

Figure 7: Ablation study on (a) search radius in NGC and (b) batch
size for gradients orthogonalization in LPGD.

4.5 Ablation Studies
In this section, we perform ablation studies to analyze the im-
pact of our proposed NGC and LPGD strategies. As shown
in Table 6, both components individually improve attack per-
formance, with their combination yielding the best results.
For NGC, we further examine the effect of the search radius
τ , which determines the furthest neighbor allowed for gradi-
ent propagation. For LPGD, we explore how the batch size
used for gradient orthogonalization influences performance.
To isolate the effects, we set the other component’s effective-
ness to zero during each study.
Effect of Search Radius τ . We evaluate our NGC strategy
across a range of search radius values τ from 0 to 16. The
results in Figure 7(a) show that attack performance initially
improves with increasing τ , reaches an optimal point, and
then declines. This validates the effectiveness of our method
compared to the case where τ = 0. However, excessively
large τ allows gradients to propagate beyond the target sur-
face, introducing noise to irrelevant textures. Thus, selecting
an appropriate τ is critical for balancing local continuity and
noise control.
Effect of Batch Size k. We assess the LPGD strategy by
varying the batch size from 1 to 40. The results, depicted in
Figure 7 (b), show a trend of increasing attack performance
with larger k. This validates our method’s effectiveness in re-
ducing conflicts by considering a broader global context and
decorrelating redundancy and conflict between gradients.

5 Conclusion
In this study, we identify two key challenges in physical ad-
versarial camouflage: inconsistency in gradient sparsity and
conflicting gradient updates. We introduce a novel frame-
work that incorporates Nearest Gradient Calibration (NGC)
and Loss-Prioritized Gradient Decorrelation (LPGD). NGC
promotes gradient propagation from sampled to nearby un-
sampled texture points, ensuring local continuity across vary-
ing distances. LPGD prioritizes and orthogonalizes gradients
to resolve redundancy and conflicts for gradients derived from
different viewpoints. Our approach significantly enhances
attack performance, robustness across diverse environments,
and transferability across different detectors.
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