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Abstract

We present a novel Multi-Agent Reinforcement
Learning approach to understand and improve pol-
icy development by land-shaping agents, such as
governments and institutional bodies. We derive the
underlying policy decisions by analyzing the land
and developing an intelligent system that proposes
optimal land conversion strategies. The aim is an
efficient method for allocating residential spaces
while considering the dynamic population influx
in different regions, jurisdictional constraints, and
the intrinsic characteristics of the land. Our main
goal is to be sustainable, preserving desirable land
types such as forests and fluvial lands while opti-
mizing land organization. We introduce an attrac-
tiveness metric that quantifies the proximity to dif-
ferent land types and other factors to optimize land
usage. It distinguishes two types of agents: “top-
down” agents, which are policymakers and share-
holders, and “bottom-up” agents representing indi-
viduals or groups with specific housing preferences.
Our main objective is to create a synergistic environ-
ment where the top-down policy meets the bottom-
up preferences to devise a comprehensive land use
and conversion strategy. This paper, thus, serves
as a pivotal reference point for future urban plan-
ning and policy-making processes, contributing to a
sustainable and efficient landscape design model.

1 Introduction

Urban planning is a critical domain that requires harmonizing
“top-down” policy decisions, implemented by governments
and institutional bodies, and “bottom-up” preferences, reflect-
ing the needs and desires of individuals and communities. This
duality is particularly significant in addressing the “tragedy of
the commons”, a scenario where individual incentives clash
with the sustainable management of shared resources. Achiev-
ing this balance is crucial for the future of human populations,
especially in the context of effective use of scarce resources.
This study focuses on solving a specific instance of this du-
ality by introducing a novel machine learning (ML) approach
that emphasizes both the theoretical and practical significance

of this problem. Specifically, we address residential hous-
ing allocation and optimization using a dual agent framework
inspired by the work of Bone et al. [2011]. This approach
leverages a robust experimental setting to demonstrate how
intelligent systems can navigate trade-offs between policy-
driven objectives and individual preferences.

We propose a comprehensive framework that incorporates
two distinct types of agents: “top-down” agents, such as policy-
makers and institutional stakeholders, and “bottom-up” agents,
representing individuals or groups with specific housing pref-
erences. By employing this dual agent framework, we aim to
design methods tailored to the unique challenges of this class
of problems, focusing on preserving ecological balance while
optimizing land use. Therefore, we introduce:

(i) Quantile-Optimized Land Use (QOLU) Algorithm
for Top-Down Agents, which employs deep reinforce-
ment learning (RL) to model strategic land use planning.
QOLU agents optimize multiple goals, such as minimiz-
ing agricultural land conversion, preserving proximity to
freshwater sources, and ensuring that new developments
increase spatial proximity with existing urban and sub-
urban areas. QOLU agents aim to act as stewards of the
environment, safeguarding the continuity of woodlands,
agricultural expanses, and other pivotal land use types.

(ii) Neural Network-based Bottom-Up Investor Agent
(BUIA) Algorithm, a decentralized planning model
which uses limited observability to prioritize land use
changes based on historical data and local preferences.
This agent leverages neural networks to identify prof-
itable and sustainable opportunities within a 2 km radius.

Our framework addresses the technical gaps in balancing
top-down and bottom-up approaches, while also offering prac-
tical innovations by explicitly optimizing multi-objective trade-
offs present in our context. This novel integration allows for
a synergistic strategy that adapts to diverse geographical, cli-
matic, and socio-economic conditions.

The remainder of this paper details the problem formulation,
methodology, and a comparative analysis against established
benchmarks from the literature. We also present experimental
results, validating our approach and discussing its broader
implications for future urban planning, along with potential
extensions to enhance scalability and applicability.
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2 Related Work

Balancing economic development with environmental stew-
ardship is a key theme in computational urban planning. Early
approaches often employed methods such as neural-network-
based cellular automata [Li and Yeh, 2002] or probabilistic
graphical models [Bone et al., 2011] to simulate land-use
changes under diverse constraints. Multi-agent systems were
later introduced to model interactions among heterogeneous
stakeholders, as in studies of distributed decision-making
for traffic coordination [Wiering, 2000] and sustainable zon-
ing [Zheng et al., 2023]. In parallel, single-agent reinforce-
ment learning (RL) techniques leveraged spatial information
to predict urban expansion, but often prioritized a single global
objective [Qian et al., 2023].

Recent advances in distributional RL have offered more
robust solutions for tasks involving uncertainty and conflicting
goals by estimating a return distribution instead of a point
estimate [Bellemare ef al., 2017]. Methods such as implicit
quantile networks [Dabney et al., 2018] allow finer control
over multi-objective trade-offs, making them appealing for
land management scenarios where ecological interests can
clash with development demands. Work in multi-objective
RL provides a broader framework for learning policies that
balance competing criteria, surveyed extensively in Roijers et
al. [2013] and Liu et al. [2015], while specific applications to
urban growth reveal the viability of RL-based algorithms for
complex spatial environments [Stetter ef al., 2024].

Despite these developments, bridging top-down regulations
(e.g., environmental protection) with bottom-up stakeholder
preferences (e.g., local housing markets) remains challenging,
though early attempts at “modeling-in-the-middle” [Bone et
al., 2011] underscored the need for linking policy instruments
to agent-level decisions. We address this gap by integrating
a quantile-based multi-objective RL framework, suitable for
safeguarding critical land types, with decentralized agents
that capture localized incentives. This hybrid design seeks
to produce more context-aware and environmentally aligned
outcomes than purely top-down or purely bottom-up models.

3 Methodology

We frame our land management problem as a modified multi-
agent Partially Observable Stochastic Game (POSG), aiming
to combine macro-level policy objectives with micro-level
stakeholder preferences. The methodology centers on two
distinct agent types: fop-down Quantile-Optimized Land Use
(QOLU) agents that adopt distributional RL to guard critical
land types, and bottom-up Neural Network-based Investor
Agents (BUIA) that capture localized incentives based on an
attractiveness metric.

3.1 Problem Formulation

We formulate our problem as a POSG due to its capability to
model the uncertainties and agents in our context — mimicking
the realistic constraints in urban planning. Our formulation
tries not only to capture the inherent complexity of urban envi-
ronments but also allows for robust policy evaluation against
conflicting objectives. Our POSG is given by the tuple:

(¢7 S7 A’ T7 R7 Z’ 0)7

where ® = (¢1,...,¢,) is the set of agents, partitioned
into top-down shareholders (®7p) and bottom-up investors
(® ). Bach state s € S describes a set of 1 km? parcels
with unique attributes (e.g., current land usage, geographic
constraints). The action space A = A; X --- X A, encodes
land-conversion decisions, and 7" is the transition function
specifying the probability of moving from one configuration
of parcels to another given a joint action. Each agent observes
only partial information, defined by an observation function
O: S x A xZ — [0,1]. The reward function:

n
R(s,a) = Z w; Ry, (s,a) + Rsociety (8, a)
i=1

integrates heterogeneous agent objectives via the weights w;.
Contrary to the usual POSG formulation, although each agent
computes its own objective R, , the environment supplies one
shared team reward R(s,a), encouraging fully cooperative
learning. For a top-down agent, R4, may include terms for pre-
serving woodlands and agricultural land and maintaining prox-
imity to freshwater, whereas the societal reward Rgociety (S, @)
captures the net public benefit of protecting overall forest and
agricultural areas (parameterized by « and /). Bottom-up
agents receive rewards linked to attractiveness values of newly
developed parcels, reflecting immediate local gains.

3.2 Attractiveness Metric

A key component for bottom-up decisions is the attractiveness
metric that assigns to each parcel a score based on proximity
to natural features (e.g., forests, fluvial areas) and existing
urban centers. Let Byaciiveness Store the scores A; for each
parcel ¢, with higher values signifying increased desirability
for residential or commercial development. The probability of
an investor agent targeting a parcel is proportional to its attrac-
tiveness, thereby balancing land conversion pressures against
ecological and jurisdictional constraints. Post-conversion, the
attractiveness scores update to reflect changes in neighboring
parcels, allowing the system to evolve iteratively.

3.3 Quantile-Optimized Land Use (QOLU)

Top-down agents adopt a quantile-based distributional RL ap-
proach designed to preserve environmental continuity while
accommodating necessary development. Each top-down agent
or stakeholder may optimize multiple objectives, from mini-
mizing agricultural land loss to maintaining sufficient distance
from fragile ecosystems. The RL algorithm produces a unified
quality metric indicating how favorable the conversion of a
non-residential parcel is to the agent’s weighted goals.

QOLU Algorithm. We instantiate QOLU with a deep RL
model that applies quantile regression to learn a distribution
over returns, rather than a single expected value. This formu-
lation is initialized by parameters " and updated iteratively:

P =y = VLYY,

where 7 is the learning rate. The loss L(1)") is computed over
transitions (s, a, r, s’) using the quantile regression function

| NoM
L(¢) = NZZPTj(yij*sz(si,ai,Tj)),

i=1 j=1
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Algorithm 1 Quantile-Optimized Land Use (QOLU) Algo.

Algorithm 2 Bottom-Up Investor Agent (BUIA) Algo.

1: Initial policy parameters 6, empty replay buffer D,
exploration schedule FEpsilon, number of atoms N,
VininsVmaz» ¥ discount factor

2: for each actor k running in parallel do

3:  Initialize the actor’s environment state s

4:  for each step t do

5 Select action a by exploiting noisy network parame-

ters 6 or exploratory action based on Epsilon

6: Execute action a in the environment to get reward r
and new state s’
7: Store the transition (s, a,r, s’) in D
8: Update s + s
9: end for
10: end for

11: Sample a minibatch of transitions (s, a, r, s") from D
12: for each transition in minibatch do
13:  Calculate n-step return
Ry =00 'ress + 7" maxy Q(st4n, s 0)
14:  Update target distribution Z = R, for the correspond-
ing atom
15: end for
16: For Double Q-learning, use arg max, Q(s’, a; 6) to select
an action and 0~ to evaluate it, resulting in Z = R; +
~Z(s',argmax, Q(s',a;0);07)
17: With a dueling architecture, separate the value and advan-
tage streams in the network, then combine them for the
final Q values calculated as:

Qs,a:0) = V(5:0) + (Als,0;0) - 5, 25472
18: Perform a gradient descent step on the Kullback-Leibler
divergence D1 (Z||Z(s,a;0)) with respect to the net-

work parameters 6
19: Every t,, steps reset 0~ = 0

with 7; € (0,1) specifying the quantile index and p, the
quantile loss function. For each sampled transition, we update
the distribution of future returns, thereby capturing the range of
possible outcomes under uncertain land conversion scenarios.
Pseudocode for QOLU closely follows a Distributional DQN
with quantile regression, as shown in Algorithm 1.

Once trained, each QOLU agent assigns a quality score
to candidate conversions. Summing these scores across all
stakeholders provides a consensus-driven measure that bal-
ances ecological, economic, and policy-related objectives. Ta-
ble 1 presents the details about the architecture and hyper-
parameters used for the QOLU implementation.

Atom support. Following Bellemare er al. [2017], we ap-
proximate the return distribution by a categorical (“‘atom-
based”) distribution supported on a fixed, finite interval.

[Vmina Vmax} CcR
The interval is divided into N equally-spaced atoms

Az — Vmax - Vmin’

min .A» 0<‘<N,
sz N_1 ="

zZ; =

which play the role of “canonical” returns.

1: Initialize model parameters 6

2: Define feature set X capturing local land-use data

3: for each decision point do

4:  Compute logits Z = NeuralNetwork(X; 6)

5: Convert Z to distribution P = softmax(Z)

6:  Sample an action ¢ from Categorical(P)

7:  Execute a (e.g., convert selected parcels)

8 Observe reward Ry based on change in attractiveness
9: end for

3.4 Neural Network-Based Bottom-Up Investor
Agent (BUIA)

While top-down QOLU agents promote global objectives,
bottom-up agents capture the micro-level incentives of individ-
uals or groups seeking property development. Each BUIA op-
erates under limited observability, constrained to a small radius
of nearby parcels. By exploiting local attractiveness scores
and historical land-use changes, BUIA agents can identify
economically and ecologically favorable parcels to convert.

BUIA Algorithm. Each BUIA agent uses a neural network
that processes local features, such as surrounding land types
and updated attractiveness values. The network outputs a
probability distribution over potential development actions,
typically selecting parcels that maximize expected profitability
while aligning with partial ecological constraints. At each
decision step, the agent:

1. Gathers local context (e.g., land cover, neighbors’ attrac-
tiveness updates).

2. Feeds these features into a neural model (parameters 6).
3. Obtains a categorical action distribution via softmax.

4. Samples an action a and executes the corresponding land-
use change.

The reward Rnn(s,a) = Attract(s’) — Attract(s) encour-
ages conversions that increase desirability over time. Algo-
rithm 2 defines BUIA’s pseudo code, showing the critical role
of the attractiveness metric in guiding bottom-up decisions.

Once a BUIA completes its localized conversion, the cor-
responding land records update, and newly computed attrac-
tiveness scores propagate to both bottom-up and top-down
agents. This interplay establishes a feedback loop in which

Conv. Block 3 x 3 kernels, 32 — 64 — 128 filters

Flatten Layer

Residual MLP 2 fully-connected layers (256 units) +
skip connection around the pair

Quantile Head 51 atoms with V' € [—200, 200]

Optimizer Adam

Mini-batch size 256
Discount factor v 0.99
Exploration e-greedy (schedule not fixed)

Table 1: QOLU’s architecture and hyper-parameters information.
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Conv. block 1 convolutional layer, kernel and fil-
ter counts matching the input

MLP 128 — 128 — 64

Output Softmax over current candidate

parcels

Table 2: BUIA’s architecture information.

micro-level parcel changes feed into macro-level planning ob-
jectives, creating an evolving land-use landscape that balances
individual development goals and broader policy constraints.
Table 2 presents the details for BUIA’s implementation.

3.5 Environment Representation and Iteration

The experimentation within the simulated environment ad-
heres to a sequential decision-making process, wherein the
actions proposed by various algorithms are collated before any
updates to the environmental state are enacted. This section
delineates the procedural environment workflow, emphasizing
the role of decision-making in optimizing land usage.

Sequential Decision Making. In the simulated environment,
decision-making is executed in a sequential manner. The
iterative process unfolds as follows:

1. Each algorithm proposes its actions based on the current
state of the environment.

2. The proposed changes to the map are applied only after
all decisions have been made, ensuring a synchronized
update across the entire environment.

This approach ensures that each algorithm operates with
the same information, and changes are made based on an
aggregation of all decisions at the end of each iteration.

Map Division and QOLU Agent Allocation. The environ-
ment is partitioned into blocks of 40 x 40 pixel units, referred
to as parcels, as shown in Figure 1. These parcels represent the
jurisdiction of individual QOLU agents, who act as stakehold-
ers with vested interests in the land use outcomes. Each parcel
is assigned an attractiveness metric, reflecting the desirability
of the neighborhood characteristics within that segment.

Battractiveness = {A17 A27 s

s An} 6]

Figure 1: Southeast UK region, 2015, before (left map) and after
1000 iterations of QOLU (right map).

In Equation 1, 5 denotes a buffer storing attractiveness
scores for every parcel, A; denotes the attractiveness rating of
parcel 7, and n is the total number of parcels.

Decision Buffer and Sampling. A decision buffer is con-
structed to hold the parcels from which they are sampled. The
probability of a parcel being sampled is directly proportional
to its attractiveness rating:

P(sampled | A4;) x A; 2)

In Equation 2, the weighted sampling ensures that parcels
with higher attractiveness are more likely to undergo decision-
making processes by the agents, thus ensuring faster conver-
gence from a machine learning perspective, and higher average
satisfaction with the change.

Neural Network Agent Decision Making. After sampling,
the BUIA agent selects positions within the non-urban land
that will be converted into urban land types. This agent’s deci-
sions are informed by the updated land attractiveness metrics,
influencing the development pattern of the urban landscape.

Reward Allocation and Iteration Completion. Once the
BUIA agent has made its selections, the new parcel data is
fed back to the Stakeholder QOLU agents. Each QOLU agent
then allocates rewards based on the degree of compliance with
their individual objectives:

Rqoru,; = f( parcel_data, objectives, ),

where f represents the reward function specific to each QOLU
agent ¢, and their pre-determined objectives for each agent i.

Simulation Iteration and Land Conversion. An iteration
of the simulation is deemed complete once the reward alloca-
tion is finalized. It is noteworthy that during each iteration,
50 parcels are sampled with replacement, allowing for the
potential conversion of up to 11 land types into urban areas.

Iterative Process and Convergence. The simulation pro-
ceeds iteratively, with the described sequence of steps repeat-
ing. Convergence towards an optimized state is measured by
the stabilization of attractiveness metrics and reward distribu-
tions across successive iterations.

This experimental framework is designed to provide insights
into the effectiveness of the proposed algorithms in managing
land development in a way that balances individual objectives
with broader societal and environmental considerations.

3.6 Metrics

Land Preference Metric. The land preference metric is
defined based on the probability distribution of land types
L for a given cell. Let P(L) be the distribution. The land
preference metric, denoted as LP, is calculated as:

LP = w;- Py, (L) + Peocicty(L) 3)
i=1
In Equation 3, w; represents the weight for each top-down
agent, Py, is the land preference function for the ¢-th high
policy agent, and Fyqciety is the societal land preference func-
tion taken from a dataset and visualized in Figure 2.
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Figure 2: Land preferences represent natural co-occurrence of land
types in the real world, guiding future balance preservation.

Well-being Metric. The well-being metric considers the
housing capacity and unoccupied houses. Let Hiy, be the total

housing capacity and Hoccupied be the occupied housing. The
well-being metric is calculated as WB = %

how effectively the housing capacity is utilized.

assessing

4 Experimental Settings
Overview. The evaluation process involves:

(i) Initialization: Each agent is initialized with a set of
objectives, which can include minimizing the loss of
woodland and arable land, maximizing the distance of
developed parcels from bog, mountain, and heath areas,
and minimizing the distance to urban areas.

(i) Simulation: The agents get sampled on a 50 x 50 grid
(each cell represents a land parcel). The bottom-up agents
propose changes to the land parcels based on their objec-
tives, and top-down agents appraise the solution.

(iii) Reward Calculation: The agents assign rewards to each
change based on how well the change aligns with their
objectives. Rewards are calculated using a combination
of individual rewards (based on specific objectives) and
a global reward (based on the overall impact on the envi-
ronment and urban planning).

(iv) Iteration: The process is repeated for 1000 iterations,
with each iteration representing a new set of proposed
changes and evaluations.

(v) Aggregation: The results from all iterations are ag-
gregated to provide a comprehensive assessment of the
agent’s performance. This includes calculating the aver-
age rewards and analyzing the distribution of land use
changes over the entire grid.

The primary metrics used for evaluation include:

(i) Proximity to Desired Land Types: Measuring how
close the developed parcels are to bog, mountain, and
heath areas.

(ii) Preservation of Land Types: Assessing the extent to
which woodland and arable land types are preserved.

(iii) Urban Connectivity: Evaluating how well the developed
parcels are connected to existing urban areas.

Stakeholders Preferences and Scenarios. To evaluate the
performance of our proposed method, we performed experi-
ments considering three stakeholders’ preferences: (i) maxi-
mizing the distance of developed parcels to specific land uses
(bog, mountain, heath) aggregated into a single land type; (ii)
minimizing the loss of woodland and arable land types due
to development, and; (iii) minimizing the distance of newly
developed parcels to urban or suburban lands.

From these preferences, we created four scenarios, each
emphasizing a different preference. The scenarios and their
respective weights are outlined in Table 3.

Conversion Metric. A critical metric introduced in this
study is the land type distribution alignment Cljign:

Zij\il (commonality(s;) — commonality(3;))*
N

where N is the number of parcels, s; is the set of land types
neighboring parcels i before agent actions, and §; is the set af-
ter agent actions. The function commonality(s) measures the
frequency of the most common neighboring land type to parcel
1. This metric assesses the agents’ capacity to preserve exist-
ing land type distributions that are assumed to reflect historical
human land-shaping preferences as shown in Figure 2.

Calign (5) =

| | Land Use | Woodland | Urban |

Scenario 1 0.33 0.33 0.33
Scenario 2 0.50 0.25 0.25
Scenario 3 0.25 0.50 0.25
Scenario 4 0.25 0.25 0.50

Table 3: Preference settings for each different scenario.
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Baselines. We propose three baselines from the state-of-the-
art for our experiments:

1. the Modelling-in-the-Middle (MitM)’s approach, pro-
posed by Bone et al. [2011].

2. the LToS algorithm, proposed by Yi et al. [2021].
3. the P-MADDPG, proposed by Pelcner et al. [2024].

5 Results

In the result analysis, we conducted paired #-tests for each
scenario and metric to evaluate the confidence in our results.
All scores are presented normalized with standard errors.

Scenario 1: Uniform Weights. Under the uniform weights
scenario (Table 4), our proposed method significantly outper-
forms the baseline methods in all three metrics (¢-test analysis
with p < 0.05). This demonstrates the robustness of our
approach when all stakeholders are given equal importance.

Scenario 2: High Emphasis on Distance to Land. In Table
5, we can see that our method achieves the highest score (0.85)
for this metric, significantly outperforming LToS (0.75) and P-
MADDPG (0.80). However, for Woodland Loss and Distance
to Urban, our method performs similarly to P-MADDPG (0.75
and 0.80, respectively). This suggests that while our approach
is highly effective in prioritizing Distance to Land Use, it
maintains competitive performance in other metrics.

Scenario 3: High Emphasis on Woodland Loss. Table
6 shows that our method achieves the highest score (0.85)
for this metric among baselines. While the performance on
Distance to Land Use is slightly lower (0.75), it is still com-
parable to P-MADDPG (0.75). The ¢-tests indicate that the
improvements in Woodland Loss are statistically significant
(p < 0.05), demonstrating our method’s capability to effec-
tively reduce the impact on woodland areas.

Scenario 4: High Emphasis on Distance to Urban. Table
7 shows the results for this setting. Our method achieves the
highest score (0.85) for this metric. Although the performance
on Distance to Land Use and Woodland Loss (0.75) is not
significantly better than for P-MADDPG, the overall perfor-
mance indicates that our method effectively prioritizes urban
proximity while maintaining balance across other metrics.

0.8

i |
il il «
. 0.6
Metrics
Em Land Use
Woodland Loss
B Urban

!
III I I
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Figure 3: Performance comparison under different scenarios.

Summary. While our method demonstrates significant im-
provements across most scenarios, the mixed results in cer-
tain cases can be attributed to the inherent trade-offs between
the different metrics. For instance, optimizing Distance to
Land Use might slightly compromise Woodland Loss and
vice-versa. These trade-offs highlight the complexity of urban
planning and the need for flexible and adaptive approaches.
Our method’s ability to perform well across various scenarios,
significantly improving key metrics, affirms its robustness and
effectiveness in addressing diverse urban planning challenges.

6 UKCEH Dataset

In environmental research, the availability of extensive and
long-term datasets is crucial for the development and appli-
cation of advanced algorithms. The UK Centre for Ecology
& Hydrology (UKCEH) stands as a key contributor, offering
a valuable repository of data that not only informs scientific
endeavors but also facilitates practical applications in real-life
scenarios. This section highlights this dataset’s utility as a

Method Land Woodland Urban Method Land Use Woodland Urban
LToS 0.70 £ 0.01 | 0.75 +£0.02 | 0.80 & 0.03 LToS 0.70 £0.01 | 0.75 £0.02 | 0.70 £ 0.02
P-MADDPG | 0.75+0.02 | 0.8+0.03 | 0.85+0.02 P-MADDPG | 0.75 £0.02 | 0.80 & 0.02 | 0.75 £ 0.02
MitM 0.60 +0.02 | 0.65 +0.02 | 0.70 = 0.01 MitM 0.60 £ 0.02 | 0.65 £0.02 | 0.60 £0.01
US 0.8+0.03 | 0.85+0.02 | 0.94+0.01 US 0.754+£0.02 | 0.85£0.02 | 0.75 £0.02

Table 4: General performance under Scenario 1.

Table 6: Woodland Loss’s performance under Scenario 2.

Method Land Use Woodland Urban Method Land Use Woodland Urban
LToS 0.75+£0.02 | 0.704+0.02 | 0.75 £0.02 LToS 0.70 £0.01 | 0.70 £0.01 | 0.75 £ 0.02
P-MADDPG | 0.80 +=0.01 | 0.75 +£0.02 | 0.80 + 0.02 P-MADDPG | 0.75 £0.02 | 0.75 +£0.02 | 0.80 £+ 0.02
MitM 0.65+0.02 | 0.61 =£0.01 | 0.65 £ 0.02 MitM 0.60 £ 0.02 | 0.60 £0.01 | 0.65 £ 0.02
US 0.854+0.02 | 0.75 £ 0.02 | 0.80 = 0.01 US 0.75+£0.02 | 0.75+£0.02 | 0.85+0.02

Table 5: Distance to Land Use’s performance under Scenario 1.

Table 7: Distance to Urban’s performance under Scenario 3.
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crucial piece in developing and applying an RL MAS.

As users of the UKCEH data, our primary objective is to
leverage the land use dataset to enhance our understanding
of the environmental dynamics in the southwest region of
the United Kingdom. Spanning the years 2015 to 2021, this
dataset serves as a vital component in our larger effort to create
and implement a reinforcement learning multi-agent system,
designed to navigate the complexities of real-world scenarios.

Our interest lies in the practical application of this dataset
as we work towards developing algorithms that can adapt and
learn within dynamic environmental contexts. By incorporat-
ing the UKCEH’s land use data, we aim to enrich our under-
standing of the region, enabling our reinforcement learning
multi-agent system to operate effectively in real-life settings.

7 Discussion & Conclusions

Discussion. The duality problem in urban planning, char-
acterized by the interaction between “top-down” policies
and “bottom-up” preferences, poses significant challenges
in achieving sustainable resource management. This study ad-
dresses these challenges by proposing a dual-agent framework,
combining the QOLU for policymakers and BUIA for individ-
ual stakeholders. This discussion highlights the implications,
limitations, and potential extensions of our approach.

Relevance to the ‘“Tragedy of the Commons”. At the core
of our research is the concept of the “tragedy of the commons”,
where unregulated individual actions can deplete shared re-
sources. By explicitly modeling the duality between cen-
tralized decision-making and decentralized preferences, our
framework systematically addresses resource depletion. The
integration of QOLU and BUIA enables a synergistic opti-
mization of societal goals, such as minimizing the loss of
ecologically significant land types, while addressing the local-
ized preferences of individuals seeking residential housing.

Strengths and Novel Contributions. Our framework con-
tributes to the field of urban planning by addressing several crit-
ical aspects: (i) Multi-Objective Optimization: The QOLU
algorithm demonstrates its ability to balance competing ob-
jectives, such as preserving agricultural and woodland areas
while ensuring urban connectivity. (ii) Adaptability: The
BUIA algorithm leverages local data and individual prefer-
ences, offering a decentralized approach to land-use plan-
ning that complements the global strategies of QOLU agents.
(iii) Transferability: While our study focuses on urban resi-
dential planning, the proposed framework can be extended to
other domains, such as agricultural land management, ecosys-
tem conservation, and flood risk mitigation.

Conclusions. We developed a multi-agent system for land-
use optimization, introducing two novel algorithms: Quantile-
Optimized Land Use (QOLU) and the neural network-based
Bottom-Up Investor Agent (BUIA). QOLU agents balance
competing land-use policy objectives, while BUIA agents se-
lect the most attractive parcels for development. Our approach
models uncertainty by capturing full return distributions and
balancing ecological, economic, and societal goals within a
POSG framework. These objectives are adaptable, allowing

incorporation of additional metrics and domain-specific knowl-
edge for broader applicability. We benchmarked our frame-
work against three state-of-the-art baselines across four sce-
narios reflecting diverse stakeholder preferences. Our method
consistently outperformed these baselines, achieving statisti-
cally significant improvements in key metrics such as land-
use alignment, woodland preservation, and urban proximity.
QOLU agents effectively minimized ecologically critical land
loss, ensured appropriate land separations, and enhanced ur-
ban planning. BUIA agents prioritized high-attractiveness
parcels, enabling strategic, desirable development. This work
advances sustainable land management by offering a robust
framework that combines RL algorithms and neural network-
based decision-making. Future extensions could incorporate
additional environmental and socio-economic factors to fur-
ther improve adaptability and impact.

Limitations and Challenges. Despite its strengths, the pro-
posed framework has several limitations that warrant further
exploration: (i) Scalability: While our experiments demon-
strate efficacy on a grid of 1 km? land units, scaling the frame-
work to larger regions with higher agent densities may intro-
duce computational challenges. (ii) Data Dependency: The
accuracy of the BUIA agent depends heavily on the avail-
ability and quality of local land-use data. In regions with
sparse data, the performance of the framework may be af-
fected. (iii) Dynamic Factors: Our current implementation
assumes relatively static socio-economic and environmental
conditions. Incorporating dynamic factors, such as population
growth and climate change, remains an area for future work.

Future Direction. Building on our results and insights, av-
enues for future research are proposed: (i) Incorporation of
Dynamic Models: Introducing dynamic population and envi-
ronmental models can enhance the realism and applicability
of the framework. (ii) Improved Scalability: Leveraging
distributed computing and advanced optimization techniques
can address scalability challenges in larger geographical set-
tings. (iii) Integration of Additional Metrics: Expanding
the framework to include socio-economic factors, such as in-
come distribution and housing affordability, would make the
framework more comprehensive. (iv) Real-World Validation:
Collaborating with urban planners and policymakers to val-
idate the framework in real scenarios could bridge the gap
between theoretical research and practical implementation.

Although our current implementation is tailored to a specific
domain (UKCEH dataset) [UK Centre for Ecology & Hydrol-
ogy, 20231, our framework is naturally extendable. We are
exploring transfer learning techniques and parameter tuning to
adapt to different geographic regions with varying regulatory
and socio-economic conditions. However, the promising re-
sults presented here already demonstrate the system’s ability
to handle complex, real-world dynamics.
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