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Abstract
Languages for Knowledge Representation and Rea-
soning, such as ASP, CP, and SMT, excel at solv-
ing complex problems, but encoding them into a
higher-level language may be more profitable, leav-
ing these formalisms as targets for solving. Recent
studies aim to convert controlled natural languages
(CNLs) into formal representations, yet these so-
lutions are often tailored to specific languages and
require significant effort. This paper introduces a
general framework that generates grammars for tar-
get representation languages, enabling the transla-
tion of problems stated in CNL into formal repre-
sentations. The related system, CNLWizard, offers
a flexible, high-level approach to defining desired
grammars, significantly reducing the time and ef-
fort needed to create custom grammars. Finally, we
demonstrate the system’s effectiveness through an
experimental analysis.

1 Introduction
Answer Set Programming (ASP) [Lifschitz, 2019], Con-
straint Programming (CP) [Rossi et al., 2006], and Satisfia-
bility Modulo Theories (SMT) [Barrett et al., 2021] are three
powerful computational paradigms widely used for address-
ing complex combinatorial problems, each offering distinct
approaches to problem modelling and solving. ASP is a form
of declarative programming rooted in logic programming and
non-monotonic reasoning. ASP solvers generate solutions,
known as answer sets, that satisfy a given logic program.
ASP is capable of dealing with problems requiring reasoning
with incomplete or evolving information, such as knowledge
representation, reasoning, and AI applications [Erdem et al.,
2016]. CP focuses on representing a problem through vari-
ables, domains, and constraints. The goal is to find assign-
ments to variables that satisfy all constraints, making CP par-
ticularly effective for problems with intricate combinatorial
structures, such as scheduling, planning, and resource allo-
cation [Wallace, 1996; Hooker and van Hoeve, 2018]. SMT
builds upon the foundation of Boolean Satisfiability (SAT)
by extending it to more expressive theories like arithmetic,
bit-vectors, and arrays [de Moura and Bjørner, 2011]. SMT
solvers determine the satisfiability of logical formulas within

these theories, enabling efficient handling of problems in
verification, model checking, and software synthesis, where
mathematical precision is crucial. They can be seen as com-
plementary formalisms within the same broader framework
of declarative problem-solving, where each formalism excels
in different problem domains, yet they can be integrated or
used in tandem to leverage their respective strengths.

These formalisms can benefit from the use of a controlled
natural language (CNL), a subset of natural language with a
restricted grammar and vocabulary designed to reduce am-
biguity and complexity. Indeed, CNLs provide a bridge be-
tween formal methods and human-readable specifications, al-
lowing domain experts to describe complex problems in a
more intuitive and accessible manner without requiring deep
expertise in the underlying formalism. As argued by Clark et
al. [2005], and by Caruso et al. [2024], the benefits of us-
ing CNLs include (i) enhanced accessibility, as CNLs make it
easier for non-experts to participate in problem formulation,
as they can express constraints, rules, and requirements in a
language close to the natural one; (ii) reduced errors by min-
imizing ambiguity, since CNLs help to prevent misinterpre-
tations and errors in problem specifications, leading to more
accurate solutions; (iii) improved collaboration, as CNLs fa-
cilitate communication between diverse teams, including do-
main experts and developers; and (iv) improved performance
of natural language processing tools, as recently shown by
Borroto Santana et al. [2024]. Integrating CNLs with ASP,
CP, and SMT allows for a more natural and efficient ap-
proach to complex problem-solving, combining the precision
of formal methods with the accessibility of natural language,
broadening the applicability and impact of these powerful
computational paradigms. Nevertheless, implementing cus-
tom CNLs is a time-consuming and challenging process. In-
deed, from a technical perspective, creating a custom CNL
involves writing the grammar, processing the Abstract Syn-
tax Tree (AST), and generating code that translates the natu-
ral language input into the specific formalism. The first step
requires defining a set of syntactic rules capable of captur-
ing the nuances of the language while maintaining precision
and clarity. The grammar must be comprehensive enough
to cover the wide variety of constructs that users may wish
to express, yet restricted enough to avoid ambiguity. Once
the CNL input is parsed according to the grammar, it must
be converted into an AST. This stage is complex because it
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involves resolving ambiguities, managing scope, and ensur-
ing compliance with all semantic rules of the CNL. The final
step involves translating the AST into code that conforms to
the specific formalism, whether it be ASP, CP, or SMT. This
translation process is intricate, as it requires mapping high-
level CNL constructs to the lower-level constructs of the for-
mal language. In this paper, we present a novel framework
that (i) enables the user to specify a grammar for multiple
target languages abstractly, (ii) automatically suggests a pos-
sible default implementation for some elements involved in
the pipeline, and (iii) provides auxiliary data structures that
make the construction of the CNL language more flexible and
guided. We implemented the framework, obtaining a system
called CNLWizard, designed to reduce the effort involved in
developing a custom CNL. CNLWizard processes inputs de-
scribed in a simple YAML-based language and automatically
generates the grammar for the CNL, along with a set of pre-
implemented imperative functions that minimise boilerplate
code. This allows developers to focus primarily on writing
the specific code required to convert sentences into the target
formalism, streamlining the process and making custom CNL
development more accessible and efficient. Indeed, as a prac-
tical evaluation, we compared the lines of code required by
CNLWizard with those required by CNL2ASP [Caruso et al.,
2024] to define and convert CNL sentences into ASP rules,
demonstrating that CNLWizard consistently requires signifi-
cantly fewer lines of code than CNL2ASP.

2 Framework
We recall that a grammar [Chomsky, 1959] is a tuple
(N,T, S, P ), where N and T are disjoint sets of non-terminal
and terminal symbols, respectively, S ∈ N is the start-
ing symbol, and P is a finite binary relation defined on
(N ∪ T )∗ ◦ N ◦ (N ∪ T )∗ × (N ∪ T )∗, called production
rules, where ∗ is the Kleene star operator [Hopcroft and Ull-
man, 1979]. According to the Chomsky Hierarchy, four types
of grammar can be classified depending on the expressiveness
allowed by P . For the purpose addressed in this work, we use
type 2 or context-free grammars, where P is restricted to re-
lations defined on N × (N ∪ T )∗. Let F be a set containing
KR formalisms. We represent with fn : P ,F 7→ I the func-
tion that maps a production rule p ∈ P and a KR formal-
ism k ∈ F into an imperative function invoked when apply-
ing p in the Abstract Syntax Tree (AST), where an element
in I is a triple (name, ⃗args, code) containing, respectively,
the function’s name, arguments and implementation. In other
words, the imperative function defined through fn specifies
how CNL’s text matching a production rule is “processed” to
obtain statement(s) in a target KR formalism or to define the
structure of the entities described.

Let FTar ⊂ F represent a set of target KR formalisms for
which a programmer aims to define a CNL grammar (and the
corresponding fn). Our framework provides a high-level lan-
guage to compactly define the CNL grammar Gt = (Nt, Tt,
St, Pt) for each formalism t ∈ FTar, together with an ini-
tialization of fn(p, t) for each production rule p ∈ Pt. For
the sake of simplicity, we will define how each set of produc-
tion rule Pt is built and assume that Nt and Tt are implicitly

derived by projecting all the non-terminal and terminal sym-
bols occurring in Pt. Without loss of generality, the starting
symbol of each grammar, St, can be defined as a default non-
terminal symbol, S.

Our framework consists of a function ϕ : C 7→ 2(P,I,F ) that
maps a command c ∈ C into a set of triples defining a produc-
tion rule and corresponding imperative function for a formal-
ism. Given a set of commands Ĉ ⊆ C, we define every Pt for
t ∈ FTar as Pt =

⋃
c∈Ĉ{p | (p, I, t) ∈ ϕ(c)}. Then, for each

c ∈ Ĉ and each (p, I, t) ∈ ϕ(c), we initialize fn(p, t) = I .
A command is a pair where the first argument is a keyword
(such as syntax, concat, etc.) or a non-terminal symbol
N and the second argument can be any element of a gram-
mar, formalisms or a set of commands. In the following, we
are going to define the set of accepted command C, together
with the definition of ϕ for each of them.

A possible command is (n, Par), where n ∈ N and Par
is a set of commands with exactly one occurrence of:

• (syntax, ST ), where ST ⊆ (N ∪ T )∗; and
• (target, TG), where TG ⊆ FTar;

and at most one occurrence of the command:
• (concat, CN), where CN ∈ (N ∪ T ).
Then, the function ϕ((n, Par)) returns:

{(n× ST, (n, ST ∩N, ∅), t) | t ∈ TG} ∪ (1)

{(n× n ◦ CN ◦ n,
(n concat, (ST ∩N)∗,code con), t) |
t ∈ TG, (concat, CN) ∈ Par}.

(2)

This command is used to define a production rule for each tar-
get formalism and automatically bind it with the correspond-
ing imperative function, as shown in (1). Notice that the code
part is left empty, since the implementation depends on the
specific application. The optional command (concat, CN)
specifies an additional production rule for n, where its right-
hand side consists of multiple applications of ST , concate-
nated by the symbol CN . The corresponding imperative
function is named n concat and has a single argument con-
sisting of the list of non-terminal symbols that appeared in
the rule, while its implementation is already provided by the
framework and called code con, as shown in (2).

A mandatory command is (start, Par), where Par is a
set of commands defined as in the previous item. This com-
mand is used to specify the production rule of the starting
symbol for each target formalism. Indeed, ϕ((start, Par))
returns the sets in (1) and (2), where n is replaced by the de-
fault starting symbol S.

Another possible command is (operation, Par), where
Par is a set of commands with exactly one occurrence of:

• (name, Op), where Op ∈ N ;
• (syntax, ST ), where ST ⊆ (N∪T )∗ and Op oper ∈
ST ;

• (target, TG), where TG ⊆ FTar; and
• (operators, (s, fs)), where s ∈ T represents an oper-

ator for the operation Op, and fs defines how to translate
s when encountering its node in the AST;
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and at most one occurrence of the command:
• (concat, CN), where CN ∈ (N ∪ T ).

Then, the function ϕ(operation, Par) returns:

{(Op× ST, (Op, ST ∩N,code op), t) | t ∈ TG} (3)

∪ {(Op oper× s, (Op oper, s, fs), t) | t ∈ TG} (4)

∪ {(Op×Op ◦ CN ◦Op,

(Op concat, (ST ∩N)∗,code con, t) |
t ∈ TG, (concat, CN) ∈ Par}.

(5)

The command (operation, Par) simplifies the definition
of operations (e.g., mathematical, comparison, etc.), where
the symbol Op occurring with the keyword name represents
a class of operations that includes all the operator’s symbols
defined after the keyword operators. The right-hand side
of the production rule for Op, namely ST , must contain a
special keyword, called Op oper, that indicates the posi-
tion in the sentence of the string describing an operator. The
framework then defines ϕ to return: a tuple for each t ∈ TG
containing the production rule of Op, where the implemen-
tation of the corresponding function is already provided by
the framework and called code op, as shown in (3); a tu-
ple containing a production rule that maps Op oper to each
operation s, where the implementation of the corresponding
function is defined by fs , as shown in (4); and, lastly, the tu-
ples obtained from the concatenation, as shown in (5).

Similarly to library usage for programming languages, our
framework imports common patterns occurring for standard
KR formalisms. Let FAux ⊂ F represent a set of KR for-
malisms. For each s ∈ FAux we assume the presence of an
auxiliary context-free production rules P s

Aux, where for each
auxiliary rule p ∈ P s

Aux the function fn(p, s) is pre-defined.
Another command is (import, Par), where Par is a set

of commands with exactly one occurrence of:
• (source, s), where s ∈ FAux; and
• (target, t), where t ∈ FTar;

and one or more occurrences of the command:
• (rules, name(p)), where name(p) is a label identify-

ing a production rule p.
This command can be used to import auxiliary produc-
tion rules and pre-defined imperative functions. Namely,
ϕ((import, Par)) = {(p, fn(p, s), t) | (source, s) ∈
Par, (target, t) ∈ Par, (rules, name(p)) ∈ Par, p ∈
P s
Aux}.
Lastly, to extend the flexibility of the grammars, our frame-

work provides a set of data structures characterizing elements
that frequently occur in KR formalisms. By activating them,
the user can access auxiliary production rules. In particular,
we consider: (i) Signatures that provide a template to define
concepts, which intuitively can be traced back to types in im-
perative programming languages; for example, they can be
used to define the structure of an atom in ASP, a variable in
CP, and a literal/variable in SAT and SMT. A signature σ is
composed of an entity, which includes a name and attributes;
(ii) Variables that provide a template to define a variable that
can range over different values. For example, one can state a

variable X is between 0 and 10, and then our framework is
able to recognise that X can range over the values and substi-
tute it with its possible values in all of its occurrences.

2.1 Instantiation of the Framework
This section shows how the framework is instantiated for
defining grammars that can parse CNLs tailored to the most
common KR formalisms. FAux is the set {ASP, CP, SMT}
and PAux is a set containing the following elements (for
brevity, we show only the most important production rules),
where non-terminal symbols are highlighted in bold and ∨
represents an or between elements, elements followed by ?
are optional, string is a placeholder for a production rule
matching any non-empty string containing letters, numbers
and symbol , and number is a placeholder for a production
rule matching any number:

• (signature, (A ∨ An) string has (a ∨ an) string ((, ∨
and) (a ∨ an) string)*);

• (variable, where string is between number and num-
ber);

• (there is clause, (there ∨ There) is entity);
• (positive constraint, It is required that posi-

tive constraint body);
• (negative constraint, It is prohibited that nega-

tive constraint body);
• (math, (The ∨ the) math operator between math first

and math second);
• (comparison, comparison first is? compari-

son operator comparison second);
• (formula, formula first formula operator for-

mula second);
• (entity, (a ∨ an)? string attribute?);
• (verb, (a ∨ an)? string attribute? string);
• (attribute, with string equal to (string ∨ number));
• (simple prop, entity (have ∨ has ∨ are ∨ is) verb en-

tity);
• (neg simple prop, entity (do not have ∨ does not have
∨ are not ∨ is not) verb entity);

• (consequence, If (simple prop ∨ neg simple prop)
then (simple prop ∨ neg simple prop)).

These elements are provided by the framework and can be
imported by users who want to extend the framework with
new elements. In the example below, we demonstrate a sim-
ple extension of the framework.
Example 1. In the following, we assume the user wants to
create a CNL that contains only sentences of the form:

• An entity has an attribute and a attribute.

• There is a entity with attribute equal to value, and with
attribute equal to value.

• When there is a entity with attribute equal to value and
attribute equal to value, then there is a entity with at-
tribute equal to value and attribute equal to value.
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where entity is an element in the signature, attribute is part
of the entity, and value is either a string or a number.

To this end, the user has to define the following set of com-
mands, with ASP as a target:

(import, {
(source, asp), (target, asp),
(rules, signature);
(rules, there_is_clause)});

(start, {
(syntax, signature), (target, {asp}),
(concat, .)});

(start, {
(syntax, there_is_clause),
(target, {asp}), (concat, .)});

(start, {
(syntax, rule),
(target, {asp}), (concat, .)});

(rule, {
(syntax, When there_is_clause, then

there_is_clause), (target, {asp})}).

The following CNL sentences are thus parsed by the result-
ing grammar:

A user has an id and a name.
An admin has an id and a name.
There is a user with id equal to 1, and with

name equal to john.
There is a user with id equal to 2, and with

name equal to susan.
When there is a user with id equal to 2, and

with name equal to susan, then there is
an admin with id equal to 2, and with
name equal to susan.

3 CNLWizard
The framework described in the previous section has been
implemented as part of a practical tool called CNLWizard,
which operates through two main computational steps. The
former corresponds to the framework, while the latter is re-
sponsible for the actual translation of a CNL file into a target
language representation. For the first step, our system expects
a YAML file (see https://yaml.org/ for the syntax of YAML)
specifying the set of commands Ĉ, where terminal symbols
are identified as double-quoted strings and non-quoted strings
are either non-terminal symbols or keywords; then, CNLWiz-
ard generates a grammar and a Python file containing the cor-
responding imperative functions, for each target language t

specified in Ĉ through the keyword target. In the second
step, CNLWizard applies the generated grammar to parse a
CNL file, automatically producing an AST, and then it obtains
the translated CNL by evaluating each node of the tree with
the corresponding function generated in the previous step.

3.1 Step 1) Generate Target Grammar and
Functions

Figure 1 depicts the first step of CNLWizard. The dotted ar-
row states that the user can optionally provide in input a file
containing some of the auxiliary functions. If this is the case,
instead of producing a new file containing all the function
templates, the system just appends the missing functions.

Functions

Commands

CNLWizard - Step 1

Generate

Target
Grammar

Figure 1: Generate Target Grammar and Functions.

In the following, we describe the YAML file expressing the
set of commands Ĉ, where keywords are highlighted in bold,
optional elements are enclosed in square brackets, and round
brackets followed by the symbol plus indicate that multiple
elements can be listed. The structure of the commands fol-
lows the template defined in the framework but relies on syn-
tactic sugar that group commands with the same keywords,
in order to further reduce the size of the file. The YAML file
accepts commands of the form:
import:

rules: (rule_name)+
source: (source_lang)+
target: (target_lang)+

where each rule name is a reserved word identifying an
auxiliary production rule provided by CNLWizard, for each
formalism listed in source (at the moment, ASP, CP, and
SMT). The imported rule is added to the grammar of the
languages specified by target. The lists in source and
targetmust have the same length to have a pair-wise match
that reduces the length of the specification for homonymous
rules. For each non-terminal symbol defined by the user,
non term sym, the following entry is expected:
non_term_sym:

syntax: (regex)+
[target: (target_lang)+]
[concat: conc_symbol]

where regex is a regular expression of terminal and non-
terminal symbols, target lang is the name of a KR for-
malism for which CNLWizard will generate the grammar and
imperative functions, and conc symbol is either a termi-
nal or non-terminal symbol. If target is absent, then this
rule is produced for every language specified with the starting
symbol. Let us note that after syntax it is allowed to have
a list of regular expressions. This is CNLWizard’s syntactic
sugar that compactly expresses groups of commands for the
same non-terminal symbol. Additionally, CNLWizard allows
unifying the definition of multiple rules, while being able to
recall each of them in other regular expressions through the
identifier rule name specified after the keyword name:
non_term_sym:

( name: rule_name
syntax: (regex)+

[target: (target_lang)+]
[concat: conc_symbol]

)+

Then, we can have commands defining the starting symbol:
start:

syntax: regex
target: (target_lang)+

[concat: conc_symbol]
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where its structure matches the one used in the framework.
The specification of the language operators is obtained with:
operation:

( name: op_name
operators: (sym : op_repr)+
syntax: (regex)+

[target: (target_lang)+]
[concat: conc_symbol]

)+

This command is similar to the one for non-terminal sym-
bols but additionally requires the presence of the non-terminal
symbol op name operator in regex. After the keyword
operators, it is expected a list of mappings from the oper-
ation name used in the CNL file, sym, to its representation in
the target language, op repr. In op repr, it is possible to
have either a terminal symbol or a function defined as:
fun:

name: function_name
args: (argument)+

allowing for distinguishing the function name and list of ar-
guments and making them easily accessible in the function
implementation.

Lastly, together with the formalism for ASP, CP and SMT,
CNLWizard provides further auxiliary grammar elements and
relative implementation. Indeed, it provides the definition of
the most common regular expressions, such as string and
number, that can be used in the entries of syntax. More-
over, through the following statements:
non_term_aux:

( syntax: regex
[target: (lang)+]
[concat: token]

)+

the system allows overwriting the syntax of the auxiliary non-
terminal symbols appearing in the imported rules.

3.2 Example of YAML and Python Functions
In this section, we describe a use case to demonstrate the
usefulness of CNLWizard. Specifically, let us assume that
the user wants to solve the following (simplified) scheduling
problem: Given three natural numbers (namely, p1, p2, and
b), a set of teams, and a set of employees, where each em-
ployee has a salary, the goal is to assign employees to teams
such that the following conditions are met: (i) each employee
is assigned to exactly one team; (ii) each team has at least p1
employees and at most p2 employees; (iii) the total salaries of
the employees on each team must not exceed the given budget
b. Moreover, let us assume (s)he wants to use the following
CNL to describe an instance of the problem with 3 employ-
ees, 2 teams, p1, p2, and b set to 1, 2, and 5000, respectively:
An employee has a name and a salary.
A team has an id.
Assigned has an employee_name and a team_id.
There is an employee with name equal to 1,

with salary equal to 2000.
There is an employee with name equal to 2,

with salary equal to 3000.

There is an employee with name equal to 3,
with salary equal to 2000.

There is a team with id equal to X, where X
is between 1 and 2.

Employee with name equal to X is assigned to
a team with id equal to 1 or with id
equal to 2, where X is between 1 and 3.

The number of employees assigned to a team
with id equal to X is greater than or
equal to 1, where X is between 1 and 2.

The number of employees assigned to a team
with id equal to X is less than 3, where
X is between 1 and 2.

The sum between the salary of the employees
that are assigned to a team with id equal
to X is less than 5000, where X is

between 1 and 2.

Listing 1: Example of simplified scheduling problem.

where sentences in lines 1–3 defines the concepts of em-
ployee, team, and assigned, respectively. Then, sentences in
lines 4–6 define the employees and their salaries, and sen-
tence at line 7 defines the two teams. Finally, sentences in
lines 8–11 ensure that all conditions are met.

In this case, the YAML file reported in Listing 2 defines
a set of commands for generating the grammar and the code
needed by the aforementioned CNL, where we consider all
the three different formalisms (ASP, CP, and SMT) as target.
import:

rules: [attribute, there_is_clause, math,
comparison, simple_proposition,
negated_simple_proposition, entity,
verb, variable, signature]

source: [asp, cp, smt]
target: [asp, cp, smt]

start:
syntax: (proposition ".")*
target: [asp, cp, smt]

proposition:
- name: disjunction

syntax: simple_clause "or" attribute
concat: ", and"

- name: there_is_clause
- name: comparison

simple_clause:
syntax: [ simple_proposition,

negated_simple_proposition]
comparison_first:

syntax: [math, aggregate]
aggregate:

syntax: ’"The number of" entity verb
entity’

comparison_second:
syntax: number

math_first:
syntax: ’"the" string "of the" entity

"that are" verb entity’

Listing 2: YAML Specification.

The specification begins with the keyword import,
which adds to the grammar the auxiliary production
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rules identified by attribute, there is clause,
math, comparison, simple proposition,
negated simple proposition, entity, verb,
variable, and signature. Then, the start keyword
represents the root node of the AST, and its syntax is made
of the concatenation of proposition. Here, the list
of target formalisms, namely asp, cp, and smt, is also
defined. Following, we define the syntax of proposition,
which can be a there is clause, a comparison, or
a disjunction (which also presents the syntax and
the concat keywords). In the following, other rules are
defined using the same format, nevertheless, notice that
some non-terminal symbols, e.g. comparison first,
comparison second and math first, must be defined
because of the imported rules, comparison and math.

Once the specification is defined, the tool generates the two
files for each target language: the grammar, and the functions.
An example of an unimplemented function generated by the
tool is shown in Listing 3, where the function start raises
a NotImplementedError meaning that it must be imple-
mented by the user.

def start(propositions):
raise NotImplementedError

Listing 3: Example of a generated unimplemented Python function.

Other rules, instead, as for example the operation rule,
have a default implementation as shown in Listing 4. In this,
case the math function returns the joined string of the oper-
ator with the operands.

def math(*args):
operator_index = 0
operator = args[operator_index]
args = list(args)
args.pop(operator_index)
return operator.join(map(str, args))

Listing 4: Example of a generated implemented Python function.

After the generation step, the user should implement the
functions with empty code, allowing CNLWizard to invoke
them during the translation step. By providing the structure
for each function, we facilitate the user’s task of implement-
ing how each parsed element is mapped into the correspond-
ing expression in the target representation language. As the
functions are defined in an imperative language, it is possi-
ble to rely on external libraries for the implementation and
evaluation of each expression.

Moreover, a user can define a proposition that is valid only
for one target formalism, e.g. ASP. This can be done by
adding the following line under proposition:
- name: weak_constraint

syntax: ’"It is preferred as much as
possible, that" comparison’

target: [asp]

Listing 5: Addition to Listing 2 to target only one formalism.

which adds an optimization statement only for the target asp.

CNLWizard - Step 2

CNL

Target
Grammar

Functions

Pre-
process

Parse

Translate

Abstract
Syntax Tree

Data
Structures

Translated
CNL

Figure 2: CNL translation step.

3.3 Step 2) Translate CNL into Target
Representation

Once the target grammar(s) and corresponding functions have
been generated and implemented by the user, we can pro-
ceed with the translation step, illustrated in Figure 2. First,
CNLWizard pre-processes the input CNL. In this phase, it
initializes the auxiliary data structures, i.e. signatures, if im-
ported, and substitutes the variables. The signatures sup-
port the writing of the grammar and translation into the tar-
get formalism. As mentioned above, they define the con-
cepts of the problem and their structure, and then one can
easily recall them with their defined structure in the propo-
sitions. On the other hand, variable substitution allows the
straightforward application of the same statement with dif-
ferent values. After the pre-processing, CNLWizard applies
the generated grammar to parse the processed CNL and ob-
tains an AST, which is evaluated according to the corre-
sponding function, obtaining the corresponding CNL trans-
lated in the target representation. As an example, con-
sider the sentence There is an employee with name
equal to 1, with salary equal to 2000. reported
in Section 3.2 and consider the ASP target. This sentence is
automatically parsed by the generated grammar and the fol-
lowing Python function is automatically created:

def there_is_clause(entity):
return Fact(entity)

Listing 6: Generated function for there is clause sentence.

where Fact is the name of a Python class implemented in
CNLWizard which translates the entity in the ASP fact
employee(1, 2000). Note that entity is also a data
structure that is automatically created by CNLWizard and can
be modified by accessing its internal fields, as follows:

def there_is_clause(entity):
if ’salary’ in entity.fields:

entity.fields[’salary’] += ’USD’
return Fact(entity)

Listing 7: Modified function for there is clause sentence.

In this case, CNLWizard creates the ASP fact employee
(1, "2000USD"). All the examples and data for the tar-
get formalisms are available at https://github.com/dodaro/
CNLWizard/tree/main/examples.

4 Implementation and Experiments
CNLWizard has been implemented in Python and released
under an open-source licence [Caruso et al., 2025]. The
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CTS GC MAO NSP All

CNLWizard 266 130 287 415 514
CNL2ASP 2620 2162 2422 2566 2936

Table 1: Comparison of the lines of code needed to define CNLs
using CNLWizard and CNL2ASP.

target grammar is obtained and expressed using the library
lark [Lark, ], while the file containing the templates for the
functions is expressed in Python. For each target language,
CNLWizard uses state-of-the-art tools, such as clingo [Geb-
ser et al., 2016] for ASP, OR-tools [Perron et al., 2023] for
CP, and Z3 [de Moura and Bjørner, 2008] for SMT. More-
over, it includes several error messages designed to identify
misspelled text, and common user errors. As for the evalu-
ation of the performance, as CNLWizard is a tool to define
novel CNLs, we measured how it can help developers reduce
their development time. This is often measured in Software
Engineering as the number of lines of code needed to solve
a problem (see, e.g. [Nguyen et al., 2007] for a discussion
about pros and cons). In our case, the problem is the genera-
tion of a grammar for a CNL and its translation to a KR for-
malism. Specifically, we compared the required lines of code
(both grammar and python code) to implement the transla-
tions from a CNL into ASP using CNLWizard with the ones
required by CNL2ASP, which is an open-source tool recently
proposed by Caruso et al. [2024]. Concerning the prob-
lem specifications, we used the domains available from the
CNL2ASP repository (available at https://github.com/dodaro/
cnl2asp/tree/main/examples), namely Chemotherapy Treat-
ment Scheduling (CTS), Graph Coloring (GC), Manipulation
of Articulated Objects (MAO), and Nurse Scheduling (NSP).
We also mention that CNL2ASP is a versatile tool with many
constructs and functions and a total of about 6 thousand lines
of code. As an example, it supports temporal operators and
other constructs that are out of the scope of this paper. There-
fore, for a fair evaluation of the lines of codes, for CNL2ASP
we only considered the lines needed for parsing and translat-
ing the specific problem. The results are presented in Table
1, where the column labeled “All” indicates the total lines
of code required to support the CNL sentences across all the
considered domains. The main advantages of CNLWizard
consist of a compact way of describing the grammar of the
CNLs, a quick and easy way to import parts of grammar,
and import/generate Python functions, and internal manage-
ment of features such as signature, concatenation, and vari-
able templates. As a result, CNLWizard consistently gener-
ated a corresponding CNL with significantly fewer lines of
code, up to 10 times less than CNL2ASP.

5 Related Work
Many CNLs have been proposed for different tasks. Kon-
rad and Cheng [2005] introduced a CNL which can be trans-
lated into various formalisms: linear time logic (LTL), com-
putational tree logic, graphical interval logic, metric temporal
logic, timed computational tree logic, and real-time graphical
interval logic. This CNL was used in different practical ap-
plications in many domains. For example, Post et al. [2011]

tested the applicability of this CNL in the automotive domain,
while Filipovikj et al. [2017] used it to check industrial sys-
tem requirements with SMT translations. Vuotto et al. [2019]
and Narizzano et al. [2018] converted CNL constraints into
LTL formulae and Mahmud et al. [2016] employed a con-
trolled language to structure automotive embedded systems
specifications in a natural language, which is then translated
into Boolean expressions to check their consistency using Z3.

In logic programming, the first approaches were proposed
by Fuchs and Schwitter [1995] and Schwitter et al. [1995],
resulting in Attempto CNL [Fuchs, 2005], whose idea was
to convert sentences expressed in a CNL as Prolog clauses.
Clark et al. [2005] presented a computer-processable lan-
guage designed to be more accessible for computers than for
human users. Erdem and Yeniterzi [2009] proposed BIO-
QUERYCNL, a CNL for biomedical queries, and developed
an algorithm designed to automatically encode a biomedical
query expressed in this language as an ASP program. BIO-
QUERYCNL is a subset of Attempto CNL that can represent
queries, and it was also used as a basis to generate expla-
nations of complex queries [Öztok and Erdem, 2011]. Baral
and Dzifcak [2012] proposed a CNL specific for solving logic
puzzles, whose sentences are then converted into ASP. Lifs-
chitz [2022] showed the process of translating one English
sentence into ASP code. Caruso et al. [2024] proposed
a CNL (similar to the one proposed by [Schwitter, 2018])
which is then converted into ASP by the tool CNL2ASP.

Another line of related work concerns LLMs, even if they
differ fundamentally from CNLs. Indeed, while LLMs show
generally good performance, they are currently unreliable in
producing correct ASP, CP, or SMT code due to their prob-
abilistic nature. CNLs, instead, ensure precision through
grammar-based determinism. Nevertheless, CNLs can be
used for improving the performance of LLMs, as shown by
Borroto Santana et al. [2024], where CNLs were used as an
intermediate layer to map NL to ASP. Our tool could be used
to define new CNLs, which in turn can serve as targets for
converting NL sentences using their method. Other recent
works on LLMs and KR formalisms address different goals:
Alviano and Grillo [2024] focuses on using LLMs to generate
ASP facts; Coppolillo et al. [2024] convert simple patterns in
ASP code, but they do not generalize on complex encodings;
while Wang et al. [2024] and Yang et al. [2024] use KR
formalisms to improve LLMs performance.

6 Conclusions
In this paper, we introduced a novel framework and its im-
plementation, CNLWizard, which simplifies the creation of
CNLs for KR formalisms such as ASP, CP, and SMT. The
framework also facilitates the development of CNLs for other
languages by automating much of the CNL creation process.
Using a YAML-based input language, CNLWizard stream-
lines grammar generation and the creation of imperative func-
tions, reducing the need for extensive boilerplate code.

For future work, the framework could be extended to na-
tively support additional languages and enable users to share
their custom CNLs with the broader community. Moreover,
CNLWizard can be extended to prevent misspelled CNL text.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/dodaro/cnl2asp/tree/main/examples
https://github.com/dodaro/cnl2asp/tree/main/examples


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Acknowledgments
Carmine Dodaro and Marco Maratea were supported by the
European Union - NextGenerationEU and by Italian Min-
istry of Research (MUR) under PNRR project FAIR “Fu-
ture AI Research”, CUP H23C22000860006 and by the Eu-
ropean Union - NextGenerationEU and by the Ministry of
University and Research (MUR), National Recovery and Re-
silience Plan (NRRP), Mission 4, Component 2, Investment
1.5, project “RAISE - Robotics and AI for Socio-economic
Empowerment” (ECS00000035) under the project “Gestione
e Ottimizzazione di Risorse Ospedaliere attraverso Analisi
Dati, Logic Programming e Digital Twin (GOLD)”, CUP
H53C24000400006. Carmine Dodaro was supported by the
European Union - NextGenerationEU and by Italian Min-
istry of Research (MUR) under PNRR project Tech4You
“Technologies for climate change adaptation and quality of
life improvement”, CUP H23C22000370006. This research
was funded in part by the Austrian Science Fund (FWF)
10.55776/COE12.

References
[Alviano and Grillo, 2024] Mario Alviano and Lorenzo

Grillo. Answer set programming and large language mod-
els interaction with YAML: preliminary report. In Proc.
of CILC, volume 3733 of CEUR Workshop Proceedings.
CEUR-WS.org, 2024.

[Baral and Dzifcak, 2012] Chitta Baral and Juraj Dzifcak.
Solving puzzles described in english by automated trans-
lation to answer set programming and learning how to do
that translation. In Proc. of KR. AAAI Press, 2012.

[Barrett et al., 2021] Clark W. Barrett, Roberto Sebastiani,
Sanjit A. Seshia, and Cesare Tinelli. Satisfiability modulo
theories. In Handbook of Satisfiability - Second Edition,
volume 336 of FAIA, pages 1267–1329. IOS Press, 2021.

[Borroto Santana et al., 2024] Manuel Borroto Santana, Ir-
fan Kareem, and Francesco Ricca. Towards automatic
composition of asp programs from natural language spec-
ifications. In Proc. of IJCAI, 2024.

[Caruso et al., 2024] Simone Caruso, Carmine Dodaro,
Marco Maratea, Marco Mochi, and Francesco Riccio.
CNL2ASP: converting controlled natural language sen-
tences into ASP. Theory Pract. Log. Program., 24(2):196–
226, 2024.

[Caruso et al., 2025] Simone Caruso, Carmine Dodaro,
Marco Maratea, and Alice Tarzariol. Github repository
of CNLWizard. MIT Licence, available at https://github.
com/dodaro/CNLWizard, 2025.

[Chomsky, 1959] Noam Chomsky. On certain formal prop-
erties of grammars. Inf. Control., 2(2):137–167, 1959.

[Clark et al., 2005] Peter Clark, Philip Harrison, Thomas
Jenkins, John A. Thompson, and Richard H. Wojcik. Ac-
quiring and using world knowledge using a restricted sub-
set of english. In Proc. of FLAIRS, pages 506–511. AAAI
Press, 2005.

[Coppolillo et al., 2024] Erica Coppolillo, Francesco Cal-
imeri, Giuseppe Manco, Simona Perri, and Francesco
Ricca. LLASP: fine-tuning large language models for an-
swer set programming. In Proc. of KR, 2024.

[de Moura and Bjørner, 2008] Leonardo Mendonça
de Moura and Nikolaj S. Bjørner. Z3: an efficient
SMT solver. In Proc. of TACAS, volume 4963 of LNCS,
pages 337–340. Springer, 2008.

[de Moura and Bjørner, 2011] Leonardo Mendonça
de Moura and Nikolaj S. Bjørner. Satisfiability modulo
theories: introduction and applications. Commun. ACM,
54(9):69–77, 2011.

[Erdem and Yeniterzi, 2009] Esra Erdem and Reyyan Yen-
iterzi. Transforming controlled natural language biomed-
ical queries into answer set programs. In Proc. of the
BioNLP Workshop, pages 117–124. Association for Com-
putational Linguistics, 2009.

[Erdem et al., 2016] Esra Erdem, Michael Gelfond, and
Nicola Leone. Applications of answer set programming.
AI Mag., 37(3):53–68, 2016.

[Filipovikj et al., 2017] Predrag Filipovikj, Guillermo
Rodrı́guez-Navas, Mattias Nyberg, and Cristina Sece-
leanu. Smt-based consistency analysis of industrial
systems requirements. In Proc. of SAC, pages 1272–1279.
ACM, 2017.

[Fuchs and Schwitter, 1995] Norbert E. Fuchs and Rolf
Schwitter. Specifying logic programs in controlled natural
language. CoRR, abs/cmp-lg/9507009, 1995.

[Fuchs, 2005] Norbert E. Fuchs. Knowledge representation
and reasoning in (controlled) natural language. In Proc.
of ICCS, volume 3596 of LNCS, pages 51–51. Springer,
2005.

[Gebser et al., 2016] Martin Gebser, Roland Kaminski, Ben-
jamin Kaufmann, Max Ostrowski, Torsten Schaub, and
Philipp Wanko. Theory solving made easy with clingo 5.
In Proc. of ICLP TCs, volume 52 of OASIcs, pages 2:1–
2:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik,
2016.

[Hooker and van Hoeve, 2018] John N. Hooker and
Willem Jan van Hoeve. Constraint programming and op-
erations research. Constraints An Int. J., 23(2):172–195,
2018.

[Hopcroft and Ullman, 1979] John E. Hopcroft and Jef-
frey D. Ullman. Introduction to Automata Theory, Lan-
guages and Computation. Addison-Wesley, 1979.

[Konrad and Cheng, 2005] Sascha Konrad and Betty H. C.
Cheng. Real-time specification patterns. In Proc. of
(ICSE), pages 372–381. ACM, 2005.

[Lark, ] Lark repository. URL: https://github.com/
lark-parser/lark.

[Lifschitz, 2019] Vladimir Lifschitz. Answer Set Program-
ming. Springer, 2019.

[Lifschitz, 2022] Vladimir Lifschitz. Translating definitions
into the language of logic programming: A case study.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

https://github.com/dodaro/CNLWizard
https://github.com/dodaro/CNLWizard
https://github.com/lark-parser/lark
https://github.com/lark-parser/lark


Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

In Proc. of the ICLP Workshops, volume 3193 of CEUR
Workshop Proceedings. CEUR-WS.org, 2022.

[Mahmud et al., 2016] Nesredin Mahmud, Cristina Sece-
leanu, and Oscar Ljungkrantz. Resa tool: Structured
requirements specification and sat-based consistency-
checking. In Proc. of FedCSIS, volume 8 of Annals of
Computer Science and Information Systems, pages 1737–
1746. IEEE, 2016.

[Narizzano et al., 2018] Massimo Narizzano, Luca Pulina,
Armando Tacchella, and Simone Vuotto. Consistency
of property specification patterns with boolean and con-
strained numerical signals. In Proc. of NFM, volume
10811 of LNCS, pages 383–398. Springer, 2018.

[Nguyen et al., 2007] Vu Nguyen, Sophia Deeds-Rubin,
Thomas Tan, and Barry Boehm. A sloc counting standard.
In Cocomo ii forum, volume 2007, pages 1–16. Citeseer,
2007.
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