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Abstract

Class-agnostic counting enables enumerating arbi-
trary object classes beyond those seen during train-
ing. Recent studies attempted to exploit the poten-
tial of visual foundation models such as Ground-
ingDINO. Despite the considerable progress, we
observe certain shortcomings, including the limited
diversity of visual prompts and suboptimal train-
ing regimen. To address these issues, we introduce
VQCounter, which incorporates a visual prompt
queue mechanism designed to enrich the diversity
of visual prompts. A random modality switching
strategy is proposed during training to strengthen
both textual and visual modalities. Besides, in
light of weak point supervision, a Voronoi diagram-
based cost (VoronoiCost) is designed to improve
Hungarian matching, leading to more stable and
faster convergence. Building upon the Voronoi dia-
gram, we also propose a novel set of more stringent
evaluation metrics, which take point localization
into account. Extensive experiments on the FSC-
147 and CARPK datasets demonstrate that VQ-
Counter achieves state-of-the-art performance in
both zero-shot and few-shot settings, significantly
outperforming existing methods across nearly all
evaluations.

1 Introduction

Object counting is an essential task with broad applications
across agriculture, biomedicine, industry and so on. Histor-
ically, research has concentrated on class-specific counting,
targeting categories such as human [Babu Sam er al., 2022;
Abousamra et al., 2021; Li et al., 2018; Liang et al., 2022],
animals [Arteta et al., 2016; Zhu et al., 2021; Sun et al., 2023;
Jia et al., 2023], cells [Xie et al., 2018; Guo et al., 2019;
Zheng et al., 2024], and vehicles [Mundhenk et al., 2016;
Amato et al., 2019]. Recently, attention has shifted towards
class-agnostic counting (CAC) [Lu et al., 2019], which em-
powers a model to count objects of arbitrary classes not en-
countered during training. Within the CAC paradigm, low-
shot counting methods have gained considerable prominence,
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Figure 1: Performance comparison of VQCounter and the previ-
ous state-of-the-art method CountGD on FSC-147 (validation and
test sets). Evaluations are based on six metrics: three standard
metrics (MAE, RMSE, NAE) and their localization-aware coun-
terparts (LaMAE, LaRMSE, LaNAE), both with and without post-
processing. Lower values indicate better performance. In the radar

chart, lower values are positioned at the periphery, while higher val-
ues are at the center.

encompassing few-shot counting using visual exemplars [Liu
et al., 2022; Shi et al., 2022; You et al., 2023], zero-shot
counting based on textual descriptions [Xu er al., 2023;
Ranjan and Nguyen, 2022; Amini-Naieni et al., 2023; Kang
et al., 2024], and hybrid approaches that fuse both modali-
ties [Amini-Naieni et al., 2024; Dai et al., 2024; Pelhan et
al., 2024b; Pelhan et al., 2024a; Mondal et al., 2024]. Ad-
vancements in large-scale, pre-trained vision-language mod-
els (VLMs) have further propelled CAC’s state-of-the-art per-
formance. CountGD [Amini-Naieni er al., 20241, a leading
method in both few-shot and zero-shot benchmarks, leverages
the pre-trained vision-language model GroundingDINO [Liu
et al., 2025], an open-world text-specific object detector.
By integrating visual exemplar features with textual tokens,
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CountGD transforms GroundingDINO into an open-world
counter, allowing users to specify objects for counting via
text, visual exemplars, or a combination of both.

However, despite its exceptional performance, CountGD
does not fully exploit GroundingDINO’s potential, revealing
avenues for enhancement. In particular, we identify four ma-
jor limitations in CountGD. (1) Insufficient Diversity of Vi-
sual Prompts. CountGD heavily relies on the dataset for vi-
sual exemplars. For example, FSC-147 [Ranjan ef al., 2021]
provides only three visual exemplars per image, which inade-
quately captures intra-class variations such as posture, color,
and size. (2) Simplified Label Matching. Most counting
datasets offer only point annotations, preventing the calcu-
lation of ToUCost for Hungarian matching [Kuhn, 1955] be-
tween ground truth and predictions. As a result, CountGD
omits this critical component, leading to diminished con-
vergence efficiency and overall performance. (3) Mono-
lithic Training Strategy. CountGD exclusively focuses on the
branch that combines text and visual exemplars during train-
ing, neglecting both purely textual and purely visual prompts.
This approach limits performance when uni-modal prompts
are used and undermines the full potential of multi-modal fu-
sion. (4) Inflated Counting Error Metrics. Metrics like Mean
Absolute Error (MAE) fail to accurately reflect localization
errors. This issue is amplified in CountGD, where adaptive
cropping reduces counting errors by balancing the numerous
false positives and false negatives.

To overcome these limitations, in this paper we present
VQCounter (Visual prompt Queue-based Counter), a refined
yet highly effective open-world counting framework. As de-
picted in Figure 2, VQCounter addresses the aforementioned
challenges and integrates novel localization-aware metrics to
rigorously evaluate localization errors. (1) Enhanced Visual
Prompt Diversity. To harness GroundingDINO’s capacity
to generate precise bounding boxes from point annotations,
we introduce a dynamic queue that stores detection boxes
throughout training, thereby augmenting the sparse visual ex-
emplars within the dataset. Drawing inspiration from the
Least Frequently Used (LFU) algorithm [Lee et al., 2001],
we implement a Most Frequently Used (MFU) queue man-
agement strategy. This technique prioritizes frequently used
visual prompts for dequeuing while retaining less-utilized
prompts for longer periods, thus bolstering the model’s abil-
ity to accommodate intra-class variations. (2) Improved La-
bel Matching with VoronoiCost. We introduce VoronoiCost,
grounded in the Voronoi diagram [Aurenhammer and Klein,
20001, as a superior alternative to IoUCost for Hungarian
matching. Unlike IoUCost, VoronoiCost is adept at handling
point annotations, thereby enhancing both training efficiency
and overall performance. (3) Modality Switching Training
Strategy. To remedy the single-branch limitation, VQCounter
adopts a tripartite training approach, incorporating three dis-
tinct prompt branches: text-only, visual exemplars-only, and
a combined text and visual exemplars branch. By strengthen-
ing each modality independently, we enhance the efficacy of
multi-modal prompt fusion. (4) Localization-aware Metrics:
We devise novel metrics inspired by the Voronoi diagram, to
assess localization errors in counting predictions. These met-
rics rely exclusively on ground truth data, ensuring a higher

degree of objectivity compared to traditional methods.

We validate VQCounter through comprehensive exper-
iments on two well-established datasets, namely FSC-
147 [Ranjan et al., 2021] and CARPK [Hsieh et al., 2017].
The results clearly illustrate that VQCounter substantially
surpasses existing methods in both zero-shot and few-shot
benchmarks, as depicted in Figure 1.

2 Related Work

2.1 Existing Counting Tasks

Object counting has been extensively explored, primarily fo-
cusing on class-specific counting across various scenarios, in-
cluding human [Abousamra et al., 2021; Idrees er al., 2018;
Lian et al., 2019; Song et al., 20211, cells [Xie et al., 2018;
Guo et al., 2019; Zheng et al., 2024], animals [Arteta et al.,
2016], and polyps [Zavrtanik er al., 2020]. While these meth-
ods achieve high accuracy for predefined categories, they of-
ten fail to count unseen classes during testing. In contrast,
class-agnostic object counting approaches [Lu et al., 2019;
Zhu et al., 2025; Liu et al., 2022; Xu et al., 2023] offer
flexibility by accommodating arbitrary entities with or with-
out prompts. Since the introduction of the FSC-147 bench-
mark [Ranjan er al., 2021], significant progress has been
made in zero-shot [Xu ef al, 2023; Ranjan and Nguyen,
2022; Amini-Naieni et al., 2023; Jiang er al., 2023] and few-
shot [Lu et al., 2019; Pelhan et al., 2024b; Pelhan et al.,
2024a] counting, enhancing performance to unprecedented
levels. Additionally, the class-agnostic paradigm has spurred
novel tasks such as Referring Expression Counting [Dai et
al., 2024], Training-free Counting [Mondal er al., 2024], and
Unified Textual-Visual Prompts Counting [Amini-Naieni et
al., 2024], broadening the versatility of counting method-
ologies. In this paper, we adopt the class-agnostic frame-
work, focusing on a textual-visual unified benchmark akin to
CountGD [Amini-Naieni et al., 2024], and improve perfor-
mance by addressing previously unreported key issues.

2.2 Counting with VLMs

The advent of pre-trained vision-language models has sig-
nificantly enhanced counting task performance. Zero-shot
counting was first introduced by ZSC [Xu et al., 2023], uti-
lizing class names and CLIP’s [Radford et al., 2021] text
encoder to generate prototypes for interaction with image
feature maps. Subsequent models like CLIP-Counter [Jiang
et al., 2023] and VLCount [Kang er al., 2024] refine the
integration between text and image embeddings. Omini-
Count [Mondal er al., 2024] leverages the Segment Any-
thing Model (SAM) [Kirillov er al., 2023] alongside se-
mantic and geometric priors for improved accuracy, while
PseCo [Huang et al., 2024] extends CLIP and SAM through a
multi-task framework for precise instance segmentation. Re-
cent advancements using GroundingDINO [Liu et al., 2025],
a state-of-the-art open-world detector, have set new bench-
marks. VA-Count [Zhu e al., 2025] enhances exemplar se-
lection with exemplar enhancement and noise suppression,
and GroundingREC [Dai et al., 2024] introduces advanced
feature fusion techniques and a fine-grained counting bench-
mark. CountGD [Amini-Naieni ef al., 2024] further improves
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Figure 2: Pipeline of the proposed VQCounter framework. Building on CountGD, VQCounter introduces four key enhancements: MFU-
Queue for input optimization, VoronoiCost as the primary algorithmic component, Modality Switching Training for the training method-
ology, and novel Localization-aware Metrics. In the diagram, these enhancements are highlighted in bold red font.

these methods by incorporating an image-text fusion module,
enabling the model to process both textual and visual prompts
effectively. Inspired by CountGD, our approach leverages
GroundingDINO more efficiently, significantly increasing vi-
sual prompt diversity and enhancing class-agnostic counting
performance.

2.3 Counting Metrics

Mean Absolute Error (MAE) and Root Mean Squared Error
(RMSE) are prevalent in counting tasks due to their simplic-
ity and computational efficiency. However, these metrics do
not account for localization errors, as false positives and false
negatives can cancel each other out, potentially misrepresent-
ing model performance. To mitigate this issue, REC [Dai
et al., 2024] employs a manually defined threshold combined
with Hungarian matching to compute true positives, false pos-
itives, and false negatives. Additionally, Song et al. [Song
et al., 2021] introduced the nAP metric, which utilizes a so-
phisticated sorting and filtering mechanism, while Ciampi et
al. [Ciampi er al., 2024] proposed the Mosaic Test to esti-
mate coarse localization errors by splicing images. In this
work, we introduce novel localization-aware metrics based on
the Voronoi diagram [Aurenhammer and Klein, 2000], which
accurately quantifies localization errors with enhanced inter-
pretability and independence from predictions.

3 Method

In this section, we first briefly review the general practice in
turning the pre-trained VLMs, e.g., GroundingDINO [Liu et
al., 2025], into an open-word counter. Then, we elaborate on
the proposed VQCounter framework and its key components.
After that, novel localization-aware metrics are presented.

3.1 Preliminaries

Review of Counting with VLMs

We briefly review counting with pre-trained vision-language
models, focusing on CountGD [Amini-Naieni ef al., 2024]

as a representative of recent state-of-the-art approaches. In
these methods, the target object is specified by visual ex-
emplars (e.g., bounding boxes B = {by,...,b,}) or tex-
tual descriptions t. CAC aims to count entities of arbitrary
classes, § = f(X,B,t), where X is the input image and
9 is the predicted count. CountGD consists of an Image
Encoder (fp,,..)» a Text Encoder (fo,,), a Query Selec-
tion Module (Select), a Feature Enhancement Module (f,),
and a Cross-Modality Decoder (fy). After extracting visual
prompts P50 = Rol Align (fog,,..+ (X,B)) and textual
prompts Piestuar = forr (t), the counting process is then
formulated as follows:

(zv,ta ZI) = fcp (-f957uinT (X) 5 [Pvisuah Ptezt]) 5 (1)

Y = Sigmoid (f,l, (ZI, Zy , Select(zy, ZIZV7tT, k:)) zv7tT) ,

(2
where z, ¢ are the fused visual-textual features, zy are the
image features, k is the number of selected image tokens, Y
are the final similarity scores, thresholded by the confidence
threshold o and counted to estimate the object count § during
inference.

Discovery

During the replication of CountGD, we discover a surprising
phenomenon that proves highly beneficial for low-shot CAC
tasks, which has not been previously reported. We find that
even when trained solely with point annotations, the model
retains the ability to generate precise bounding boxes. As
shown in the upper right corner of Figure 2, the predicted
bounding boxes are accurate, and can be utilized as supple-
mentary visual prompts. Their effectiveness is fully demon-
strated in the experiments. Consequently, visual exemplars

will be expanded to B U B, where B = {131, ey Bm}, IA)Z»
denotes a pseudo bounding box.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Algorithm 1: MFU-Queue Algorithm

Data: capacity F, insert batch size n, access batch size m,
incoming vectors Vin = {v1,...,vn}
Result: MFU Queue Q; with frequencies f;(v)
1 Initialize Q; < @ and f;(v) < 0 for all v;
2 while training do
3 Insertion Phase;

4 foreach vy, € V;» do

5 if |Q;:| = E then

6 Uremove $— ArgMaXyeQ; fl (1});

7 Qz — Qz \ {Uremove};

8 Qz — Ql U {Unew};

9 f i ('Unew) 05
10 Access Phase;
11 Select m vectors Viccess from Q; with probability

__ YUiwte .
PW) = s o renTa

12 foreach v € V,ccess do

13 i Lfi(i))(-fi(v)—Fl;

3.2 VQCounter

In this part, we start to introduce the proposed count-
ing framework VQCounter, a Visual prompt Queue-based
Counter. In VQCounter we propose four improvements,
namely MFU-Queue, VoronoiCost, Modality Switching
Training, and Localization-aware Metrics, to improve the al-
gorithm from a global perspective. Each part will be elabo-
rated on in detail as follows.

MFU-Queue

Based on the description in Section 3.1, the pseudo yet ac-
curate bounding boxes produced by the model could signifi-
cantly enrich the diversity of visual exemplars. As shown in
the upper right corner of Figure 2, even in the first training
epoch, the model can detect several precise bounding boxes,
and as training progresses, the recall of the detected boxes
will gradually increase (more visualizations in the Appendix).
These boxes can serve as a supplement to visual examples to
enrich the diversity of visual prompts. To store these addi-
tional visual prompts, we first construct FIFO (First in, First
Out) queues Q = {Qq,...,Qk},Q; € RF*?, where K
denotes the number of classes in the training dataset and the
capacity of each queue is set as a constant value E. In each
training iteration, the visual prompts are drawn randomly
from the ground truth boxes in the dataset and the prompt
queues Q.

Although the baseline queue helps to improve the diversity
and effectiveness of visual prompts, the strategy for prompt
entry, exit and sampling can be further optimized. Inspired by
the Least Frequently Used (LFU) algorithm [Lee ez al., 2001],
a famous cache algorithm for memory management within a
computer, we propose MFU-Queue, a Most Frequently Used
priority dequeue Queue. As its name suggests, MFU-Queue
tracks how often each prompt is accessed. When the queue
is full, the most frequently accessed prompt is removed first.
Simultaneously, within the queue, we employ a probabilistic
accessing strategy that prioritizes prompts with fewer prior
selections. During training, the enqueue and dequeue opera-

tions and access to visual prompts are performed alternately.
Therefore, MFU-Queue significantly enhances the richness
of visual prompts and demonstrates greater robustness to vari-
ations in object size and background within the same cate-
gory. The MFU-Queue training procedure is summarized in
Algorithm 1.

VoronoiCost

MFU-Queue optimizes the algorithm’s input, while
VoronoiCost, discussed in this section, enhances the al-
gorithm’s key components. One of the key components in
DETR-like detectors is Hungarian matching between N
object queries and M ground truth (GT) boxes. Its goal is
to seek a matching function o that assigns each GT box to a
predicted box, thatis o : {1,2,..., M} — {1,2,...,N}.
Here, o () outputs the index of the prediction matched to the
t-th GT box. The Hungarian algorithm is utilized to find the
optimal matching o* that minimizes the total cost:

M

0 = aIrg I’ILII’I Lzl Cz,o(z)a 3)
C € RM*N js a cost matrix, where each element C; ; rep-
resents the cost of matching the i-th ground truth box with
the j-th predicted box. In DETR-like detectors, this cost typ-
ically combines classification cost, bounding box coordinates
cost, and GlIoU cost (o, 3, and ~y are coefficients):

C= aCcls + BCcoord + ’)/CGIOU' (4)

Object counting datasets typically provide point annotations,
where only the center point of each object is given, and the
width and height are unknown. Consequently, in existing
methods, C,,,-q only considers point coordinates, and the
vCarov marked with underline is discarded, leading to sub-
optimal performance and efficiency. In this paper, a novel
VoronoiCost (denoted as Cyy.op,) is proposed to make up for
the lack of Cg 1,y When only point annotations are available
in counting datasets.

VoronoiCost is constructed upon the Voronoi diagram [Au-
renhammer and Klein, 2000], which is a partition of a plane
into regions close to each of a given set of points. Each region
corresponds to a point in the given point set, and the distance
from any point within a region to its corresponding point is
less than the distance to any other points.

Formally, given a set of GT points G = {gy, . ..
first construct their Voronoi Polygons as:

Vi(gi) = {xeR*|d(x,g) <d(x.g)Veg €G,j#i},

(&)
where d (-) denotes euclidean distance. Then, given a set of
predictions P = {p1,...,pn}, we can calculate Cy o0, as
follows:

7gJVI}, we

CVoron(iaj) = csmi -1 (pj eV (gi))+clag I (pj ¢ v (gz)) 5

(6)
where I(-) is the indicator function, and cgn and ci,g are
constant values representing the matching cost when the pre-
dicted point p is within the Voronoi polygon area of the GT
point g. Eq. (4) now is turned as:

C = aC.s + BCeoord + ’YCVoron- (N
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Figure 3: Comparison of MAE and LaMAE. (a) Predictions per-
fectly match the ground truth, resulting in both MAE and LaMAE
being 0. (b) False positives and false negatives cancel each other
out, yielding a MAE of 0 but a LaMAE of 6, indicating the presence
of localization errors.

Experimental results show the Cy .o, boosts the perfor-
mance and matching efficiency remarkably.

Modality Switching Training

In contrast to previous approaches that consider either uni-
modal or multi-modal prompts in isolation, we propose a
more generalized framework known as Modality Switching
Training (MST). The key insight behind this design is that
improving the performance of any individual modal prompts
can enhance the effectiveness of multi-modal fused prompts.
Specifically, VQCounter employs a gating controller that reg-
ulates the modality of prompts during training. Formally, the
equation in Eq. (1) is rewritten as follows:

& 20) = o (Fosur (X),P). ®)

where P € {P'Uisual7 Ptewtuah [Pvisuala Ptewtual}k and z €
{2v,2t,2Zy +}. Meanwhile, the z  in the Eq.(2) will be re-
placed by z too. Building upon the MST strategy, the model’s
performance is reliably ensured for any uni-modal prompts,
which significantly contributes to enhancing its performance
in multi-modal prompts.

Localization-aware Metrics

To evaluate the algorithm’s capabilities with greater precision
and objectivity, this part introduces the novel localization-
aware metrics. The motivation aligns with previous stud-
ies [Dai er al., 2024; Song et al., 2021; Ciampi et al., 2024].
Common error metrics, such as Mean Absolute Error (MAE),
Root Mean Squared Error (RMSE), and Normalized Absolute
Error (NAE) fail to capture localization errors, potentially
yielding accurate counts but imprecise localization. Specif-
ically, false positives (FPs) and false negatives (FNs) may
cancel each other out, leading to inflated performance met-
rics.

Unlike previous methods, the proposed localization-aware
metrics are also built on the Voronoi diagram and offer greater
objectivity and accuracy without relying on the information
of predicted results. Before computing the true positives
(TPs), false positives (FPs), and false negatives (FNs), we first
define the number of predicted points within each Voronoi
Polygon s; as follows:

si=Hpi € P|picVi(gi}l, )

where V (gj), ‘P, and range of ¢ and j is the same as Eq. (5).
Each Voronoi polygon containing at least one predicted point
is counted as one TP, and any predicted points beyond the first
are considered FPs. Each Voronoi polygon with no predicted
points is counted as one FN, indicating a missed target.

Assume that the dataset size is B, and there are M, GT
points in the b-th image. Based on the counted TPs, FPs and
FNs, we define a set of Localization-aware (La) metrics, in-
cluding LaMAE, LaRMSE and LaNAE, as follows:

o

My,
TP, = Y I(s; > 1) LaMAE =
Jj=1 b

My, B
FPy = 3. max(s; — 1, 0) LaRMSE = 4/ & > (FP, + FN)*
i=1 b=1

My, B
FNy, = 3 I(s; =0) = M — TP, |[LaNAE = £ >
i=1 b=1

5 (FPy + FNp)
1

FP,+FN,
M,

(10)
These localization-aware metrics not only quantify count-
ing errors but also assess localization inaccuracies. Taking
MAE and LaMAE as an example, Figure 3 illustrates two
typical scenarios. Both Figure 3a and Figure 3b exhibit MAE
of 0. In Figure 3a, the absence of false positives and false
negatives results in a LaMAE of 0. Conversely, Figure 3b in-
cludes FPs and FNs, leading to a LaMAE of 6. LaMAE is
clearly more reasonable and accurate than MAE.

4 Experiments

In this section, we perform comprehensive experiments on
two widely used datasets, i.e. FSC-147 [Ranjan et al., 2021]
and CARPK [Hsieh ef al., 2017], to validate the efficacy of
our proposed VQCounter. To ensure a fair comparison, we
adopt the same experimental setup as previous studies: VQ-
Counter is trained using the FSC-147 training set and sub-
sequently evaluated on the FSC-147 test set as well as the
CARPK dataset without any fine-tuning.

4.1 Datasets & Metrics

FSC-147 consists of 6,135 images spanning 89 training, 29
validation, and 29 test classes, with each set containing mu-
tually exclusive classes. Every image is annotated with at
least three visual exemplars. CARPK includes 989 train-
ing and 459 test images of parking lots captured by overhead
drones. Each image is annotated with at least two bound-
ing boxes. Adopting the approach from [Liu et al., 2022],
we utilize these bounding boxes as visual exemplars and use
the class name ‘“car” for textual descriptions. More details
about the two datasets and preprocessing are provided in the
Appendix. For evaluation metrics, we employ both the stan-
dard metrics commonly used in counting tasks, namely MAE,
RMSE, and NAE, as well as their localization-aware counter-
parts: LaMAE, LaRMSE, and LaNAE. These localization-
aware metrics integrate counting and localization errors, of-
fering a more comprehensive evaluation framework.

4.2 Implementation Details

For training, we use strategies similar to CountGD with the
Adam optimizer and train for 30 epochs. Unlike CountGD,
we fix fog,..r and fg,, during training, and also stabilize
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Method Prompt Modality Walidation Test
MAE| | RMSE| | NAE| | LaMAE| | LaRMSE| | LaNAE| | MAE| | RMSE| | NAE| | LaMAE | | LaRMSE | | LaNAE |
Patch-selection Textual 26.93 88.63 - - - - 22.09 115.17 - - - -
CLIP-count Textual 18.79 61.18 17.78 106.62
VLCounter Textual 18.06 65.13 17.05 106.16
CounTX Textual 17.1 65.61 15.88 106.29
DAVErm Textual 15.48 52.57 14.9 103.42
GroundingREC Textual 10.06 58.62 10.12 107.19
CountGDy¢ ¢ Textual 12.14 47.51 - - - - 14.76 120.42 - - - -
CountGD Textual 12.21 69.45 0.13 18.79 80.22 0.18 15.02 131.74 0.14 18.57 133.56 0.18
VQCounter (Ours) Textual 8.72 48.74 0.07 12.52 57.54 0.11 6.84 84.04 0.06 9.79 92.51 0.09
CounTR Visual-I 13.13 49.83 - - - - 11.95 91.23 - - - -
LOCA Visual-I 10.24 32.56 10.79 56.97
DAVE Visual-I 8.91 28.08 - - - - 8.66 32.36 - - - -
CountGD Visual-I 8.13 39.02 0.09 15.54 62.55 0.15 7.34 8243 0.08 11.27 91.76 0.11
VQCounter (Ours) Visual-I 8.69 39.22 0.1 13.34 56.29 0.14 5.29 39.52 0.07 9.43 87.47 0.1
CountGD Visual-T & Textual 7.1 26.07 0.09 16.42 58.61 0.21 6.75 43.66 0.16 14.27 127.51 0.22
VQCounter (Ours) Visual-I & Textual 6.47 30.15 0.06 11.03 47.67 0.1 4.86 24.55 0.06 9.57 96.77 0.09

Table 1: Comparison of state-of-the-art CAC methods on FSC-147 using textual-only, visual-only, and combined prompts. “Visual-I" denotes
visual prompts from the current image. +,+ indicates retraining of the model using textual prompt only. VQCounter uses a unified model

without retraining, offering greater practicality.

. Test
Method Prompt Modality MAE RMSE NAE
(LaMAE) | | (LaRMSE)| | (LaNAE) ]
CLIP-count Textual 11.96 16.61 -
CounTX Textual 8.13 10.87
CountGD Textual 3.83 541 -
VQCounter (Ours) Textual 2.74 (6.22) 3.77 (7.42) 0.04 (0.08)
LOCA Visual-I 9.97 12.51 -
CounTR Visual-I 5.75 7.45
SAFECount Visual-I 533 7.04 -
VQCounter (Ours) Visual-I 2.97 (6.36) 4.39 (7.66) 0.09 (0.13)
CountGD Visual-I & Textual 3.68 5.17 -
VQCounter (Ours) | Visual-I & Textual 2.54 (6.22) 3.49 (7.45) 0.04 (0.08)

Table 2: Comparison of state-of-the-art methods on CARPK using
the same settings as Table 1. Values in parentheses indicate results
evaluated using the localization-aware metrics.

the neck module, which adjusts feature dimensions, to en-
sure consistency in the MFU-Queue. Additionally, we adopt
a non-parametric feature aggregation method from [Xu er al.,
2024; Ren, 2015], replacing a single 1 x 1 convolution layer
with multi-level feature fusion. During inference, we use
simple cropping instead of adaptive cropping, which intro-
duces a significant number of false positives and false nega-
tives. All other settings are consistent with CountGD. See the
Appendix for more details.

4.3 Comparison with Other SOTA Methods

In this section, we evaluate the proposed VQCounter against
other state-of-the-art methods using the widely recognized
CAC datasets, FSC-147 and CARPK. Following CountGD,
VQCounter is assessed with various modal prompts, i.e.
textual-only, visual-only, and textual-visual combinations.
For visual prompt, previous works focused on the interactive
(Visual-I) setting, in which the visual prompts come from the
current test image. Inspired by [Jiang et al., 20251, we intro-
duce an additional generic (Visual-G) setting, in which a fixed
set of prompts are shared across the test set. As presented in
Table 1 and 2, VQCounter significantly outperforms existing
methods in nearly all metrics. On the FSC-147 benchmark,
VQCounter outperforms the previous state-of-the-art method,
CountGD, by reducing MAE by approximately 8% (from 7.1
to 6.47) on the validation set and by 28% (from 6.75 to 4.86)
on the test set. To the best of our knowledge, this is the first
method to achieve MAE values below 7 and 5 on the vali-
dation and test sets, respectively. Remarkably, in the zero-

shot setting utilizing textual-only prompts, VQCounter sur-
passes CountGD by up to 50% (from 14.76 to 6.84), despite
being trained exclusively on textual-based prompts, whereas
our model employs a unified architecture. Furthermore, VQ-
Counter demonstrates superior performance under the more
stringent localization-aware metrics.

On the CARPK benchmark, we present results evaluated
using both standard and localization-aware metrics (detailed
in brackets). Consistently, VQCounter achieves state-of-the-
art performance across all three prompt categories, signifi-
cantly outperforming existing approaches.

4.4 Comparison to CountGD in More Aspects

For a detailed evaluation, we create a subset by selecting sam-
ples containing fewer than 900 targets for both validation and
test sets. This subset fits well within the detection limit of
the model, allowing for a single inference without the neces-
sity of multi-cropping inference. Additionally, we investi-
gate the impact of the two post-processing strategies, namely
Adaptive Cropping and SAM TT-Norm proposed by [Amini-
Naieni et al., 2024]. Table 3 presents a comprehensive com-
parison between VQCounter and CountGD with (filled with
gray) and without these post-processing strategies on both of
the complete dataset and the newly formed subset.

Of the 156 metrics evaluated, VQCounter achieves supe-
rior results in 148 cases, with many metrics showing substan-
tial improvements over CountGD. Similarly, in terms of the
localization-aware metrics, VQCounter demonstrates overall
superior performance compared to CountGD. In a few cases
the performance decreases in the Visual-I setting. We hypoth-
esize that MFU-Queue, while improving classes with signifi-
cant intra-class variation, may slightly hurt classes with minor
intra-class variation. However, this impact is negligible. Re-
sults in the Visual-G setting show that when visual prompts
are sourced from different images, our method significantly
outperforms CountGD, supporting our hypothesis.

4.5 Ablation Studies

We conduct some ablation studies to explore the proposed
method systematically. For simplicity, we report results
without the Adaptive Cropping and SAM TT-Norm [Amini-
Naieni et al., 2024] post-processing. As illustrated in Table 4,
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Method Prompt Split Validation Test
Modality| °P MAE | RMSE | NAE| | LaMAE| | LaRMSE| | LaNAE| | MAE] RMSE | NAE| | LaMAE| | LaRMSE| | LaNAE |
CountGD all 8.69 43.39 0.11 15.83 62.77 0.17 10.92 99.58 0.16 1445 106.17 0.19
T&v.l | <900 6.94 24.39 0.11 12.49 36.73 0.17 7.18 31.76 0.16 10.53 35.74 0.19
N all | 7.39 (-1.30) | 43.23 (-0.66) | 0.07 (-0.04) | 11.3 (-4.53) | 51.43 (-11.34) | 0.11 (-0.06) | 8.15 (-2.77) | 95.16 (-4.42) | 0.07 (-0.09) |10.61 (-3.84)| 99.01 (-7.16) | 0.1 (-0.09)
urs < 900| 5.35(-1.59) | 19.22(-5.17) [0.07 (-0.04) | 8.57 (-3.92) | 25.93 (-10.80) | 0.11 (-0.06) | 4.41 (-2.77) | 12.11 (-19.65) | 0.07 (-0.09) | 6.76 (-3.77) | 16.07 (-19.67) | 0.1 (-0.09)
CountGD all 12.47 67.49 0.14 19.26 79.48 02 15.95 132.08 0.15 19.39 1339 0.19
T <900 8.9 28.93 0.14 14.74 41.26 0.19 10.81 35.16 0.15 14.23 38.76 0.19
o all | 8.29 (-4.18) |46.88 (-20.61) | 0.07 (-0.07) | 12.36 (-6.90) | 56.2 (-23.28) |0.11 (-0.09) | 8.82 (-7.13) | 96.81 (-35.27) | 0.08 (-0.07) | 11.55 (-7.84) | 104.28 (-29.62)| 0.1 (-0.09)
urs < 900| 6.17 (-2.73) | 24.47 (-4.46) |0.07 (-0.07)] 9. 49( 5.25) | 31.55(-9.71) |0.11 (-0.08) | 5.05 (-5.76) | 17.11 (-18.05) | 0.07 (-0.08) | 7.55 (-6.68) | 20.9 (-17.86) | 0.1 (-0.09)
CountGD all 9.33 51.76 0.1 1623 6747 0.6 10.05 96.14 0.1 1381 10455 0.14
va | 900 7.09 29.84 0.1 12.62 39.64 0.16 6.31 18.15 0.1 9.83 25.05 0.14
Ours all [10.01 (+0.68)] 52.81 (+1.05) [0.11 (+0.01)| 13.93 (-2.30) | 59.68 (-7.79) | 0.15 (0.01) | 8.81 (-1.24) | 95.74 (-0.40) |0.08 (-0.02) [11.42 (-2.39)| 99.65 (-4.90) |0.11 (-0.03)
<900| 7.68 (+0.59) | 29.67 (-0.17) |0.11 (+0.01)| 10.95 (-1.67) | 35.09 (-4.55) | 0.15 (-0.01) | 5.06 (-1.25) | 14.87 (-3.28) | 0.08 (-0.02) | 7.57 (-2.26) | 18.6 (-6.45) |0.11 (-0.03)
CountGD all 10.68 5847 0.16 1884 74.03 0.29 10.96 99.53 0.16 15.84 108.05 022
v.g | 900 84 40.96 0.16 15.21 4931 0.28 7.23 31.63 0.16 11.85 375 0.22
Ours all | 9.73(-0.95) | 51.54 (-6.93) | 0.11 (-0.05) | 13.74 (-5.10) | 58.51 (-15.52) | 0.15 (-0.14) | 8.84 (-2.12) | 96.2 (-3.33) | 0.08 (-0.08) |11.52 (-4.32)| 101.52 (-6.53) [0.11 (-0.11)
< 900| 7.32 (-1.08) |26.93 (-14.03) | 0.1 ( ()()6) 10.77 (-4.44) | 33.34 (-15.97) | 0.15 (-0.13) | 5.08 (72.15) 15. 25< 16.38) 008(()08) 761 ( 424) 19. 02( 18 48) |0.11 ( 0.11)
CountGD T&VI |S 900 6.22 212 133 36.61 0.2 6.2 28 0.22
Ours T |<900 5.1 (-1.12) 18.16 (-3.04) 006(003) 8.39 (-4.91) 25. 28( 11.33)| 0.1 (-0.10) 397( 23) 1059(28 69) 006(0 10) 642(4'%0) 15. 11(28 23) 009(0 13)
CountGD T <900 83 26.09 29 0.18 42 58
Ours < 900 627(203) 2496(113) 007(005) 942(475) 3155(774) 011(007) 421(567) 1136(225()) 006(0()8) 681(661) 1671(2()87)009(009)
CountGD va | 900 09 3855 14.02 61
Ours B <900 7. 14 (+(i 47)  26. 83( 1 56) | 0.1 (+( .01) | 10. 35( 1 87)| 32.55(-6.00) | 0. 14 ( 0 01) 4. 09( 0 89)| 10.85(-3.17) 007 (O 00) 678( 1.83)| 16. 07 ( 6 04) | 0.1 ( 0 Ol)
CountGD all 10.72 0.1 79.03 87.36 2.29
V.G < 900 7.26 29 83 0.1 12 56 39.27 0 16 5 84 29.17 0 14 9‘6 34 O 18
Qs all 9.29 (-1.43) 41.91 (-22.60)| 0.09 (-0.01)| 13.58 (-3.44)| 56.57 (-22.46)| 0.13 (-0.03) 5.39 (-2.84)| 38.64 (-48.72)| 0.07 (-0.07)| 9.81 (-2.48) | 87.96 (-8.36) | 0.1 (-0.08)
<900 7.19 (-0.07) 26.07 (-3.76) | 0.09 (-0.01)| 10.54 (-2.02)| 32.58 (-6.69) | 0.13 (-0.03) 4.27 (-1.57)| 11.39 (-17.78)| 0.07 (-0.07)| 6.99 (-2.61) | 16.51 (-17.49) | 0.1 (-0.08)

Table 3: A comprehensive comparison between VQCounter and CountGD. all and < 900 denote the full dataset and the subset with < 900
objects per image, respectively. T, V-1, V-G, and T & V-I represent Textual-only, Visual-I only, Visual-G only, and the combined prompts.

Gray background indicates results with post-processing. Improved performance is shown in red, otherwise in

the rest results with post-processing on the full set.

Baseline | MFU | Voronoi

Queve | Queve | Cost | SPHit MAE | RMSE | NAE |

Test 924 96.07 0.08

X X X Val 9.43 54.43 0.09

X X % Test | 8.87 (-0.37) | T04.14 (+8.07) | 0.07 (-0.01)
Val | 836(-1.07) | 50.57(-3.86) | 0.08 (-0.01)

v X X Test | 8.8 (-044) | 96,55 (+0.48) | 0.08 (0.00)
Val | 8.14(-129) | 47.3(-7.13) | 0.07 (-0.02)

v X % Test | 841(-0.83) | 954 (-0.67) | 0.08(0.00)
Val | 7.77(-1.66) | 47.63 (-6.80) | 0.08 (-0.01)

X % % Test | 8.15(-1.09) | 95.16 (-0.91) | 0.07 (-0.01)
Val | 7.39(-2.04) | 43.23(-11.20)  0.07 (-0.02)

Baseline | MFU [ Voronoi

Split LaMAE | LaRMSE | LaNAE |

Queue | Queue Cost

Test 13 105.31 0.12

X X X Val 15.75 67.91 0.14

X X v Test | 11.93 (-1.07) | 107.89 (+2.58) | 0.12 (0.00)
Val | 12.74 (-3.01) | 56.81 (-11.10) | 0.16 (+0.02)

v/ X X Test | T1.95(-1.05) | 102.98 (-2.33) | 0.12(0.00)
Val 12.9 (-2.85) | 54.45(-13.46) | 0.16 (+0.02)

v/ X v/ Test | I1.02 (-1.98) | 100.64 (-4.67) | 0.IT (-0.01)
Val | 11.73 (-4.02) | 55.25(-12.66) | 0.12(-0.02)

X v v Test | 10.61 (-2.39) | 99.01 (-6.30) 0.1(-0.02)
Val 11.3 (-4.45) | 51.43(-16.48) | 0.11(-0.03)

Table 4: Ablation studies of VQCounter on FSC-147. Performance
improvements are marked in red, while performance degradations
are marked in

both VoronoiCost and the Baseline Queue independently im-
prove the performance relative to the baseline method. Their
combination yields additional performance gains. Further-
more, integrating the MFU strategy to optimize the Baseline
Queue continues to augment the overall performance of the
proposed method.

4.6 Visualization Analysis

To better understand the superiority of the localization-aware
metrics and VoronoiCost, we visualize them in Figure 4. The
difference between LaMAE and MAE is shown in Figure 4a
and Figure 4b. LaMAE is stricter and can measure FPs and
FNs. The Hungarian matching results between the predic-
tions and the ground truth points in the first epoch are visual-
ized in Figure 4c and Figure 4d. It can be seen that the label
assignment converges faster after adding VoronoiCost. See
more visualizations in the Appendix.

. Note: check Table 1 for

MAE=0, LaMAE=2
TP: 8, FP: 1, FN: 1

MAE=2, LaMAE=10

Ground Truth
Predictions

(b)

»  Ground Truth
»  Predictions

« 61343595

uf

Ground Truth
Predictions
Assignment

Ground Truth
Predictions |
Assignment

(c) with VoronoiCost (d) without VoronoiCost

Figure 4: Visualizations of the localization-aware metrics (a-b) and
Hungarian matching results (c-d). Each dashed line indicate a
pair of matched prediction and GT point.

5 Conclusion

In summary, we present VQCounter, a superior open-world
counting framework that enhances diversity of visual prompts
with dynamic queues, utilizes VoronoiCost for better match-
ing between predictions and GT points, and adopts the modal-
ity switching training approach for better collaborative learn-
ing of different modalities. Additionally, we introduce the
Voronoi diagram-based metrics to accurately measure the lo-
calization errors. By exploiting vision-language models more
effectively, we achieve state-of-the-art results on FSC-147
and CARPK in both zero-shot and few-shot settings, setting
a new benchmark in class-agnostic counting.
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