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Abstract

3D Single Object Tracking (SOT) is a fundamen-
tal task in computer vision and plays a critical role
in applications like autonomous driving. How-
ever, existing algorithms often involve complex de-
signs and multiple loss functions, making model
training and deployment challenging. Furthermore,
their reliance on fixed probability distribution as-
sumptions (e.g., Laplacian or Gaussian) hinders
their ability to adapt to diverse target character-
istics such as varying sizes and motion patterns,
ultimately affecting tracking precision and robust-
ness. To address these issues, we propose BEV-
Track, a simple yet effective motion-based track-
ing method. BEVTrack directly estimates object
motion in Bird’s-Eye View (BEV) using a single
regression loss. To enhance accuracy for targets
with diverse attributes, it learns adaptive likeli-
hood functions tailored to individual targets, avoid-
ing the limitations of fixed distribution assump-
tions in previous methods. This approach pro-
vides valuable priors for tracking and significantly
boosts performance. Comprehensive experiments
on KITTI, NuScenes, and Waymo Open Dataset
demonstrate that BEVTrack achieves state-of-the-
art results while operating at 200 FPS, enabling
real-time applicability. The code will be released
at https://github.com/xmm-prio/BEVTrack.

1 Introduction

3D single object tracking (SOT) is crucial for various ap-
plications, such as autonomous driving [Yin er al., 2021;
Chen et al., 2023]. Tt aims to localize a specific target across
a sequence of point clouds, given only its initial status. Ex-
isting tracking approaches [Qi er al., 2020; Zheng et al.,
2022] commonly adopt point-based representations, directly
taking raw point clouds as input. For example, P2B [Qi et
al., 2020] and its follow-up works [Zheng et al., 2021; Zhou
et al., 2022] adopt a point-based network [Qi et al., 2017b;
Wang et al., 2019] with the Siamese architecture for feature
extraction, followed by a point-based appearance matching
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Figure 1: Comparison with typical 3D SOT paradigms. Previous
methods mainly rely on point-based representations, and decompose
the tracking problem into multiple subtasks, leading to a compli-
cated tracking framework. On the contrary, our proposed BEVTrack
simplifies the tracking pipeline with a single regression loss.

module [Qi et al., 2020; Zhou et al., 2022; Xu et al., 2023al
for propagation of target cues, and a 3D Region Proposal Net-
work [Qi et al., 2019; Fang er al., 2021] for target localiza-
tion, as illustrated in Fig. 1(a). M2-Track [Zheng et al., 2022]
proposes a motion-centric paradigm, that first segments the
target points from their surroundings with a PointNet [Qi et
al., 2017a] segmentation network and then localizes the tar-
get through a motion modeling approach followed by a box
refinement module, as illustrated in Fig. 1(b).

Although these approaches have demonstrated strong per-
formance on tracking benchmarks, their reliance on intricate
designs and the need to address multiple subtasks signifi-
cantly increase framework complexity, making both training
and deployment challenging. This raises an important ques-
tion: can we simplify the tracking formulation while main-
taining competitive performance?

In this paper, we present BEVTrack, a simple yet strong
baseline for 3D SOT, as shown in Fig. 1(c). By estimating the
target motion in Bird’s-Eye View (BEV) to perform tracking,
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BEVTrack demonstrates surprising simplicity from various
aspects, i.e., network designs, training objectives, and track-
ing pipeline. Specifically, we first adopt a voxel-based net-
work [Zhou and Tuzel, 2018] with the Siamese architecture
for feature extraction. Subsequently, we compress height in-
formation into the channel dimension to obtain the BEV fea-
tures. Given that corresponding objects are spatially adjacent
in the BEV features across consecutive frames, we can easily
fuse them together with an element-wise operation such as
concatenation [Duffhauss and Baur, 2020]. Then we adopt
several convolutional and down-sampling layers to capture
the object motion with a wide range of patterns. Finally, we
discard the complicated region proposal network while using
a global max pooling followed by a lightweight multilayer
perception (MLP) to regress the relative target motion.

To optimize the regression-based trackers, current ap-
proaches typically employ conventional L; or Lo loss. This
kind of supervision actually makes a fixed Laplacian or Gaus-
sian assumption on the data distribution, which is inflexi-
ble when handling targets possessing diverse attributes (e.g.,
sizes, moving patterns, and sparsity degrees). For example,
when tracking targets with high sparsity degrees, where the
predictions may be uncertain while the annotations are not
very reliable, the outputs should conform to a distribution
with a large variance. To this end, we introduce a novel
distribution-aware regression strategy for tracking, which
constructs the likelihood function with the learned underly-
ing distributions adapted to distinct targets, instead of making
a fixed assumption. Note that this strategy does not partici-
pate in the inference phase, thus boosting the tracking per-
formance without additional computation overhead. Despite
no elaborate design, BEVTrack exhibits a substantial per-
formance advantage over the current state-of-the-art (SOTA)
methods on challenging tracking datasets, i.e., KITTI [Geiger
et al., 2012], NuScenes [Caesar et al., 2020], and Waymo
Open Dataset [Sun et al., 20201, while operating at 200 FPS,
enabling real-time applicability.

The main contributions of this paper are three-fold:

e We propose BEVTrack, a simple yet strong baseline
for 3D SOT. BEVTrack marks the first to perform tracking
through motion modeling in BEYV, resulting in a simplified
tracking pipeline design.

e We present a novel distribution-aware regression strategy
for tracking, which constructs the likelihood function with the
learned underlying distributions adapted to targets possessing
diverse attributes. This strategy provides accurate guidance
for tracking, resulting in improved performance while avoid-
ing extra computation overhead.

e BEVTrack achieves SOTA performance on three popular
benchmarks while maintaining a high inference speed.

2 Related Work

Early 3D SOT approaches [Pieropan et al., 2015; Spinello et
al., 2010] predominantly utilize RGB-D data and often adapt
2D Siamese networks by integrating depth maps. However,
variations in illumination and appearance can adversely af-
fect the performance of such RGB-D techniques. SC3D [Gi-
ancola et al., 2019] is the first 3D Siamese tracker based on

shape completion that generates a large number of candidates
in the search area and compares them with the cropped tem-
plate, taking the most similar candidate as the tracking result.
The pipeline relies on heuristic sampling and does not learn
end-to-end, which is very time-consuming.

To address these issues, P2B [Qi er al., 2020] develops
an end-to-end framework by employing a shared point-based
backbone for feature extraction, followed by a point-wise
appearance-matching technique for target cues propagation.
Ultimately, a Region Proposal Network is used to derive 3D
proposals, of which the one with the peak score is selected
as the final output. P2B reaches a balance between perfor-
mance and efficiency, and many works [Zheng et al., 2021;
Shan et al., 2021; Zhou et al., 2022; Hui et al., 2022] follow
the same paradigm. Drawing inspiration from the success of
transformers [Vaswani er al., 2017], many studies have in-
corporated elaborate attention mechanisms to enhance fea-
ture extraction and target-specific propagation. For instance,
PTT [Shan et al., 2021] introduces the Point Track Trans-
former to enhance point features. PTTR [Zhou et al., 2022]
presents the Point Relation Transformer for target-specific
propagation and a Prediction Refinement Module for preci-
sion localization. Similarly, ST-Net [Hui er al., 2022] puts
forth an iterative correlation network, and CXTrack [Xu et
al., 2023a] presents the Target Centric Transformer to har-
ness contextual information from consecutive frames. Sync-
Track [Ma et al., 2023] introduces a single-branch and single-
stage framework, without Siamese-like forward propagation
and a standalone matching network. MBPTrack [Xu et al.,
2023b] exploits both spatial and temporal contextual infor-
mation using a memory mechanism. Unlike the Siamese
paradigm, M2-Track [Zheng et al., 2022] proposes a motion-
centric paradigm, explicitly modeling the target’s motion be-
tween two successive frames. This motion-centric paradigm
shows robustness to the problems caused by the appearance
variation and the sparsity of point clouds. Our study also
adopts a motion-centric paradigm but focuses on simplify-
ing the tracking formulation, resulting in a streamlined and
efficient solution that maintains strong performance.

3 Method

3.1 Overview

Given the 3D bounding box (BBox) of a specific target at the
initial frame, 3D SOT aims to localize the target by predict-
ing its 3D BBoxes in the subsequent frames. A 3D BBox
B; € RT is parameterized by its center (i.e., %,z coor-
dinates), orientation (i.e., heading angle 6 around the up-
axis), and size (i.e., width, length, and height). Suppose
the point clouds in two consecutive frames are denoted as
Pi_1 € RNMNe=1>X3 and P, € RN:*3, respectively, where
N;_1 and N, are the numbers of points in the point clouds.
Notably, the two point clouds have been transformed to the
canonical system w.r.t the target BBox B;_; (either given as
the initial state or predicted by the tracker). Since the size
of the tracking target rarely changes, we follow the common
practice [Qi et al., 2020] and assume a constant target size.
Consequently, the inter-frame target translation offsets (i.e.,
Ax, Ay, Az) and the yaw angle offset Af are regressed. By
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Figure 2: Architecture of BEVTrack. The proposed framework contains three parts including voxel-based feature extraction, BEV-based
motion modeling, and distribution-aware regression. Our BEVTrack is a simple tracking baseline framework with a plain convolutional
architecture and a single regression loss, yet demonstrating state-of-the-art performance.

applying the translation and rotation to the 3D BBox B;_1,
we can compute the 3D BBox B; to localize the target in the
current frame. The tracking process can be formulated as:

F(Pi—1,Py) — (Azx, Ay, Az, AD), D

where F is the mapping function learned by the tracker.
Following Eq. (1), we propose BEVTrack, a simple yet
strong baseline for 3D SOT. The overall architecture of BEV-
Track is presented in Fig. 2. It first employs a shared voxel-
based backbone [Zhou and Tuzel, 2018] to extract 3D fea-
tures, which are then squeezed to derive the BEV features
(Sec. 3.2). Subsequently, BEVTrack fuses the BEV features
via a concatenation operation and several convolutional layers
(Sec. 3.3). Finally, it adopts a simple prediction head which
contains a global max pooling layer followed by a lightweight
MLP. For prediction, we employ a novel distribution-aware
regression strategy in the training phase (Sec. 3.4).

3.2 Feature Extraction

To localize the target from surroundings accurately, we need
to learn discriminative features from the point clouds. In-
stead of using a point-based backbone [Qi et al., 2017a;
Qi et al., 2017b; Wang et al., 2019] as in [Qi et al., 2020;
Zheng et al., 2022; Xu et al., 2023al, we adopt Voxel-
Net [Zhou and Tuzel, 2018] as the shared backbone. Specif-
ically, we voxelize the 3D space into regular voxels and ex-
tract the voxel features of each non-empty voxel by a stack
of sparse convolutions, where the initial feature of each voxel
is simply calculated as the mean values of point coordinates
within each voxel in the canonical coordinate system. The
spatial resolution is downsampled 8 times by three sparse
convolutions [Graham ef al., 2018] of stride 2, each of which
is followed by several submanifold sparse convolutions [Gra-
ham and Van der Maaten, 2017]. Afterwards, we squeeze
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Figure 3: The motion pattern of objects is variable in different
scenes. The top rows show point cloud scenes across two consec-
utive frames, where the red points indicate the target. The bottom
rows visualize the heatmaps of the BEV response map with ground-
truth bounding box (in red rectangles).

the sparse 3D features along the height dimension to derive
the BEV features X;_; € RT*WxXC and X, € REXWXC
where H and W denote the 2D grid dimension and C'is the
number of feature channels.

3.3 BEV-based Motion Modeling

BEV-based Motion Modeling (BMM) aims to model the mo-
tion relations of the target from consecutive frames. Given
the BEV features X;_; and A&}, the corresponding objects are
spatially adjacent across them. Therefore, we can easily fuse
them together with an element-wise operator such as concate-
nation to preserve their spatial proximity. Furthermore, we
apply several convolutional blocks to encode their motion re-
lations. It is noteworthy that the receptive field of the convo-
lution is limited due to the small kernel size, while the motion
pattern of objects is variable in different scenes. As shown in
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Fig. 3, objects with a fast-moving speed are far apart across
the BEV feature maps. To deal with this issue, we propose to
enlarge the receptive field through spatial down-sampling by
inserting convolutions of stride 2 at intervals, allowing it to
capture a wide range of motion patterns. The above process
can be formulated as:

Y = Convs([X;—1; X)), 2)

where Convs denotes the convolutional blocks in BMM and
;] denotes the concatenation operator. ) € RH W'’
where H’, W’, and C’ denote the spatial dimension and the
number of feature channels, respectively. See the appendix
for the ablation experiments on the design choices of BMM.

3.4 Distribution-aware Regression

Different from the existing two-stage point-to-box predic-
tion head [Qi et al., 2020; Zhou et al., 2022; Hui et al.,
2022], which contains two parts of proposals generation and
proposal-wise scores prediction, we propose a one-stage post-
processing-free prediction head consisting of only a global
max-pooling layer and an MLP, i.e.,

M = MLP(Pool())), 3)

where M € R® denotes the expectation of the target trans-
lation and yaw offsets & € R* and their standard deviation
o € R* in contrast to prior methods that solely regress
the deterministic target motion u. By applying the predicted
translation to the last state of the target, we can localize the
target in the current frame. Note that the standard deviation
o enables dynamic optimization during training while being
removed in the inference phase, as elaborated below.

The difference in sizes, moving patterns, and sparsity de-
grees among the tracked targets poses great challenges to ex-
isting trackers. To address this issue, we propose a novel
distribution-aware regression strategy for tracking, which
constructs the likelihood function with the learned underly-
ing distributions adapted to distinct targets. In this way, the
model can adaptively handle targets with different attributes,
thus improving tracking performance.

Following [Li et al., 2021], we model the distribution of
the target motion v ~ P(u) with reparameterization, which
assumes that objects belonging to the same category share
the same density function family, but with different mean and
variance. Specifically, P(u) can be obtained by scaling and
shifting z from a zero-mean distribution z ~ Pz(z) with
transformation function v = @« + o - z, where u denotes the
expectation of the target translation offsets and ¢ denotes the
scale factor of the distribution. Pz(z) can be modeled by a
normalizing flow model (e.g., real NVP [Dinh e al., 2016]).
Given this transformation function, the density function of
P(u) can be calculated as:

log P(u) = log Pz(z) — log o. 4)

In this work, we employ residual log-likelihood estima-
tion [Li ef al., 2021] to estimate the above parameters, which
factorizes the distribution Pz (z) into one prior distribution
Qz(z) (e.g., Laplacian distribution or Gaussian distribution)

and one learned distribution Gz(z | #). To maximize the
likelihood in Eq. (4), we can minimize the following loss:

L=—-1logQz(%2) —logGz(2]0) + logo. )

Method Car Pedestrian Van Cyclist Mean
(6424) (6088) (1248) (308) (14068)
SC3D 41.3/579 | 18.2/37.8 | 40.4/47.0 | 41.5/70.4 | 31.2/48.5
P2B 56.2/72.8 | 28.7/49.6 | 40.8/48.4 | 32.1/44.7 | 42.4/60.0
BAT 60.5/77.7 | 42.1/70.1 | 52.4/67.0 | 33.7/45.4 | 51.2/72.8
V2B 70.5/81.3 | 48.3/73.5 | 50.1/58.0 | 40.8/49.7 | 58.4/75.2
PTTR 65.2/77.4 | 50.9/81.6 | 52.5/61.8 | 65.1/90.5 | 57.9/78.1
STNet 72.1/84.0 | 49.9/77.2 | 58.0/70.6 | 73.5/93.7 | 61.3/80.1
M2-Track 65.5/80.8 | 61.5/88.2 | 53.8/70.7 | 73.2/93.5 | 62.9/834
CXTrack 69.1/81.6 | 67.0/91.5 | 60.0/71.8 | 74.2/943 | 67.5/85.3
SyncTrack | 73.3/85.0 | 54.7/80.5 | 60.3/70.0 | 73.1/93.8 | 64.1/81.9
MBPTrack | 73.4/84.8 | 68.6/93.9 | 61.3/72.7 | 76.7/94.3 | 70.3/87.9
BEVTrack | 74.9/86.5 | 69.5/94.3 | 66.0/77.2 | 77.0/94.7 | 71.8/89.2
Improvement 1.5/71.5 09/10.4 | 14.7/145 | 10.3/1704 | 11.5/71.3
Table 1: Comparisons with state-of-the-art methods on KITTI

dataset.  Success/Precision are used for evaluation. Bold and
underline denote the best and the second-best scores, respectively.

Here, 2 = (4—@) /o, G is the ground truth translation offsets.

4 Experiment

4.1 Experimental Settings

We validate the effectiveness of BEVTrack on three widely-
used challenging datasets: KITTI [Geiger et al, 2012],
NuScenes [Caesar ef al., 2020], and Waymo Open Dataset
(WOD) [Sun et al., 2020]. KITTI contains 21 video se-
quences for training and 29 video sequences for testing. We
follow previous work [Qi e al., 2020] to split the training set
into train/val/test splits due to the inaccessibility of the labels
of the test set. NuScenes contains 1,000 scenes, which are
divided into 700/150/150 scenes for train/val/test. Following
the implementation in [Zheng et al., 2021], we compare with
the previous methods on five categories including Car, Pedes-
trian, Truck, Trailer, and Bus. WOD includes 1150 scenes
with 798 for training, 202 for validation, and 150 for testing.
Following M2-Track [Zheng er al., 2022], We conduct train-
ing and testing respectively on the training and validation set.
Following [Qi et al., 2020], we adopt Success and Precision
defined in one pass evaluation (OPE) [Kristan et al., 2016] as
the evaluation metrics.

4.2 Comparison with State-of-the-art Methods

Results on KITTI. We present a comprehensive com-
parison of BEVTrack with the previous state-of-the-art ap-
proaches on KITTI, namely SC3D [Giancola et al., 2019],
P2B [Qi et al., 20201, BAT [Zheng et al., 2021], V2B [Hui
et al., 20211, PTTR [Zhou et al., 2022], STNet [Hui et al.,
2022], M2-Track [Zheng et al., 2022], CXTrack [Xu er al.,
2023al, SyncTrack [Ma et al., 2023], and MBPTrack [Xu et
al., 2023b]. As shown in Tab. 1, BEVTrack surpasses cur-
rent tracking methods with a significant improvement across
all categories on KITTI in Success and Precision metrics. We
also visualize the tracking results on four KITTI categories
for qualitative comparisons. As shown in Fig. 4, BEVTrack
generates more robust and accurate tracking predictions.

For a more comprehensive evaluation of effectiveness in
challenging scenarios, we present results from various meth-
ods in cases characterized by sparse scenarios, occlusion, and
intra-class distractors. To verify the effectiveness in sparse
scenarios, we follow V2B [Hui et al., 2021] to select sparse
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Figure 4: Visualization results on different KITTI categories: (a) Car; (b) Pedestrian; (c) Van; (d) Cyclist.
Method Car Pedestrian Truck Trailer Bus Mean Mean
(64,159) (33,227) (13,587) (3,352) (2,953) by Class (117,278)
SC3D 22.31/21.93 | 11.29/12.65 | 35.28/28.12 | 35.28/28.12 | 29.35/24.08 | 25.78 /22.90 | 20.70/20.20
P2B 38.81/43.18 | 28.39/52.24 | 48.96/40.05 | 48.96/40.05 | 32.95/27.41 | 38.41/40.90 | 36.48/45.08
PTT 41.22/45.26 | 19.33/32.03 | 50.23/48.56 | 51.70/46.50 | 39.40/36.70 | 40.38/41.81 | 36.33/41.72
BAT 40.73/43.29 | 28.83/53.32 | 52.59/44.89 | 52.59/44.89 | 35.44/28.01 | 40.59/42.42 | 38.10/45.71
PTTR 51.89/58.61 | 29.90/45.09 | 45.30/44.74 | 45.87/38.36 | 43.14/37.74 | 43.22/44.91 | 44.50/52.07
M2-Track 55.85/65.09 | 32.10/60.92 | 57.36/59.54 | 57.61/58.26 | 51.39/51.44 | 50.86/59.05 | 49.23/62.73
MBPTrack | 62.47/70.41 | 45.32/74.03 | 62.18/63.31 | 65.14/61.33 | 55.41/51.76 | 58.10/64.17 | 57.48/69.88
BEVTrack 64.31/71.14 | 46.28/76.77 | 66.83/67.04 | 74.54/71.62 | 61.09/56.68 | 62.61/68.65 | 59.71/71.19
Improvement | 71.84/70.73 | 10.96/712.74 | 14.65/713.73 | 19.40/710.29 | 15.68/714.92 | 14.51 /7448 | 12.23/71.31
Table 2: Comparisons with the state-of-the-art methods on NuScenes dataset.
Vehicle Pedestrian Mean BEVTrack MBPTrack CXTrack M2-Track
Method 1,057,651 510,533 1,568,184 h " e "
P2B 28.32/35.41 15.60/29.56 24.18 /33.51 70
BAT 35.62/44.15 22.05/36.79 31.20/41.75
M2-Track 43.62/61.64 42.10/67.31 43.13/63.48 60
BEVTrack 70.05 / 80.05 45.93 /72.41 62.20/77.56
Improvement | 126.43 /71841  13.83/15.10  119.07/714.08 50
Table 3: Comparisons with the state-of-the-art methods on Waymo 2 40
Open Dataset. §
(2 30
scenes for evaluation according to the number of points lying ®
in the target bounding boxes in the test set. For analysis of the N,
impact of intra-class distractors, we pick out scenes that con-
tain Pedestrian distractors close to the target from the KITTI )
test split. For the occlusion situations, we filter out scenes of Base Sparse Occlusion Intra-class
Scenarios Distractors

occlusion scores less than one in the KITTI test set.

Figure 5: Robustness under different challenging scenes on KITTI

As shown in Fig. 5, each column from left to right repre- -
Pedestrian category.

sents the cases of base setting, sparse scenarios, occlusion,
and intra-class distractors respectively on the Pedestrian cat-
egory of the KITTI dataset. Our proposed BEVTrack is more
robust to these challenging scenarios than other methods.

Results on Nuscenes. NuScenes poses a more formidable
challenge for the 3D SOT task compared to KITTI, primar-
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Method Params FLOPs Infer time
CXTrack 18.3M  4.63G 16.4ms
MBPTrack | 7.4M 2.88G 11.7ms
BEVTrack | 13.8M  0.76G 4.98ms

Table 4: Inference efficiency analysis.

KITTI | NuScenes
Method | Car Ped | Car Ped
Temp ‘ 65.7/79.3 60.8/88.5 ‘ 55.3/60.2 33.6/60.5
Seg | 71.8/842 655/92.1 | 58.5/65.1 40.5/65.8
Czx ‘ 74.9/86.5 69.5/94.3 ‘ 64.3/71.1 46.3/76.8

Table 5: Ablation study of pre-processing methods.

ily attributable to its larger data volumes and sparser an-
notations (2Hz for NuScenes versus 10Hz for KITTI and
Waymo Open Dataset). Subsequently, following the method-
ology established by M2-Track, we perform a comparative
evaluation on the NuScenes dataset against prior methodolo-
gies, namely SC3D [Giancola er al., 2019], P2B [Qi ef al.,
20201, PTT [Shan et al., 2021], BAT [Zheng et al., 20211,
PTTR [Zhou et al., 20221, M2-Track [Zheng et al., 2022],
and MBPTrack [Xu ef al., 2023b]. As shown in Tab. 2,
our method achieves a consistent and large performance gain
compared with the previous state-of-the-art method, MBP-
Track. BEVTrack exhibits superior performance over meth-
ods reliant on appearance matching or segmentation, espe-
cially in datasets like NuScenes with sparser point clouds.

Results on WOD. WOD dataset presents greater chal-
lenges compared to KITTI and NuScenes due to its larger
data volumes and complexities. Following M2-Track, we
conduct training and testing on the respective training and
validation sets. We consider trackers that report results under
this setting as competitors, including P2B [Qi et al., 2020],
BAT [Zheng et al., 20211, and M2-Track [Zheng et al., 2022].
As illustrated in Tab. 3, BEVTrack consistently outperforms
all competitors on average, particularly excelling in the Vehi-
cle category. Remarkably, BEVTrack, with its simple design,
demonstrates even greater potential on this large dataset.

Inference Speed. We analyze the efficiency of BEVTrack
in Tab. 4. It can be observed that BEVTrack is lightweight
with only 0.76G FLOPs and 13.8M parameters. The simple
architecture ensures real-time inference of BEVTrack at an
impressive speed of 200 FPS on a single NVIDIA GTX 4090
GPU, which is 2.34 times faster than the previously leading
method, MBPTrack [Xu et al., 2023b]. The simplicity of
BEVTrack’s pipeline facilitates flexible adjustments in model
size by incorporating advanced backbones or devising more
effective BMM modules to further enhance performance.

4.3 Ablation Studies

In this section, we analyze and compare each basic design
in BEVTrack with other choices used in previous works.
For better clarification, we ablate the effects of every design
choice by replacing it from the proposed BEVTrack.

\ KITTI \ NuScenes
Repr | ™ Car Ped | Car Ped
Point ‘ 70.5/82.2 66.3/90.5 ‘ 60.7/66.2 41.3/68.6

Voxel | 74.9/86.5 69.5/94.3 | 64.3/71.1 46.3/76.8

Table 6: Ablation study of representation choices.
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Figure 6: Diagram of voxelization. The density differences of point
clouds are alleviated after voxelization.

Pre-processing of Input. The input consists of LiDAR-
scanned point clouds, with a cropped region where the ob-
ject may appear. Most existing matching-based methods [Qi
et al., 2020; Zheng et al., 2021; Fang et al., 2021] use the
cropped target template from the previous frame and the full
search area in the current frame, referred to as “T'emp” in
Tab. 5. M2-Track [Zheng et al., 2022] introduces a motion-
centric approach, extracting the target points from their sur-
roundings to feed the motion model, denoted as “Seg”. CX-
Track [Xu et al., 2023al highlights the loss of contextual in-
formation in the previous methods and instead processes two
consecutive frames, transforming them into the canonical pre-
vious box coordinates, with the region expanded by a margin
relative to the object size, referred to as “C'z”.

In Tab. 5, we compare the above three pre-processing
methods on KITTI and NuScenes. The motion-based tracker
BEVTrack performs poorly with the template and search area
input (“T'emp”). While “Seg” yields satisfactory results, it
still lags behind ”C'z”. The segmentation network struggles
to fully distinguish foreground from background, causing cu-
mulative errors in the motion model. In contrast, “C'z” re-
tains valuable contextual information, leading to the best per-
formance, especially on NuScenes, which uses low-beam Li-
DAR. As a result, BEVTrack adopts ”C'z” as its default pre-
processing method.

Feature representation. We aim to learn a discriminative
feature representation from point clouds. While existing
3D SOT methods often rely on point-based representation
networks [Qi et al., 2017a; Qi et al., 2017b; Wang et al.,
2019], LiDAR-scanned point clouds exhibit variable spar-
sity—dense clustering near objects and sparser distribution
at a distance. Effectively learning point features that han-
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KITTI | NuScenes
Method | Car Ped | Car Ped
PointNet ‘ 68.8/81.7 62.9/89.1 ‘ 62.1/68.5 39.7/65.6
BMM (ours) | 74.9/86.5 69.5/94.3 | 64.3/71.1 46.3/76.8

Table 7: Ablation study of motion modeling methods.

\ KITTI \ NuScenes
Paradigm \ Car Ped \ Car Ped
matching-based ‘ 71.5/83.4 61.8/87.4 ‘ 60.0/66.8 32.7/58.8

motion-based | 74.9/86.5 69.5/94.3 | 64.3/71.1 46.3/76.8

Table 8: Ablation study of paradigm choices.

dle both dense and sparse regions is a significant challenge.
To address this, we propose using voxel-based representa-
tions [Zhou and Tuzel, 2018] instead of point-based ones. As
shown in Fig. 6, voxel features are less sensitive to point count
variations, helping mitigate the sparsity issue.

In Tab. 6, we compare the “Point” and “Voxel” representa-
tions on the KITTI and NuScenes datasets. The “Voxel” setup
follows the same approach as BEVTrack. To ensure a fair
comparison, the “Point” method adopts a similar pipeline, in-
cluding feature extraction, motion modeling, and regression.
However, “Point” uses PointNet++ [Qi et al., 2017b] for fea-
ture extraction, capturing point-level features. To distinguish
points across frames, “Point” adds timestamp encoding to the
features, which are then processed by a second PointNet++
for motion modeling. As shown in Tab. 6, the significant
performance gap between “Point” and “Voxel” supports our
claim above, highlighting the effectiveness of using voxel-
based representations in BEVTrack.

Motion Modeling. aims to infer the relative target mo-
tion (RTM) from consecutive point cloud frames. M2-
Track [Zheng et al., 2022], the representative motion-based
tracker preceding BEVTrack, uses PointNet [Qi ez al., 2017a]
to predict RTM. In contrast, we introduce BMM for RTM
modeling, as described in Sec. 3.3. BMM offers two key
advantages over PointNet: 1) BEV better captures motion
features, particularly for horizontal movement typical in au-
tonomous driving; 2) BMM leverages cascaded convolutions
to model local features and capture diverse motion patterns.

In Tab. 7, we compare the two motion modeling methods
on KITTI and NuScenes. For the “PointNet” setting, we re-
store voxel features to point features using bilinear interpola-
tion and replace the BMM module in BEVTrack with Point-
Net. As shown, BMM outperforms PointNet by a clear mar-
gin, highlighting the importance of local feature learning and
BEV representation for motion modeling. Additionally, we
observe that the methods differ in sensitivity to background
points. According to Tab. 5, BEVTrack performs better with-
out a segmentation network, while M2-Track benefits signifi-
cantly from it. This suggests that BMM’s local feature learn-
ing is more robust to background interference.

Paradigm Choices. Most existing 3D SOT methods fol-
low either a matching-based or motion-based paradigm.

Car Pedestrian Van Cyclist Mean
G | 68.0/80.8 | 59.8/88.6 | 61.8/71.9 | 69.8/92.4 | 63.9/83.6
L | 692/81.8 | 642/90.7 | 58.9/72.2 | 73.2/93.5 | 66.2/85.1
D | 749/86.5 | 69.5/94.3 | 66.0/77.2 | 77.0/94.7 | 71.8/89.2

Table 9: Ablation study of the regression strategy. “G” refers to
regress with Gaussian assumption, “L” refers to regress with Lapla-
cian assumption, and “D” refers to regress with distribution-aware
tracking strategy.

Matching-based trackers [Qi er al., 2020; Zheng et al., 2021;
Zhou et al., 2022] locate targets by comparing the search area
with template point clouds. However, LiDAR point clouds
are often textureless and incomplete, hindering effective ap-
pearance matching. In contrast, motion-based tracking ben-
efits from the absolute scale of target movement in point
clouds, simplifying the tracking process. In this paper, BEV-
Track adopts the motion-based paradigm.

We investigate the effect of paradigm selection on BEV-
Track’s performance by designing a matching-based vari-
ant that uses the same basic modules for fairness. Details
of the variant’s architecture can be found in the appendix.
As shown in Tab. 8, the “motion-based” BEVTrack outper-
forms the matching-based variant by a significant margin.
For the pedestrian class, which has similar intra-class distrac-
tors often appearing at closer distances, the performance of
the matching-based version drops sharply by 7.7/6.9 in suc-
cess/precision on KITTI and 13.6/18.0 on NuScenes.

Distribution-aware Regression. To investigate the impact
of output distribution assumptions on tracking performance,
we compare results using different density functions on the
KITTTI dataset. The Laplacian and Gaussian distributions re-
duce to standard [/, and /5 loss when assumed to have constant
variances. As shown in Tab. 9, the proposed distribution-
aware regression approach outperforms regression with [y or
lo loss, highlighting the importance of modeling the actual
distribution of target motion.

5 Conclution

This paper introduces BEVTrack, a simple yet strong base-
line for 3D single object tracking (SOT). BEVTrack performs
tracking within the Bird’s-Eye View representation, thereby
effectively exploiting spatial information and capturing mo-
tion cues. Additionally, we propose a distribution-aware re-
gression strategy that learns the actual distribution adapted to
targets possessing diverse attributes, providing accurate guid-
ance for tracking. Comprehensive experiments conducted on
widely recognized benchmarks underscore BEVTrack’s effi-
cacy, establishing its superiority over state-of-the-art tracking
methods. Furthermore, it achieves a high inference speed of
about 200 FPS. We hope this study could provide valuable in-
sights to the tracking community and inspire further research.

Limitation. BEVTrack, as a simple baseline, uses only two
successive frames, but the sequence of historical trajectories
and point clouds holds rich motion data. Modeling object
motion from multiple frames could enhance tracking perfor-
mance. We plan to explore the use of temporal information in
BEVTrack for long-term video tracking in future work.
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