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Abstract

Centralized Training with Decentralized Execu-
tion (CTDE) has recently emerged as a popular
framework for cooperative Multi-Agent Reinforce-
ment Learning (MARL), where agents can use ad-
ditional global state information to guide training
in a centralized way and make their own deci-
sions only based on decentralized local policies.
Despite the encouraging results achieved, CTDE
makes an independence assumption on agent poli-
cies, which limits agents from adopting global co-
operative information from each other during cen-
tralized training. Therefore, we argue that the ex-
isting CTDE framework cannot fully utilize global
information for training, leading to an inefficient
joint exploration and perception, which can de-
grade the final performance. In this paper, we intro-
duce a novel Centralized Advising and Decentral-
ized Pruning (CADP) framework for MARL, that
not only enables an efficacious message exchange
among agents during training but also guarantees
the independent policies for decentralized execu-
tion. Firstly, CADP endows agents the explicit
communication channel to seek and take advice
from different agents for more centralized train-
ing. To further ensure the decentralized execution,
we propose a smooth model pruning mechanism
to progressively constrain the agent communication
into a closed one without degradation in agent co-
operation capability. Empirical evaluations on dif-
ferent benchmarks and across various MARL back-
bones demonstrate that the proposed framework
achieves superior performance compared with the
state-of-the-art counterparts. Our code is available
at https://github.com/zyh1999/CADP

*Corresponding author.

1 Introduction

Cooperative Multi-Agent Reinforcement Learning (MARL)
has recently been attracting increasing attention from re-
search communities, attributed to its capability on training
autonomous agents to solve many real-world tasks, such as
video games [Vinyals et al., 2019], traffic light systems [Wu
et al., 2020] and smart grid control [Xu et al., 2024]. How-
ever, learning cooperative policies for various complex multi-
agent systems remains a major challenge. Firstly, the joint
action-observation space grows exponentially with the num-
ber of agents, leading to a scalability problem when consid-
ering the multi-agent system as a single-agent one to search
the optimal joint policy [Rashid er al., 2018; Sunehag e al.,
2018]. Moreover, optimizing agent policies individually also
suffers from non-stationarity due to the partial observability
constraint [Hong et al., 2022; Jiang et al., 2024]. To tackle
these problems, Centralized Training with Decentralized Ex-
ecution (CTDE) is proposed as a popular learning framework
for MARL [Lowe er al., 2017]. In CTDE, as depicted in Fig-
ure 1(a), decentralized agent policies are trained by a central-
ized module with additional global state information, while
agents select actions only based on their own local observa-
tion without any communication

In recent years, the CTDE framework has been widely
used in MARL, including Value Decomposition (VD) meth-
ods [Sunehag et al., 2018; Rashid er al., 2018; Wang ef al.,
2021; Son et al., 2019; Rashid et al., 2020; Liu et al., 2023;
Liu et al., 2024; Kapoor et al., 2024] and Policy Gradi-
ent (PG) methods [Lowe et al., 2017; Foerster et al., 2018;
Yu et al., 2022; Kuba et al., 2022], which achieves the state-
of-the-art performance in different benchmarks. Despite its
promising success, we argue that the centralized training in
CTDE is not centralized enough. This is to say, the exist-
ing CTDE framework cannot take full advantage of global
information for centralized training. Specifically, agent poli-
cies are assumed to be independent of each other [Wang et
al., 2023], and the existing CTDE framework only intro-
duces global information in the centralized module, while
agents are not granted access to global information even
when centralized training. This partial observability limits
agents to search better global joint policy [Hong er al., 2022;
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Figure 1: Comparisons between existing frameworks and our CADP. (a) Basic CTDE framework. Each agent learns its individual policy by
optimizing the joint value of the centralized module with the global state. (b) Teacher-student CTDE framework. This framework introduces
knowledge distillation to improve agent learning, where teachers use global information and students use local information. (c) Our CADP
framework. Agents exchange their advice during centralized training then prune the dependence (still with RL) for decentralized execution.

Chen et al., 2024; Zhao et al., 2022].

To remedy this issue, several prior efforts propose to de-
sign a teacher-student CTDE framework [Hong et al., 2022;
Chen et al., 2024; Zhao et al., 2022], as depicted in Fig-
ure 1(b). These works enable teacher agents to use the global
state information during centralized training, while student
agents with local observation can imitate the behaviors from
teacher agents via knowledge distillation. However, these
works just simply take the additional state information as the
input of agent policy, which follows the independence as-
sumption on agent policies. Therefore, the agents still make
their own decisions without considering the policies of other
agents during centralized training. In this way, the expres-
siveness of the joint policy is inevitably limited, leading to
an inefficient joint exploration and perception, which can de-
grade the final performance.

In this paper, we propose a novel Centralized Advising and
Decentralized Pruning framework, termed as CADP, to en-
hance basic CTDE with global cooperative information. As
depicted in Figure 1(c), CADP enables agents to exchange
advice with each other instead of only using global state infor-
mation during centralized training. This approach is aligned
with a common way of human communication, where hu-
mans often offer helpful and tailored advice based on their
knowledge and beliefs instead of simply providing their own
information [Stenning et al., 2006]. Therefore, the cen-
tralized advising mechanism allows agents to deliver team-
oriented actions for better cooperation. To generate the fi-
nal decentralized policies, we further propose to smoothly
prune the dependence relationship among agents via a ded-
icated auxiliary loss function.

Our main contribution is the dedicated attempt that adopts
agent communication to enhance basic CTDE framework
for fully centralized training with decentralized execution.
We propose a novel Centralized Advising and Decentralized
Pruning (CADP) framework to promote explicit agent coop-
eration during training while still ensure the independent poli-
cies for execution. CADP is designed to provide a new gen-
eral training framework for different MARL methods based
on CTDE. Experiments conducted on various benchmarks
show that the proposed CADP framework yields results su-
perior to the state-of-the-art methods.

2 Related Works

Teacher-student CTDE Framework. Conventional CTDE-
based methods fall short of fully utilizing global information
for training, leading to an inefficient exploration and per-
ception of the joint-policy and resulting in performance de-
gration. Therefore, several recent works attempt to improve
CTDE with the teacher-student framework. IGM-DA [Hong
et al., 2022] firstly proposes centralized teacher with decen-
tralized student frameworks, where the teacher models use
the global state while the student models use the partial obser-
vation. It adds an additional knowledge distillation loss to en-
able the teacher model to assist in training the student model.
In CTDS [Zhao et al., 2022], the teacher model still uses the
agent observation, but the field of view is set to infinite during
centralized training. PTDE [Chen et al., 2024] trains a net-
work to aggregate local observation and global state, resulting
in a better representation of agent-specific global information.
Most of these methods focus on distillation to transfer the
knowledge from the teacher to the student for decentralized
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execution, which is essentially an offline imitation learning.
Thus, the agents still ignore the policies of other agents and
make their own decision during centralized training, resulting
in an inefficient cooperative exploration.

Communication in MARL. Communication [Wang er al.,
2020a; Sukhbaatar et al., 2016; Li et al., 2023; Nayak et al.,
2023; Lo et al., 2024] is also widely used in MARL, which
facilitates information transmission between agents for effec-
tive collaboration when agents can only access their own ob-
servations. Recently, many methods have used attention as
the main mechanism of communication [Das et al., 2019;
Jiang and Lu, 2018; Igbal and Sha, 2019; Yuan et al., 2022;
Mao et al., 2020b; Hu et al., 2024], where self-attention
can be considered as a message exchanging mechanism with
other agents. The communication paradigm allows agents to
communicate during both the training and execution stages.
In contrast, CTDE emphasizes centralized training of agents
while they execute their individual policies in a decentral-
ized no-communication manner. Furthermore, to address
communication constraints, various message pruning meth-
ods [Wang et al., 2020b; Mao et al., 2020a; Wang et al.,
2020c; Yuan et al., 2022; Ding et al., 2020] propose to com-
press and refine communication information, choose with
whom to communicate. Furthermore, MACPF [Wang et
al., 2023] offers a method involving information transmis-
sion during training without necessitating it during execution.
However, it only enables unidirectional forwarding of previ-
ous agents’ actions, which does not qualify as comprehensive
mutual communication.

3 Preliminary
3.1 Dec-POMDP

We consider a fully cooperative multi-agent task as
the Decentralized Partially Observable Markov Decision
Process (Dec-POMDP), which is defined as a tuple
(A, 8,U, P,r,Q,0,7), where A = {a,})_; is the set of
N agents and s € S is the global state of the environment. At
each time step ¢, each agent a,, € A receives an individual
partial observation o} € (2 drawn from the observation func-
tion O(st,a,), then each agent chooses an action uy! € U
which forms joint action w; € U™. This causes a transition
to the next state sy according to the state transition func-
tion P(s¢y1lse,ug) : S x UV x S — [0,1]. The reward
function which is modeled as (s, u;) : S x UV — R and
~ € [0, 1) is the discount factor. Each agent a,, has an action-
observation history 7 € T = (2 x U)*, on which it condi-
tions a stochastic policy 7™ (u™|7") : T x U — [0,1]. The
joint action-observation history is defined as 7 € 7. In this
work, the joint policy 7 is based on joint action-value func-
tion Q7% (s, ) = By uwririoo | Doiao Y Tewi | St
The final goal is to get the optimal policy 7v* that maximizes
the joint action value.

3.2 Value Decomposition in MARL

Value Decomposition (VD) is a useful technique in cooper-
ative MARL to achieve effective Q-learning [Sunehag et al.,
2018; Rashid et al., 2018; Wang et al., 2021; Li et al., 2021;
Jiang et al., 2021; Qing et al., 2024]. It aims to learn a joint

action-value function Q*? to estimate the expected return
given current global state s; and joint action u;. To realize
VD, a mix network f(-;68,) with parameters 0,, is adopted
as an approximator to estimate the joint action-value function
Q. f(-;0,) is introduced to merge all individual values
into a joint one Q°* = f(q;0,), where q = [Q"]"_, € RY
and Q™ with shared parameters 6, is the action-value net-
work of each agent a,,. Usually, f(-;6,,) is enforced to sat-
isfy the Individual-Global-Max [Son e al., 2019] principle.
Therefore, the optimal joint action can be easily derived by
independently choosing a local optimal action from each lo-
cal Q-function @™, which enables Centralized Training and
Decentralized Execution (CTDE). The learnable parameter
6 = {0,,0,} can be updated by minimizing the Temporal-
Difference (TD) loss as:

Cro® =Eo [ - @]

where E[:] denotes the expectation function, D is the replay
buffer of the transitions, y*°! = r 4+ vQ%? is the one-step tar-

get and Q" is the target network [Mnih et al., 2015]. Addi-
tionally, owing to the fact that the partial observability often
limits the agent in the acquisition of information, the agent
policy usually uses past observations from history [Sunehag
etal., 2018].

3.3 Policy Gradient in MARL

Policy gradient (PG) [Yu er al., 2022; Lowe et al., 2017,
Foerster et al., 2018] has been proposed as a competent al-
ternative to directly optimize the policy. In the domain of
cooperative MARL, the PG mechanism complies with the
CTDE constraint through the learning of an individual ac-
tor 7™ (u™|7™), and a centralized critic V(s) : S — R, for
all agents. To leverage global information during central-
ized training, the value functions V" typically incorporate
the global state s as input to ensure accurate estimation of
the expected value. By adopting this decentralized execu-
tion approach, the consequent implicit joint policy achieves
a fully independent factorization and agent policies are as-

sumed to be independent of each other [Fu et al., 2022]:

mw(u|T)= HnN:1 7™ (u™ | 7). PG directly maximizes the

expected discounted return R, = Y .- virs 1 ; as the objec-
tive. Thus, the loss function is defined as L,ctor = —Er[Ry].
To optimize the actor 7, we can perform policy gradient [Sut-
ton and Barto, 2018] as:

T
Vo, Lac(0r) = —Espr umn Z R Vg logm (u|T)|,

t=0

2
where p™ is the state distribution. In particular, R; is often
replaced by r; + vV (s¢+1) — V(s¢) which is calculated by
the critic function to reduce the high variance.

4 Method

To introduce global cooperative information for agent train-
ing, we propose the Centralized Advising and Decentralized
Pruning (CADP) framework, as shown in Figure 2. In gen-
eral, CADP performs CTDE to enable each agent to learn its
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Figure 2: Illustrative diagram of the proposed Centralized Advising and Decentralized Pruning (CADP) framework. At centralized training
stage, the agent model will use the ), K, V modules, while at decentralized execution stage, the agent model only uses V' module.

individual policy network. At the heart of our design is in-
troducing the explicit cooperative information exchanging of
agents for sufficient centralized training to enhance the agent
policy network. To cope with the decentralized execution
paradigm, we design a model self-pruning mechanism, which
prompts the centralized model to evolve into a decentralized
model smoothly. The overall framework is finally summa-
rized. Besides, for the sake of clarity, we employs the VD
method as an illustrative example to introduce the proposed
CADP framework, while CADP is also readily applicable to
the PG method.

4.1 Advice Exchanging

The widely adopted CTDE framework only introduces the
global state for agents in the mix/critic module, leading to
that an agent policy network only perceives its local obser-
vation instead of the global states. In contrast, we design a
novel centralized training scheme to augment the agent pol-
icy network from the local information of an individual agent
to the global cooperative information from all agents, infer-
ring better action decisions.

Formally, we employ an agent’s confidence c for all agents
to highlight its personalized confidence weights of other
agents when receiving interchangeable cooperative advice
from them, where the higher confidence corresponds to the
more useful information of agents. The whole process can be
reduced to a self-attention mechanism [Vaswani et al., 20171,
where we set messages key k and value v, respectively, while
confidence c is considered as the dot product of the key k of
other agents and query q of itself. ¢, k and v are all linear
projections of the local observation o. The formula is written
as:

gi - kj exp(a ;)

o = G i, 3

" Vg chvzl exp(a; k) s

where k; means the message key k of agent j and g; means
the query ¢ of agent 7, d, is the scaling coefficient and c; ;
is the confidence from agent ¢ to agent j. Finally, the ag-
gregating information z; of the agent ¢ is obtained by taking
the weighted sum of the value according to the confidence

7Ci,N):

N
Zi= ) Cig v, “4)
=

where v; means the value v of agent j. Through this step,
each agent refers to the cooperative information of others.
Then, we combine the aggregating information z in the previ-
ous step with the agent’s own local information h, and finally
output the action value Q:

hl = GRU([z,0i,hi™Y), Q':= MLP(Rh!), (5)

where GRU (-, -) stands for Gated Recurrent Unit. Notably,
we have incorporated residual connections into the input of
the GRU network. This short-circuit mechanism allows us
to simultaneously leverage representations with and without
advice exchanging, for enhancing training stability and per-
formance.

Since our work focuses on the agent policy module, we
can adopt different mix modules such as VDN [Sunehag et
al., 2018], QMIX [Rashid et al., 2018] and QPLEX [Wang et
al., 2021] to generate Q*°*. Besides, if the final output of our
agent module is a policy distribution 7 instead of Q° (per-
forming normalization after Equation 5), we can also employ
MAPPO [Yu et al., 2022].

Ci,1:N ‘= (Ci,1701,27 ce

4.2 Model Self-Pruning

In pursuit of facilitating decentralized execution, the current
model needs to evolve into the decentralized model depend-
ing only on itself, rather than global information. In this step,
we design a simple yet effective model self-pruning method
to achieve this. We claim that if the following conditions are
satisfied, the agent model is a decentralized model:

Ci,l:N = ei,Vi S [17N}7 (6)

where e’ means the i-th standard basis vector (an one-hot vec-
tor). In this way, we can directly apply the agent model to de-
centralized execution as there is no advice from other agents
used. Furthermore, we just apply the value v to produce the
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output z without key & and other components. For the conve-
nience of expression, we refer to the model that only requires
their own values v without the self-attention mechanism as
the decentralized model (CADP (D)). On the other hand, the
model using self-attention mechanism is referred to as the
centralized model (CADP (C)). A decentralized model actu-
ally presents that the agent’s confidence c; 1.y of all agents
is equal to the one-hot vector e’ in the execution stage. It
is required to smoothly swap from the centralized training
with exchanging confidence to the decentralized execution
with the one-hot confidence c; ;.. Therefore, we design an
auxiliary loss function named pruning loss £,, to help the de-
centralized agent gradually alleviate the dependence of other
agents, which is given as:

N
Ly(0a) =Y Drr(eciin), )
=1

where 6, means the parameters in the agent module. In the
pruning loss, smaller £, means agents rely less on the others.

4.3 Overall Framework

In our framework, we adopt advice exchanging step at
agent policy module to produce more thoughtful and team-
oriented action decisions. After the model achieves satis-
factory performance, we start to use the pruning loss L,
prompting the centralized model to evolve into a decentral-
ized one smoothly. Our mix module implementation uses
QMIX [Rashid et al., 2018] as a basic backbone for its ro-
bust performance and its simplicity of architecture, but it is
readily applicable to the other mix/critic method since our
framework focuses on the agent policy module.

To sum up, training our CADP framework contains two
main loss functions. The first one is naturally the original
TD loss L7 p mentioned on Equation 1, which enables each
agent to learn its individual agent policy by optimizing the
joint-action value of the mix module. Unlike IGM-DA [Hong
et al., 2022] and CTDS [Zhao et al., 2022], to avoid per-
formance degradation and reduce computing costs, our prun-
ing loss £, is not introduced at the very beginning. We add
pruning loss when the centralized model reaches a high level.
Therefore, the total loss of our framework is formulated as
follows. (Here we take the method of value decomposition as
an example. For the PG method, we just need to add the prun-
ing loss to the loss of actor £ 4 mentioned on Equation 2):

»Ctot(e) - CTD(Qmiza 9(1) - U(t)ﬁp(ga)y (8)
where 0,,;, stands for the parameters of mix network in our
method and ¢ is the timestep of the training. o (-) is a threshold
function which is defined as follows:

_Joa if t>T,
o(t) = { 0 Otherwise, ®)

where 7' is a hyperparameter and « is the coefficient for trad-
ing off loss term. From a practical application perspective, it
suffices to incorporate the pruning loss after the centralized
model achieves satisfactory performance in online learning.
Nevertheless, in Section 5.4, we still conduct ablation exper-
iments for T to further investigate its impact. In addition, we
provide pseudocode in Appendix D.

S Experiments

To demonstrate the effectiveness of the proposed CADP
framework, we conduct experiments on the StarCraft II mi-
cromanagement challenge and Google Research Football
benchmark. We aim to answer the following questions: (1)
Can CADP outperforms the methods under traditional CTDE
framework? (Section 5.1) (2) Can CADP outperforms the
methods under teacher-student CTDE framework? (Section
5.2) (3) Can CADP perform better than the message (com-
munication) pruning methods under the CTDE constraints?
(Section 5.3) (4) Can CADP, as a universal framework, be
applied to different methods and achieve improvement? (Sec-
tion 5.4) (5) In comparison to traditional CTDE methods,
does CADP require excessive time overhead? (Appendix C).
Besides, visualization is given in Appendix E.

Based on these questions, we opt to compare three ma-
jor categories of baseline methods: traditional CTDE-based
methods, teacher-student CTDE framework methods and the
message pruning methods under the CTDE constraints. Each
category will be compared with CADP. Our CADP frame-
work uses QMIX [Rashid et al., 2018] as a basic backbone
for its robustness and its simplicity of architecture, but it is
readily applicable to the other mix/critic backbone. We show
it at Section 5.4. The detailed hyperparameters are given in
Appendix B, where the common hyperparameters across dif-
ferent methods are consistent for comparability. We also pro-
vide additional expereiments in Appendix B.

5.1 Comparison with Traditional CTDE

We select several traditional CTDE methods: VDN [Sunehag
et al., 20181, QMIX [Rashid et al., 2018], QTRAN [Son et
al., 2019], QPLEX [Wang et al., 2021], CWQMIX [Rashid
et al., 2020], OWQMIX [Rashid et al., 2020] and one
DTDE-based methods (regarded as a special case of CTDE):
IQL [Tan, 1993] for comparison. The experimental results on
different scenarios are shown in Figure 3. It can be seen that
our proposed method successfully improves the final perfor-
mance in the challenging tasks. Especially in the most diffi-
cult homogeneous scenario (3s5z-vs_3s6z) due to the different
unit types, the large number of entities and the great disparity
in strength between the two teams, our method can outper-
form baselines by a large margin.

5.2 Comparison with Teacher-Student CTDE

We also compare with the teacher-student CTDE framework
methods: CTDS [Zhao er al., 2022] and IGM-DA [Hong et
al., 2022]. The experimental results on different scenarios
are shown in Figure 3. Similarly to the previous section,
our method has better final performance in the challenging
tasks, not only compared with the methods under teacher-
student CTDE framework. Especially in the super hard sce-
narios (3s5z_vs_3s6z) and (corridor) due to the different unit
types or the large number of entities and the great dispar-
ity in strength between the two teams, our method outper-
forms baselines by a large margin. In addition, after adding
the pruning loss, the performance of our decentralized model
rises dramatically from almost zero to near the performance
of our centralized model. By contrast, in methods teacher-
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Figure 3: Learning curves of our method and baselines on the SMAC scenarios. (Upper) Comparision with the methods under the CTDE and
DTDE frameworks. (Lower) Comparision with the methods under the teacher-student CTDE framework. CADP(C) means our centralized
model, while CADP(D) means our decentralized model which will be used for decentralized execution.
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Figure 4: Learning curves of our CADP method and baselines on
the Google Research Football (GRF) scenarios.

student CTDE framwork, the performances of student mod-
els and teacher models climb together slowly and even some-
times the teacher models fail for training. Furthermore, our
CADP method is the only method which can ultimately reach
almost consistent performance for decentralized model and
centralized model in all scenarios.

Besides, we test teacher-student CTDE framework meth-
ods on the Google Research Football (GRF) [Kurach er al.,
2020] benchmark. Unlike StarCraft II, individual observa-
tions in the Google Research Football (GRF) are not partial
observation, which contains as much information as global
state. In this case, the teacher-student CTDE framework will
no longer have a significant advantage over methods under

traditional CTDE framework theoretically, since the teacher
model does not have more input information than the student
model and has no ability to instruct the student model. The
experimental results on different scenarios are shown in Fig-
ure 4. It can be seen that only our method significantly outper-
forms QMIX [Rashid et al., 2018]. In addition, in the method
of the teacher-student framework, the student model always
maintains almost the same performance as the teacher model,
which verifies that the teacher model does not have the abil-
ity to guide the student model in this case and also shows
that using global cooperative information is more powerful
than simply providing more observation information. In GRF
benchmark, we set 7' = 3M in 3_vs_I _with_keeper scenario
and T' = 6 M in counterattack_easy scenario respectively. We
can see an obvious improvement of our method after adding
the pruning loss £,, at timestep 7" in both.

5.3 Comparison with Message (Communication)
Pruning Methods under CTDE Constraint

Furthermore, we test some message pruning methods,
GACML [Mao er al., 2020al, NDQ [Wang er al., 2020c],
MAIC [Yuan et al., 2022] and MACPF [Wang er al., 2023]
under CTDE constraint. GACML [Mao et al., 2020a] and
MAIC [Yuan et al., 2022] are attention-based methods, while
the other is not. During training, we allow them to communi-
cate and apply message pruning, but during execution, we cut
off all communication. To ensure a fair comparison, we also
used QMIX [Rashid et al., 2018] as the backbone for these
methods. The experimental results in the table 1 show that
these methods are almost not better than basic QMIX [Rashid



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Method Sm_vs_6m corridor 3s5z_vs_3s6z
GACML 0.46 £0.10 030 +0.33 0.32 +0.36
NDQ 0.38 £0.09 042 +£0.21 0.00 £ 0.00
MAIC 0.28 £0.10  0.01 +0.01 032+ 045
MACPF 020 £0.18  0.67 £0.39 0.16 +0.14
QMIX (CTDE) 043 £0.13  0.70 + 0.35 0.24 +0.36
QMIX (CADP)  0.68 £ 0.08  0.84 £ 0.03 0.93 + 0.03

Table 1: The comparison of test win rate between our CADP method
and the message-pruning methods.

Method Sm_vs_6m corridor 3s5z_vs_3s6z
VDN (CTDE) 0.54 £0.09 0.65 £ 0.32 0.25 £0.18
VDN (CADP) 0.66 = 0.07  0.72 £ 0.51 0.85 £ 0.20
QMIX (CTDE) 043 +£0.13  0.70£0.35 0.24 £0.36
QMIX (CADP) 0.68 = 0.08  0.84 £ 0.03 0.93 £ 0.03

QPLEX (CTDE) 0.57 £0.13 020+ 0.12 0.08 £0.11
QPLEX (CADP) 0.73 £ 0.04  0.37 £ 0.36 0.96 + 0.02
MAPPO (CTDE) 0.85+ 0.07 0.96 £ 0.03 0.35 £ 0.39
MAPPO (CADP) 0.97+ 0.03 0.98 + 0.02 0.90 £ 0.16

Table 2: The test win rate of different MARL methods with our
CADP framework and the CTDE framework.

et al., 2018] which means when communication is completely
cut off, the performance of these methods is not good.

These experimental results indicate that although message
pruning can reduce communication, it is not suitable for
CTDE scenarios where there is no communication at all.
These message pruning methods, except MACPF [Wang et
al., 2023] focus on compressing and refining communication
information or selecting who to communicate with, which
results in smaller bandwidth. As for MACPF [Wang et al.,
2023], the poor performance can mostly be attributed to the
insufficient information exchanging, which is solely the one-
hot vector representing the actions of the previous agents.
In contrast, our CADP framework is designed to enhance
the CTDE framework, which does not allow any communi-
cation at all during the decentralized execution phase. Our
CADP framework first trains a well-performing communica-
tion model, and then gradually and dynamically distills its
knowledge into a non-communication model.

5.4 Ablation Study

Different backbones. To further verify the generabil-
ity of our CADP framework, we test value-based meth-
ods: VDN [Sunehag et al., 2018], QMIX [Rashid et al.,
2018], QPLEX [Wang et al., 2021] and policy-based method:
MAPPO [Yu et al., 2022] under the CADP framework. Ex-
perimental results in Table 2 indicate that all these methods
have shown an improvement when using the CADP frame-
work. Especially in the most difficult homogeneous scenario
(3s5z_vs_ 3567), methods with our CADP framework outper-
form baselines by a large margin. This observation indi-
cates the versatility and effectiveness of our proposed CADP
framework in catering to various CTDE-based methods, par-
ticularly in scenarios with high levels of difficulty.

Different hyperparameter. We examine the effect of the
coefficient « in 3s5z_vs_3s6z scenarios in Figure 5. We ob-
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Figure 5: Ablation study on different coefficients «. The left part is

the learning curves for 4M timesteps and the right part is the average
test win rate of last 0.1M timesteps.
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Figure 6: Ablation study on different timestep 7". The left part is the
learning curves for 4M timesteps and the right part is the average
test win rate of last 0.1M timesteps.

serve that there is not much difference in performance ex-
cept the coefficient is too small (« = 0.001) to affect the
training. Even when we set a = 100.0, The final perfor-
mance is also not far behind the best (o« = 0.5). This means
our method is very robust for the coefficient . In addition,
we consider five T" values: 0, 1M, 2M , 3M, and 3.5M. Fig-
ure 6 demonstrates that using smaller 7" for training, the per-
formance of decentralized starts to improve earlier but taked
longer time from the beginning of improvement to conver-
gence which may waste some computing resources while us-
ing bigger T for training, the performance of decentralized
model improves more quickly but the convergence time may
delay. In general, setting 7' = 3M is a balanced choice for
both sides. The experiment also shows that different values
have little impact on the final performance, which may be
because Lrp is always dominant in training before the con-
vergence of the centralized model.

6 Conclusion

In this paper, we argue the traditional CTDE framework is
not centralized enough, since it falls short of fully utilizing
global information for training, leading to an inefficient ex-
ploration of the joint-policy, and resulting in performance de-
gration. Thus, we propose a novel Centralized Advising and
Decentralized Pruning framework, termed as CADP, to en-
hance basic CTDE with global cooperative information. It is
noting that our focus is not to design a new communication
method. Our main contribution is adopting agent communi-
cation to enhance the basic CTDE framework for fully cen-
tralized training and still guarantees the independent policy
for decentralized execution. As CADP provides a light yet
efficient framework, we believe there will be more discussion
and exploration under CADP framework.
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