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Abstract

Collaborative spatial crowdsourcing leverages dis-
tributed workers’ collective intelligence to accom-
plish spatial tasks. A central challenge is to
efficiently assign suitable workers to collaborate
on these tasks. Although mainstream reinforce-
ment learning (RL) methods have proven effec-
tive in task allocation, they face two key obsta-
cles: delayed reward feedback and non-stationary
data distributions, both hindering optimal allo-
cation and collaborative efficiency. To address
these limitations, we propose CAFE (credit assign-
ment and fine-tuning enhanced), a novel multi-
agent RL framework for spatial crowdsourcing.
CAFE introduces a credit assignment mechanism
that distributes rewards based on workers’ con-
tributions and spatiotemporal constraints, coupled
with bi-level meta-optimization to jointly optimize
credit assignment and RL policy. To handle non-
stationary spatial task distributions, CAFE employs
an adaptive fine-tuning procedure that efficiently
adjusts credit assignment parameters while preserv-
ing collaborative knowledge. Experiments on two
real-world datasets validate the effectiveness of our
framework, demonstrating superior performance in
terms of task completion and equitable reward re-
distribution.

1 Introduction

With the popularity of smart mobile devices, spatial crowd-
sourcing (SC) has emerged as a promising computing
paradigm [Li et al., 2022¢; Li et al., 2022b], where workers
perform spatial tasks assigned by the SC platform for pay-
ments [Wu et al., 2024b; Mei et al., 2024]. The increasing
complexity and diverse requirements of spatial tasks have
driven the evolution of a more sophisticated model within
SC, namely Collaborative Spatial Crowdsourcing (CSC). In
this paradigm, multiple workers can collaboratively complete
tasks, leveraging a collective workforce to accelerate task
completion. Such collaborative approaches are prevalent in
various real-world applications, including home renovation,
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Figure 1: An example of collaborative spatial crowdsourcing.

furniture assembly, and venue arrangement [Cheng er al.,
2016; Cheng et al., 2019; Zhao et al., 2024], etc.

To illustrate CSC, consider the example shown in Fig.1,
which involves four workers (A-D) and two tasks (X, Y). The
initial configuration assigns workers A and B to tasks X and Y
respectively, while workers C and D remain unallocated. The
scenario is characterized by worker heterogeneity: worker C
is exclusively qualified for task Y, while worker D possesses
the versatility to perform either task. Task completion times
directly impact payment structures, and the assignment of
worker D to either task X or Y yields different compensation
outcomes. This study aims to optimize the platform’s rev-
enue through strategic task allocation. Notably, as the scale
of workers and tasks expands in real-world applications, the
computational complexity of CSC increases exponentially.

Existing research on CSC has explored diverse approaches,
ranging from heuristic algorithms [Cheng et al., 2019; Zhao
et al., 2024] to learning-based methods [Zhao er al., 2023].
Cheng et al. (2019) introduced a collaborative framework
where multiple workers jointly handle space tasks to max-
imize overall collaboration quality. Zhao et al.(2024) de-
veloped an equilibrium-based approach that combines sim-
ulated annealing with Nash equilibrium refinement to opti-
mize total rewards while maintaining priority-aware fairness
in task assignments. Zhao et al. (2023) advanced the field by
incorporating mutual information and attention mechanisms
for group preference modeling, alongside tree decomposition
and curriculum learning strategies to enhance task allocation
efficiency. Building on this progress, Zhan et al.(2024) in-
tegrated graph neural networks to assess worker trustworthi-
ness and implemented a specialized Tabu search algorithm
for worker assignment.
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Although multi-agent reinforcement learning (MARL) has
been widely applied in task allocation problems, its applica-
tion to CSC faces significant challenges due to delayed and
sparse reward feedback. The credit assignment of reward in
CSC is particularly complex due to the temporal nature of
task completion, where payments are only generated upon
task completion, yet workers join and contribute at differ-
ent timestamps throughout the execution process. This tem-
poral misalignment complicates reward allocation, as sim-
ple time-based distribution methods fail to capture the nu-
anced dynamics of worker participation. Furthermore, work-
ers’ heterogeneous contributions to the same task create addi-
tional complexity in fair reward distribution - certain workers
may provide critical contributions despite shorter participa-
tion periods. For instance, strategically assigning a worker
to a nearly-completed task rather than a newly published one
can accelerate task completion and worker availability, creat-
ing a cascade effect that enhances overall platform efficiency.
In such cases, although the worker’s time investment may
be brief, their strategic contribution significantly impacts the
platform’s revenue, warranting higher rewards despite shorter
participation duration.

Another critical challenge in CSC stems from the inher-
ent heterogeneity across tasks. As each task presents unique
characteristics and requirements, the learning experiences de-
rived from different tasks may contain significant noise and
variability. This non-stationary data distribution makes it
challenging to effectively learn knowledge across tasks, as
parameters trained on one task may not generalize well to oth-
ers due to task-specific patterns and biases. Such diversity in
task characteristics creates substantial learning interference,
potentially compromising the stability and robustness of the
learned policies.

To address the aforementioned challenges, this paper
presents CAFE (Credit Assignment and Fine-tuning En-
hanced), a novel framework for MARL that incorporates two
key components: (i) a credit attribution mechanism that ac-
curately evaluates individual worker contributions, and (ii) a
robust parameter fine-tuning approach that effectively miti-
gates task-level sample noise. The key contributions of our
work are as follows:

e A Causality Reward Redistribution Methods for MARL.
We propose a multi-agent reinforcement learning ap-
proach to address the CSC problem, and subsequently
introduce a causal-perspective reward redistribution
scheme that leverages Bayesian surprise to quantify in-
dividual agent contributions.

* A Bi-Level Meta-Optimization Approach. We propose
a bi-level optimization framework leveraging implicit
gradients, which concurrently optimizes RL objectives
and reward redistribution parameters by strategically in-
tegrating historical learning trajectories.

e Efficient Parameters Fine-Tuning for Diverse Data. To
address the non-stationary data distribution challenge in
real-world datasets, we propose a parameters fine-tuning
approach built upon implicit learning that enables rapid
adaptation without deviating from the original optimiza-
tion objective.

o Extensive Empirical Studies. We evaluate the effective-
ness of our proposed approaches on real-world datasets.
Extensive experiments demonstrate the effectiveness of
our methods.

2 Related Works

2.1 Reinforcement Learning in Spatial
Crowdsourcing

Reinforcement learning (RL) is increasingly applied in
crowdsourcing to optimize task assignment and scheduling
through adaptive policy learning in dynamic environments
[Li er al., 2025; Wu et al., 2024a]. A common approach is
to model task assignment as a Markov Decision Process. For
instance, Zong et al. (2022) developed an end-to-end multi-
agent system for pickup and delivery problems. In air-ground
spatial crowdsourcing, Wang et al. (2023) introduced a multi-
center attention-based graph convolutional network for com-
munication. In contrast, Ye et al. (2023) proposed a het-
erogeneous multi-agent framework exploring both individual
and collaborative environments. Jiang et al. (2023) designed
a fairness-aware concurrent dispatch system for instant de-
livery services. For ride-hailing order dispatching, Zhang et
al. proposed an offline deep reinforcement learning frame-
work with a method for managing dynamic nondeterministic
action spaces [Zhang et al., 2024] Beyond direct application
in decision-making, RL enhances established matching meth-
ods. It can determine the sliding window size of decision time
steps [Li et al., 2022c] and optimize existing algorithms based
on game theory [Li et al., 2023], large-scale search [Li et al.,
2022al, and combinatorial optimization [Tong et al., 2021].

2.2 Credit Assignment in Reinforcement Learning

Delayed rewards present a fundamental challenge in re-
inforcement learning, wherein rewards manifest several
timesteps after an action, making it difficult for agents to
establish clear associations between actions and their conse-
quent outcomes. Reward reshaping has emerged as a widely
adopted approach to address this temporal credit assignment
problem. Zhu et al. (2023) investigated episodic reinforce-
ment learning with trajectory feedback, introducing an adap-
tive reward redistribution method grounded in bi-level opti-
mization. In a complementary approach, Ren er al. (2021)
developed a randomized return decomposition technique to
transform long-horizon delayed reward problems into more
manageable shorter sequences, thereby enabling effective
training through mini-batch gradient descent. Advancing the
field further, Ma et al. (2024) introduced a novel dual-agent
framework comprising a policy agent for optimal behavior
learning and a reward agent for generating auxiliary reward
signals, thus achieving reward design without dependence on
expert knowledge or hand-crafted functions. Qu et al. (2024)
demonstrated that large models can be leveraged to encapsu-
late valuable decision-making knowledge, offering a promis-
ing avenue for reward redistribution. This approach of uti-
lizing large models for processing state features has shown
considerable promise in effectively addressing the temporal
credit assignment challenge. In addition to credit assignment
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Figure 2: Payment of spatial task.

methods, many studies address the reward distribution prob-
lem from other perspectives, such as enhancing agent train-
ing in reinforcement learning by combining the advantages of
group strategies and individual strategies [Wang et al., 2022].

3 Problem Formulation

Generally, we define the CSC problem on a road network rep-
resented by a graph G = (N, E), where n € N represents
road intersections, and e;; € E denotes roads connecting
two intersections. Next, we define other entities related to
the CSC problem.

Worker. A worker w € W is described by the tuple w =
(I, K), where [ denotes the worker’s location and K repre-
sents the set of skills. Furthermore, to simplify the problem,
we assume that all workers have the same basic attributes,
such as movement speed, work speed, etc.

Spatial Task. A spatial task 7 € 7 is described by the tu-
ple 7 = (t¢,t¢,t% 1, k, q, p). The task’s temporal aspects are
represented by ¢¢, t¢, and e, indicating the creation time, ex-
pected completion time, and deadline, respectively. Addition-
ally, [ is the location of the task, k represents the skill required
to complete the task, each task has exactly one skill require-
ment, and ¢ represents the task quantity, which is proportional
to the workload completed by a worker per unit of time. Fur-
thermore, p signifies the payment obtained upon successful
completion of the task.

Considering the actual accomplishment of the task, the real
benefit p of the task is expressed as follows:

Prmazs if ! < ¢
p=<[1—=C-tF =] prmax, ifte<t! <t
0, iftf > ¢4

while ¢/ is the finish time of the task, Pmazis the maximum
payment that the task publisher can offer, ( is the penalty rate,
as shown in Fig.2.

CSC Problem. Given a stream of tasks 7 and a set of
works W, CSC problem aims to find the optimal assignment
M to maximize the global revenue P.

P:maXZpT,

4 Methodology

4.1 Markov Decision Process

We establish a multi-agent network system based on Markov
Decision Process (MDP). This system is represented by the
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Figure 3: Actor-Critic network structure.

tuple (NV,S,0, A, R,P,v), where P represents the state
transition probability matrix and v is the discount factor.
Next, we elaborate on the meanings of other components in
this MDP tuple.

Agent n € N: Each worker w is modeled as an agent n,
and all agents are assumed to share an identical network struc-
ture and parameters.

State s € S: The global state s; is represented by a vector
(T, W), which includes both worker and spatial task real-
time information.

Observation o € O: The observation o} is represented
asa triplet (7;7,80.7‘7 Wnear7 Widle7 7—optinal7 wself)’ which cap-
tures the conditions of nearby workers, surrounding tasks,
idle workers, surrounding optional tasks, and the agent’s own
real-time information.

Action a € A: The action is defined as {79, 71,72, ..., T2},
where 7 represents the option of not selecting any task and
T, represents the task index of the surrounding optional tasks.

Reward r € R: Reward serves as the critical factor in eval-
uating the quality of agent actions and directly influences the
model’s training outcomes. In the methodology section, we
propose a novel reward redistribution approach.

4.2 Neural Network Architecture

Our proposed method, CAFE, builds upon the Actor-Critic
framework by introducing a novel neural network architec-
ture. This architecture features a base module that seam-
lessly integrates with established multi-agent actor-critic ap-
proaches such as MAPPO [Yu et al., 2022], IPPO [De Witt
et al., 2020], and MADDPG [Lowe et al., 2017] as shown
in Fig.3. In the following sections, we present a detailed de-
scription of the key components and their interconnections
within our proposed architecture.

Actor: The actor network employs four Multi-Head Atten-
tion (MHA) [Vaswani, 2017] layers to process the observa-
tion, followed by a Multi-Layer Perceptron (MLP) to inte-
grate the outputs of the MHA layers, and finally uses a soft-
max function to output the action.

Critic: The Critic network has a similar architecture to the
actor network, with the key difference being that the Critic
network outputs the evaluation of the current state.

4.3 Reward Redistribution

To comprehensively evaluate how individual workers’ actions
affect overall revenue, we propose a reward redistribution
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Figure 4: Structural causal model of MARL. Meanwhile, e repre-
sents the external disturbance affecting state transitions. For nota-
tional convenience, we denote by a, * the joint actions of all agents
except agent 4 at time step ¢.

mechanism that quantifies each worker’s contribution.

To systematically analyze agent contributions in MARL,
we first develop a structural causal model (SCM) that captures
the underlying causal relationships of the process (Fig.4).
Within this model, directional arrows represent inherent
causal dependencies between components. To quantify how
each agent’s action a} causally impacts the subsequent state
S¢+1, we employ conditional mutual information (CMI):

CMI, = I(st11;a4|St, a1 "). (1)

To enhance computational efficiency while preserving the
essential causal relationships, we make two key approxima-
tions. First, we replace the global state s, with agent n;’s
local observation oi. Second, we consider only the actions
of nearby agents a; , instead of the complete joint action set

a; *. These simplifications are theoretically justified by two
established principles: independent causal mechanisms [Pe-
ters et al., 2017] and spatiotemporally bounded interactions
[Scholkopf er al., 2021] between autonomous entities [Du et
al., 2024]. This leads to our simplified CMI formulation:

CMI} ~ I(0441; atlog, a;;). 2)
Since our primary objective is maximizing platform rev-
enue, we focus on how agents’ actions influence future task
payments within their local observation range. We imple-
ment this through a Variational Autoencoder (VAE) [Liu et
al., 2023] architecture, where %z, encodes the revenue infor-
mation of nearby tasks. This allows us to reformulate CMI in
terms of z, and a}, yielding:

CMI} ~ I(zp; ai|ot,a;2)
~ Dir [q(zplos, ap, ar 2)|| (2, oe, ai )] -

The final expression employs Bayesian surprise [Li er al.,
2024; Mazzaglia et al., 2022] to compute CMI. Our VAE im-
plementation, illustrated in Fig.5, consists of:
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Figure 5: The reward for agent’s action a; is constructed using a
Variational Autoencoder (VAE). The encoder architecture mirrors
the agent’s critic structure, while the decoder is implemented as a
fully connected neural network.
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Relying solely on an action’s state-impact assessment as the
agent’s reward is suboptimal. Traditional reward mechanisms
typically incentivize actions that dramatically alter the envi-
ronment, which may diverge from the goal of maximizing
platform revenue. To mitigate this misalignment, we intro-
duce a regularization term into the reward function:

r(¢) = ¢1 - OCMI} + ¢o. (5)

While ¢; and ¢ are hyperparameters. In the next subsection.
we will introduce the method for determining the specific val-
ues of hyperparameters ¢.

4.4 TImplicitly Learning

To optimize the hyperparameters in the reward function, we
propose a novel bi-level optimization method based on im-
plicit gradients [Rajeswaran et al., 2019] to tune the reward
function’s hyperparameters. This approach enables the con-
current optimization of hyperparameters during the reinforce-
ment learning process.

The bi-level optimization method consists of two levels: an
inner-level that optimizes the reinforcement learning model
and an outer-level that optimizes the reward function’s hyper-
parameters. The loss function can be expressed as:

inner-level: 0* = arg max J(9),

outer-level: ¢* = arg max [J(0,0) — La],
while J is the target function of the actor’s network. And
we aim to ensure that the rewards after redistribution still
maintain the same long-term return as the undivided rewards,
thereby maintaining the invariance of the optimal policy. To
achieve this, we use L, to regulate the long-term reward,
which is expressed as:

T

T 2
La(¢) = Ex~a (Z (@) —n- ZP) Q)

t=1

71 is a hyperparameter used to control the magnitude of the
reward, and (¢) is the reward function of ¢.

We define F'(¢) as the outer-level loss function, and its
gradient is:

dF() _ 47 dLy o
dé¢ ~ d¢ do’
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while AL /d¢ is straightforward to compute, dJ(6*, ¢)/d¢
is more challenging to calculate. We can derive dJ(6*, ¢)/d¢
using the chain rule as:

A _ 9 01 09

do 0 00 09
The key to calculating d.J(6*, ¢)/d¢ is to solve for %. First,
consider the situation within the inner level, where the inner

loss function has been optimized, meaning that # attains a
reasonable parameter value. In this case, the gradient of 6 is

close to O:
dJ oJ

— = —=0. 9

deo 00 0 ©)

Thus, in order to get 9.J/00, we differentiate both sides of
the above equation with respect to ¢:

0 (0J

Next, apply the chain rule to solve the resulting equation:
02J _ 08 A 9?J _
900,00, 0¢  000¢p

Rearranging the above equation, we can get:

(92T N\ 9%
oo~ \00,00;) 000

Here, 9%.J/ (00;00;) represents the Hessian matrix. We cal-
culate 96/0¢ by combining the inverse of the Hessian matrix
with the secondary gradient 92.J/ (909¢). Therefore, d.J/d¢
is computed as:

W01 9 (PN
de 9 00 \ 06,00, 8009

Computing second-order derivatives requires substantial
computational resources, particularly for neural networks
with numerous parameters, which significantly increases the
computational complexity of secondary gradient calculations.
Yosinski ef al. demonstrated that the initial layers of neural
networks capture transferable knowledge, while the later lay-
ers specialize in task-specific features. Building upon these
findings, we propose replacing the complete network 6 with
only its later layers #', focusing our optimization efforts on
these task-specific components. This approach substantially
reduces the computational overhead by limiting calculations
to a subset of the network parameters. So the gradient of ¢
can be represented as:

®)

0. (11

12)

13)

2 -t 2
dF _aJ 9J <8J> ) ALy

dp ~ 0p 00 \96l0d. | 909  do

4.5 Swift Parameter Refinement

In real-world crowdsourcing scenarios, learning from large-
scale, complicated, and noisy data presents significant chal-
lenges. When task data distributions are non-stationary, a Re-
ward Redistribution network with fixed parameters may not
generalize effectively across diverse conditions. However, by

Figure 6: Fine-tuning the parameters to adapt to changes in crowd-
sourcing tasks quickly.

leveraging the inherent correlations between tasks, rapid pa-
rameter adaptation allows the network to capture trajectory-
specific patterns better and improve performance across vary-
ing contexts. Therefore, in this subsection, we propose a
method for rapidly adapting parameters to better handle vari-
ations in real-world scenarios.

Firstly, we approximate Equ.6 using the Taylor series ex-
pansion to the second-order term[Wu er al., 2024c]:

£a<¢>z£A0@~+(¢——é)T-l(“ﬁé¢w¢_é ¥
s
3o-9)" |5 ] (o-9)

While d3 is the best possible initialization obtained through
optimal multi-trajectory optimization. And then we take the
derivative of the above expression with respect to ¢:

ALy _ | dLa(e) d2LA (o) X
do LJ dg? ] ' (¢_¢)'
(16)

dp
Consider the concept of implicit gradients for optimizing the
network parameters. If ¢* is the optimal neural network pa-
rameter for the dataset, then the gradient of the loss function
at ¢* is zero, i.e.:
dL,(¢")
=0, 17
a0 A7)

This leads to the following expression:

MM@‘AL+F%M@
o=¢

’M

d¢ d9? loms

Therefore, we can observe the optimal parameters ¢* in a
single step as follows:

dLA(9) ‘ )
Ao ly=s

4.6 Model Training
The Independent Proximal Policy Optimization (IPPO) algo-
rithm [De Witt er al., 2020] is utilized as an example. The
pseudocode is presented in Algorithm 1.

In IPPO, the objective function of the actor network and the
loss function of the critic network respectively are as follows:

J(@) = anﬂ'e(~|o) min W’An, Chp (1#, 1+ 6) An] )
L(p) = E[(Vio(0,) — V*aroeh)?],

] -(qb* —q@) —0. (18)

- -1
d’L,(9)

¢ =d~

actor:

critic:
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Algorithm 1 Model Training and Fine-Tuning Algorithm

Input: actor network 6 and critic network ¢
Qutput: 0,0
1: Initialize policy network 6, value network ¢, hyperpa-
rameters ¢1 and ¢,.
2: Initialize replay buffer D
3: for episode <— 1,..., E do
4:  Use 6 to execute actions and collect experience, then
store transitions (s¢, {07}, {a?}, {ri’}, st4+1) in the
data buffer D

5. if parameter ¢ has been sufficiently trained then
6: Fine-tune ¢ by Equ.(19)
7:  endif
8: for iteration <— 1 to M do
9: Sample mini-batch from D
10: for each agentn € N do
11: Update actor network 6 and critic network
12: Update hyper parameter ¢ by Equ.(14)
13: end for
14:  end for
15: end for

16: return 6, ¢

_ ﬂ's(at\ot)
where 1) = oo (aslor)

current policy and the old policy and ¢ is a hyperparameter
that controls the clipping range. V(o) is the current estimate
of the value function and V#479¢! is the target value.

is the probability ratio between the

S Experimental Evaluation

In this section, we evaluate CAFE on some Simulation exper-
iments to answer the following questions: Q1: Is the credit
assignment performance of CAFE superior to that of state-
of-the-art frameworks in delayed reward settings? Q2: Is the
fine-tuning method for CAFE accurate and effective in facil-
itating reinforcement learning? Q3: Is the performance of
CAFE superior to that of state-of-the-art collaborative spatial
crowdsourcing methods?

5.1 Experimental Setup

Datasets. The road network data was extracted from Open-
StreetMap for two cities: Chengdu (17,378 nodes, 26,961
edges) and Haikou (9,667 nodes, 14,458 edges). For spatial
tasks, orders were extracted from DiDi, comprising 7,065,937
orders for Chengdu and 14,160,170 orders for Haikou, where
the pick-up location of the order corresponds to the location
of the spatial tasks. The task skill model was developed based
on Point-of-Interest (POI) types from AutoNavi Maps, clas-
sified into 8§ distinct categories. Each task derives skill re-
quirements from nearby POIs. Worker skills were modeled
according to a normal distribution (p = 2.5,02 = 1), while
worker initial locations were also initialized by DiDi order.

Implementation Details. The Adam optimizer [Kingma,
2014] was employed for training all models, with a learn-
ing rate of 1 x 1072, And the hyperparameter update rate
is maintained at 1 x 1073, In the simulation experiments,
worker speed was set to 10 m/s, with an acceptable task

range of 5 km. All experimental procedures are executed on
a computational system operating Windows 10 with Python
3.8, equipped with Intel Core i9-13900K CPU @ 5.80 GHz,
NVIDIA GeForce RTX 4080 super GPU, and 64 GB RAM.

Baselines of Reward Redistribution. We use the follow-
ing algorithm to compare CAFE’s performance in multi-agent
reinforcement learning with delayed rewards: Individual Re-
ward (IR), uses the remaining task working time as the re-
ward; ICES [Li et al., 2024], uses individual contributions
as intrinsic exploration scaffolds to motivate exploration by
assessing each agent’s contribution from a global perspec-
tive; ReLara [Ma er al., 2024], a dual-agent reward shap-
ing framework composed of two synergistic agents, a policy
agent to learn the optimal behavior and a reward agent to gen-
erate reward. CA-noFE, derived from CAFE but without the
fine-tuning component.

Baselines of Task Assignment. We use the following al-
gorithm to compare CAFE’s ability for task assignment in
the context of the simulated spatial crowdsourcing experi-
ment: Greedy, assigns workers greedily to the nearest tasks
that match the required skills; IPPO [De Witt et al., 20201,
utilizes the same network as CAFE, but with individual re-
ward training; PAU [Zhao et al., 2024], achieves task assign-
ment through the formation of worker coalitions, modeling
the CSC problem as an exact potential game; CA-noFE, de-
rived from CAFE but without the fine-tuning component.

5.2 Comparison of Reward Redistribution

In this subsection, we evaluate the performance of different
reward redistribution methods under identical crowdsourcing
environments. Using platform revenue as the evaluation met-
ric, we compare the performance variations of models trained
with different methods across various training batches. The
experimental results are presented in Fig.7. Notably, in the
training of CAFE, we first train the model using the CA-noFE
method to reduce computational requirements. Once the
model training stabilizes, we then introduce the fine-tuning
method to improve the reinforcement learning training.
During model training, the IR method progressed slowly
due to its simple reward assignment approach. In contrast,
ICES and ReLara utilized more advanced reward allocation
policies, resulting in faster training. Although CAFE ini-
tially showed significant performance fluctuations and re-
quired more iterations, it eventually outperformed the other
methods. This improvement is attributed to CAFE’s second-
order gradient optimization, which takes longer to converge
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Figure 7: Comparison of reward redistribution approaches in model
training.
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Dataset Methods N,=50 N,=100 N,=150 N,=200 N,=250 N,=300 N,=350
Greedy  6.53 016 12.14 017 17.77 x037 21.85=x0.15 26.07 039 29.30 028 32.94 +0.81
IPPO 6.47 x022  12.42 x026 17.25 x042 23.74 2080 27.01 +036 34.40 +1.16  40.09 +1.25
Chengdu PAU 6.57 022 11.65 020 18.36:088 24.18 x079 26.94 x081 33.57 z092 39.88 +1.86
CA-noFE 6.59 x0.18 12.52 x031 18.10 2055 24.40 080 27.43x073 34.55z+106 41.14+153
CAFE 6.69 x0.17 12.67 x022 18.48 :080 24.66 071 27.63 074 35.37 x098 41.55 +1.42
Greedy  6.42 014 11.78 x040 17.03 022 21.52 2039 26.16=x050 29.18 039 31.25 x0.42
IPPO 6.17 x018  12.23 x043 17.30 032 22.84 2032 27.19 024 32.48 +088 35.03 +1.38
Haikou PAU 6.68 +0.15 11.88 :x0.19 18.25 079 23.28 2090 25.95 x090 32.87 +1.01 35.48 1088
CA-noFE 6.64 x0.15 12.14 x031 18.52 x0.59 23.28 x000 27.55x038 33.21 2057 36.09 +1.50
CAFE 6.71 x0.15 12.43 035 18.51 047 23.40 087 28.37 045 34.15 :0.69 36.99 +0.97
Table 1: Revenue performance across varying numbers of tasks (with N,, = 200, scaled by x10%).
Dataset  Methods N, =50 N, =100 N,=150 N, =200 N,=250 N, =300 N, =350
Greedy 7.63 x042  15.67 051  19.81 038 21.85x015 22.88:037 23.76 2036  24.22 +0.28
IPPO 10.45 034  20.82 x1.14 2348 101 23.74 2080 22.79 x031 24.42 x020 23.71 x0.42
Chengdu PAU 11.48 +049  21.54 x105  23.96 x090 24.18 x0.79 24.73 z085 24.17 x062  24.94 +055
CA-noFE 11.94 062 21.82 2089 24.24 +104 24.40=x080 2529 2093 24.90 2051 25.63 +0.60
CAFE 12.17 2049  21.85 +1.02  24.60 2093 24.66 +0.71  25.66 086 25.69 +0.58  26.56 0.59
Greedy 7.71 030  15.89 x044  19.75 z045 21.52+039  23.10 028 23.65 026 23.98 +0.38
IPPO 1592 +190 21.80 2060 22.16 +124 22.84 2032 24.12 :025 26.68 2033 27.63 +0.28
Haikou PAU 16.38 +1.73  22.58 2038  23.14 102 23.28 2090 23.98 x091  26.89 z060  30.31 £1.21
CA-noFE 16.60 +183 22.87 2045 23.21 2079 23.28 2090 24.51 x080 27.26 2049  29.87 +0.55
CAFE 16.62 +1.76  23.32 x033  23.60 087 23.40 x087 24.75 091 27.65 x045 30.02 054

Table 2: Revenue performance across varying numbers of workers (with N, = 200, scaled by x 10%).

but enables more precise reward allocation. The results con-
firm CAFE’s effectiveness in credit assignment, allowing for
more nuanced reward distribution to agents. Compared to the
non-fine-tuned CA-noFE method, CAFE enhances training
dynamics and generates higher platform revenue, highlight-
ing the importance of its fine-tuning methodology.

5.3 Performance Analysis and Evaluation

We evaluated the proposed algorithms by conducting experi-
ments with different numbers of workers and tasks, using the
platform’s total revenue as the main metric. All results are
averages of five independent runs.

Effect of the number of Tasks. Table 1 compares the rev-
enue performance of various algorithms across different num-
bers of tasks for two datasets. The experiments were con-
ducted with a fixed number of workers (NV,, = 200), and
the results highlight the revenue trends as IV,, increases from
50 to 350. The CAFE algorithm consistently achieves the
highest revenue across both datasets, demonstrating its su-
periority in optimizing task allocation. The results demon-
strate that the CAFE outperforms all other methods across
different task numbers and datasets, particularly excelling in
large-scale task scenarios. This confirms its effectiveness in
optimizing task allocation policies.

Effect of the number of workers. Table 2 compares the
revenue performance of various algorithms across different
numbers of workers, with a fixed number of tasks (N, =
200). The results demonstrate that CAFE consistently outper-
forms other methods, achieving the highest revenues across

most configurations, particularly a sN,, increase. Notably,
CAFE exhibits superior scalability and stability, with lower
variance in performance compared to alternatives such as
CA-noFE and PAU. While Greedy performs the worst due to
its inability to optimize task-worker assignments effectively,
IPPO provides moderate results but fails to match the ad-
vanced methods. These findings highlight the robustness of
CAFE in leveraging increased worker availability to maxi-
mize platform revenue.

The experimental results conclusively demonstrate
CAFE’s superior performance compared to state-of-the-art
collaborative spatial crowdsourcing methods, as evidenced
by its higher platform revenue and improved task assignment
efficiency. The fine-tuning approach effectively captures
each task’s unique characteristics, enabling precise reward
allocation and enhancing training dynamics.

6 Conclusion

This paper introduces a novel credit assignment method to ad-
dress delayed reward challenges in cooperative spatial crowd-
sourcing using multi-agent reinforcement learning. By lever-
aging causality and Bayesian theories, we analyze agents’
contributions and develop a meta-optimization approach for
training reward functions. We further propose a rapid pa-
rameter adjustment technique to mitigate non-stationary data
distributions across spatial tasks. Extensive experiments on
two datasets validate the superior performance of our method
compared to existing approaches.
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