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Abstract

Contactless palmprint recognition has recently
emerged as a promising biometric technology.
However, traditional methods that require sharing
user data introduce substantial security risks. While
federated learning offers privacy-preserving solu-
tions, it often compromises recognition accuracy
due to feature distribution drift caused by external
factors such as lighting and devices. To address
this issue, we propose an adaptive personalized
federated learning framework (AdaptPFL). The
central innovation lies in decomposing palmprint
features into identity-related and contextual-related
components using a feature decoupling mecha-
nism. This design isolates the influence of exter-
nal environmental factors on identity recognition
through de-entanglement. Furthermore, two adap-
tive aggregation strategies are introduced to correct
client drift: (1) Intra-Local Adaptive Aggregation
(ILAA), which addresses intra-client drift by adap-
tively combining the two decoupled feature types;
(2) Global-Local Adaptive Aggregation (GLAA),
which corrects inter-client drift by adaptively ag-
gregating model parameters. Experimental re-
sults demonstrate that AdaptPFL achieves superior
performance compared to existing state-of-the-art
methods.

1 Introduction

Over the past two decades, biometric identification technolo-
gies have garnered significant attention and have been widely
applied across various domains. Among these, face recogni-
tion stands out for its convenience and widespread use. How-
ever, the ability to capture facial images without the user’s
consent has raised growing concerns regarding potential pri-
vacy breaches. In contrast, palmprint recognition typically
requires active user cooperation to capture palmprint im-
ages. As a result, palmprint recognition is considered a more
privacy-preserving biometric technology than face recogni-
tion.
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Figure 1: Example of client-side drift

Although palmprint recognition offers better privacy pro-
tection than face recognition, traditional methods still pose
significant privacy and security risks in many mobile appli-
cation scenarios requiring personal data sharing. As a result,
researchers have been increasing interest in leveraging feder-
ated learning [Li er al., 2020a] to safeguard user privacy and
security. The fundamental principle of federated learning is to
decentralize the training of machine learning models by shift-
ing the computation from a central server to various devices
or data centres. Each data holder trains the model locally and
shares only the model parameters or updates rather than raw
data. This approach enables the participation of sensitive data
in the training process without leaving the local domain, thus
ensuring user data security and privacy protection.
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Despite traditional federated learning methods offering a
degree of privacy and security for users, complex application
scenarios in palmprint recognition continue to pose signifi-
cant challenges. As illustrated on the left side of Fig. 1,
the same people in the traditional method produce obvious
feature drift between different clients. There is still some
drift even within the same client. These discrepancies lead
to aggregation challenges at the server, ultimately reducing
recognition accuracy. To address these issues, we propose
an adaptive personalized federated learning framework based
on feature decoupling for cross-device palmprint recognition.
This method decouples palmprint features into identity and
contextual information, as shown on the right side of Fig.
1. An intra-local adaptive aggregation strategy is introduced
to correct intra-client drift, effectively minimizing the impact
of external environmental factors. Furthermore, an adaptive
global-local aggregation strategy addresses inter-client drift
by integrating global information essential for client models.

The contribution of this paper can be summarised as fol-
lows:

(i) We design a de-entanglement mechanism using a deep
edge detection model and a mutual information method. The
influence of external factors on identification is isolated by
decoupling the palmprint information.

(i1) Two adaptive aggregation strategies, ILAA and GLAA,
are introduced to correct intra-client drift and inter-client
drift, respectively.

(iii) We conducted extensive experiments on three con-
tactless palmprint databases. The results demonstrate the
method’s higher accuracy than the SOTA methods and effec-
tively mitigate the client-side drift problem.

2 Related Work

The section focuses on the current work on palmprint recog-
nition and federated learning in detail.

2.1 Palmprint Recognition

In recent years, deep learning-based methods have been ap-
plied to palmprint recognition. Genovese et al. [Genovese
et al., 2019] proposed PalmNet for unsupervised palmprint
recognition. It includes a convolutional neural network,
Gabor filter, and principal component analysis. Zhong et
al. [Zhong and Zhu, 2019] proposed an end-to-end palmprint
recognition method, which applies a new loss function of
CNN to enhance the inner class compactness of palmprint
features. Matkowski et al. [Matkowski er al., 2019] pro-
posed the palmprint recognition network EE-PRnet, which
consists of two main networks that can solve the palmprint
recognition problem in uncontrollable and non-collaborative
environments. Zhao et al. [Zhao er al,, 2019] proposed
a joint deep convolutional feature representation applied to
feature extraction of hyperspectral palmprint images. Jia
et al. [Jia et al., 2022] improved MobileNet-V3 and pro-
posed a lightweight convolutional neural network for palm-
print recognition. Zhao et al. [Zhao and Zhang, 2020] used
deep convolutional neural networks to learn complete and
discriminative convolutional features and proposed a jointly
constrained least squares regression framework. This frame-
work combined deep local convolutional features to solve the

undersampling classification problem in palmprint recogni-
tion. Shao et al. [Shao and Zhong, 2021] introduced a deep
hash network of MoblieFaceNets to extract discriminative
features. It improves the matching efficiency and allows the
target network to adapt to unlabelled target palmprint images.
Fan et al. [Fan et al., 2022] proposed using deep learning ar-
chitecture to extract the main lines of palmprints to reduce the
effect of fine lines and further classify the palmprint pheno-
types from the 2D palmprint images. Samai et al. [Samai er
al., 2018] proposed using DCTNet for 3D palmprint recogni-
tion. Chaa et al. [Chaa et al., 2019] first used a single-scale
retina algorithm to enhance the depth image of 3D palmprints
and then used PCANet for recognition.

However, most contactless palmprint recognition methods
ignore user privacy issues. The huge security risk of sharing
personal data among different users is also an urgent problem
to solve.

2.2 Federated Learning

Currently, the federated learning technique is a distributed
machine learning framework that effectively solves the data
silo problem. McMahan et al. [McMahan et al., 2017] pro-
posed a FedAvg algorithm, an important milestone in devel-
oping federated learning. Most of the current federated learn-
ing methods are based on the idea of the FedAvg algorithm
and continuously optimize and upgrade the federated learning
algorithm. Li et al. [Li et al., 2020b] proposed the FedProx
algorithm, which adds a proximal term to the client’s origi-
nal loss function. This maintains the similarity between each
client’s local and global model parameters in federated learn-
ing. The robustness of the model is improved by balancing
the differences between the global and local models. With
the continuous development of federated learning, techniques
such as comparative learning, prototype learning, and meta-
learning have been introduced into the research and practice
of federated learning. Li et al. [Li et al., 2021] proposed the
MOON algorithm, which performs comparative learning at
the model level by comparing representations learned from
different models. The aim is to reduce the distance between
the local and central weight representations. Thereby increas-
ing the distance to the local weight representation of the pre-
vious round. The similarity of model representations is used
to correct the bias in local training and alleviate the data het-
erogeneity problem. Mu et al. [Mu er al., 2023] introduced
prototype learning based on the MOON algorithm, which
uses prototypes as global knowledge to correct the bias in lo-
cal training for each client. Decrease the distance between the
prototype of a local class and the global prototype of the same
class. Thus increasing the distance from the global prototype
of a different class.

The above approaches aim to train a global model with
generalization performance for all clients. However, when the
data distribution of cross-device clients varies significantly
by conditions such as lighting and brand, a single global
model may not be able to meet the diverse needs of each
client [Huang ef al., 2021]. Therefore, this paper presents
two adaptive aggregation strategies for intra-client and inter-
client drift phenomena.
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3 Methodology

The section describes each module in the model in detail.
It mainly contains a feature decoupling module, a classi-
fier alignment module, an intra-local adaptive module, and
a global-local adaptive module. Fig. 2 shows the architecture
of the federated model AdaptPFL.

3.1 Feature Decoupling Module

We decouple palmprint features into two non-overlapping and
independent parts: identity and contextual information. The
identity information feature contains the unique feature iden-
tifier of the personal information in the data, while contextual
information features contain other features besides personal
information. The next part of the section describes in detail
how these two types of features are extracted.

Identity-Related Extraction

This paper focuses on extracting identity-related features
from palmprint images. The key identity information is pri-
marily contained within the three main palm lines. We em-
ploy edge detection methods to extract these features that ef-
fectively capture identity information from the primary palm
lines. Additionally, the resulting grayscale image helps mit-
igate the influence of lighting conditions, further enhancing
the robustness of the feature extraction process.

We use a deep edge detection algorithm to accomplish
feature extraction of identity information. A deep convolu-
tional neural network consists of many layers, and different
layers can learn various levels of features. Shallow layers
can extract basic physical features, and advanced features,
such as trunk lines, can be extracted as the layer depth in-
creases. Since training an edge detection model requires a
large amount of labelled data, we first train the model on
a publicly available benchmark edge detection dataset. The
best learning parameters are saved after the training is com-
pleted, and then the parameters are introduced for training
using the migration learning method. The main palm line
feature is extracted by fine-tuning it, and this feature is used
to contain identity information.

Inspired by the HED [Xie and Tu, 2015] method, the ar-
chitecture of the edge detection algorithm chosen is shown
in the identity-related extraction module on the top right of
Fig. 2. The model uses the VGG16 network as the back-
bone network, and the specific training process contains two
phases. The first phase receives information through five
different-sized receiving fields. The second stage connects
a side-output layer i to the last convolutional layer of each re-
ceptive field to learn multi-scale features. Finally, the outputs
of the five side-output layers are connected as inputs to the
final output layer to achieve edge detection.

For simplicity, we set of all network layer parameters is de-
noted as W. The network has five side output layers, each of
which is also associated with a classifier. The corresponding
weights are denoted as w = (w),--- ,w®)), and the cor-
responding fusion weights are denoted as h = (hy,- - , hs).
Its specific computational procedure is shown below:

(15157,'1(38’ ﬁs(?c)le’ e 71{Is(?d)e) = VGGlG(X’ (VV7 w, h’)) (1)
Xi = Average <ﬁ5(21(3€7 'H(E’L?L%C’ T 7‘[;[:515;@) (2)

Contextual-Related Extraction

This paper introduces a division strategy to extract the fea-
tures of contextual information. The strategy divides the data
feature X into two parts in the same metric space, making
X = X, + X,.. Specifically, the data feature X € RY
with dimension d is decomposed into the identity informa-
tion feature X; € R? and the contextual information feature
X, € R%. Intuitively, the identity information feature con-
tains all the labelled information. In contrast, the contextual
information feature contains all the data except the labelled
information.

As shown in the contextual-related extraction module in
the lower right of Fig. 2, the edge detection method has ob-
tained the initial features of personal identity information. We
use mutual information to generate contextual features X . for
the data X. This paper aims to ensure that the features after
removing the personal identification information are close to
the original features. More specifically, the contextual infor-
mation features are obtained with the goal of:

minl (X;Y | Xo), st (XX = X[ X) > Iep (3)

where Y is the label of X, and X; should contain necessary
information about the label Y. X — X; denotes the contextual
information feature X, and I g is a constant. With this strat-
egy, we can obtain both contextual information features X,
and optimized identity information features X; at the same
time.

3.2 Classifier Alignment Module

We propose a classifier module that aligns identity and con-
textual information. It also designs a maximum mean differ-
ence (mmd) loss function.

Classifier Structure Design

The classifier alignment module is a multi-output network
consisting of two specific predictors for predicting the out-
come of identity information feature X; and contextual infor-
mation feature X, respectively. A ResNetl8 network forms
each predictor. Each predictor is a softmax classifier that
makes a classification judgment after the two feature extrac-
tors extract the features to obtain P; and P, respectively. Its
specific computation is shown below:

P; = softmax (ResNet18 (X;)) 4)
P, = softmax (ResNet18 (X.)) 5)

mmd Loss Function Design

Since the classifiers are trained independently, their predic-
tions of target samples may diverge, especially for target sam-
ples near class boundaries. Intuitively, different classifiers
should get the same prediction when receiving different fea-
tures from the same sample. Therefore, this paper aims to
minimize the differences between all classifiers.

To align the distribution of predicted outcomes for identity
and contextual information features, we choose mmd as an
estimate of the difference in the distribution of predicted out-
comes for the two features. mmd is based on the idea that all
statistical data are the same if the generated distributions are
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Figure 2: The overall architecture of the proposed method. It mainly contains a feature decoupling module, a classifier alignment module, an

intra-local adaptive module, and a global-local adaptive module.

the same. Formally, mmd defines the following measure of
variation:

Dr(p,q) = B, [¢(X:)] — Eg[¢ (X7 (6)

where H is the reproducing kernel Hillbert space (RKHS)
with feature kernel &, where ¢(-) denotes some feature map-
ping that maps the original sample to the RKHS. % denotes
k(Xi, Xc) =< ¢(X;), p(X.) >, where < -, - > denotes the
inner product of the vectors. We use Eq. (6) to estimate the
difference between the predictions of the two classifiers. The
formula for the L,,,,,4 loss is shown below:

med =D (sz Pc) (7)

Each classifier can reduce the variance between classifier
predictions by minimizing Eq. (7).

3.3 Intra-Local Adaptive Module

Consider that X; contains important identity information and
X contains rich auxiliary information. Therefore, we use
the weighted average of the predictions P; and P, generated
by X, and X, for inference. We introduce a personalization
weight A\; € [0,1] for the ¢ — th client, where the weight
difference increases personalization. The client uses P for
integrated prediction, which is computed as shown below:

P=AP + (1= )P, (8)

However, the optimal value of A may differ for each client
due to client drift issues. Therefore, we propose to learn an
appropriate value of \; for each client instead of setting a
common value for it centrally. We randomly split a small

subset from the training set D to train the ¢ — th client for
Ai, name it the adaptation set and denote it by Dﬁ. We learn
A; by training on the adaptive set, which is computed using
the cross-entropy loss function. Given the predictions gen-
erated by the identity information model and the contextual
information model, the learning process of the loss function
L qapt and the learning rate 7) on the adaptive set are denoted
as:

Ladapt = LCE (P, Z/) (9)
8Ladapt
R 1
Ai=Ai—1 O, (10)

The algorithm uses stochastic gradient descent (SGD) for
small batch iterations while sandwiching A in [0,1].

3.4 Global-Local Adaptive Module

While traditional aggregation methods can generate a global
model, the global model performs poorly in generalization
on a per-client basis. Inspired by FedALA [Zhang er al.,
2023], this paper proposes an adaptive aggregation method
between global-local models. The method judiciously aggre-
gates global and local models to fit local goals. We show the
adaptive aggregation method’s learning process in Fig. 3.

In the r — th iteration of traditional federated learning, the
server sends the old global model #” ! to the client k. "1
overwrites the old local model ;. Lo get the initialized local
model 9,2 for local model training, i.e., 9; = 01 In con-

trast, we propose an adaptive method to aggregate the global
and local models instead of overwriting. The specific calcu-



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Model local

Model,,.,

2
0, *w

Weight
Matrix

0 *(1-w)
M Odelml(lpt

Gradient

Model,,,,

Modelyy,

Figure 3: Global-Local Adaptive Module architecture diagram in our proposed method.

lation method is shown as follows:
=0T OWia + 607710 Wi 1)

where © is the Hadamard product, W}, 1 and Wy, o are the
learnable weight matrices and W, 1 + W}, o = 1. For cover-
age, W1 =0and Wy o = 1.

However, learning W, 1 and Wy, » with constraints by the
gradient-based learning method is difficult. Therefore, we
merge Wy, 1 and Wy, 2, and the modification to Eq. (11) is
shown below:

r=0r (0 ) o Wy (12)

where W, is the learnable weight matrix.

3.5 Opverall Loss Function Design

The loss function L;,tq; of the method consists of three parts:
classification loss L.s_; and L., . for the identity informa-
tion module and contextual information module, L,,,,,,4 loss,
and Lggqp: loss. We use the cross-entropy loss as the classi-
fication loss for the two classifiers, as shown in Eq. (13) and
Eq. (14). By minimizing the classification loss, the network
can classify accurately. By minimizing the mmd loss, the net-
work can reduce the differences between the classifiers. The
network can better integrate the identity and contextual infor-
mation modules by minimizing the L4y loss. The formula
for the total 10Ss Lyiq; 1S shown below:

Lesi = Lae(Ps, yi) (13)
Lcls,c I~ LCE(Pca yi) (14)
Ltotal = Lcls,i + Lcls,c + ﬂmed + Ladapt (15)

where [ is a hyperparameter, training is mainly done using
the standard SGD algorithm.

4 Experiment

We evaluate the method’s effectiveness on three public non-
contact palmprint datasets. The method is compared with
SOTA models, and the basic components of the models are
further analyzed.

4.1 Datasets

To evaluate the method’s recognition accuracy, extensive ex-
periments and analyses were conducted on three contact-
less palmprint databases, XJTU-UP [Shao et al, 2019],
MPD [Zhang et al., 2020], and Multi-Spectral [Zhang et al.,
2009]. Table 1 summarises the details of the three datasets.

XJTU-UP: An unconstrained palmprint database collected
from two smartphones, iPhone 6S and Huawei Mate8. A to-
tal of four datasets are included, which are noted as HuaWei
Nature (HWN), HuaWei Flash (HWF), IPhone Nature (IPN)
and IPhone Flash (IPF).

MPD: Palm images are collected by two smartphones,
HuaWei and XiaoMi, denoted as HW and XM, respectively.

Multi-Spectral: Palmprint images are taken from different
spectral bands, including blue, green, red, and near-infrared.

4.2 Comparison of Other Methods

We validate the effectiveness of the methods through sev-
eral experiments. Three baseline methods are included: Fe-
dAvg [McMabhan er al., 2017], FedProx [Li er al., 2020b], and
SCAFFOLD [Karimireddy et al., 2020]. Three SOTA meth-
ods are included: FedAPEN [Qin er al., 2023], FedFed [Yang
et al., 2024], and FedML [Shao er al., 2024].

As can be seen from the experimental results in Table 2, our
method produces excellent performance on all three datasets.
In particular, on the XJTU-UP dataset, which is poorly rec-
ognized by the SOTA method, our method’s F1 value can
still achieve excellent performance of 97.17%. Some SOTA
methods have also produced better performance on the multi-
spectral dataset. This is because Multi-Spectral images cap-
ture different bands of light, some of which (e.g., near-
infrared light) are less sensitive to changes in ambient light.
Therefore, changes in the external environment have less ef-
fect on them and produce better performance. However, the
AdaptPFL method still shows the best performance on this
dataset.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Dataset XJTU-UP MPD Multi-Spectral
HWN HWF IPN HW XM Blue Green Red NIR
Number of volunteers 100 100 100 200 200 500 500 500 500
Image number per palm 10 10 10 20 12
Total number of palms 2000 2000 2000 2000 8000 8000 6000 6000 6000 6000

e

Example
Table 1: Details of the three palmprint datasets
Dataset Method Accuracy(%) Precision(%) Recall(%) F1(%) Specificity(%) FPR(%)
FedAvg 77.98 82.86 77.65 78.58 99.89 0.11
FedProx 67.58 78.37 67.30 69.74 99.84 0.16
XJTU-UP SCAFFOLD 81.22 84.35 81.27 81.11 99.90 0.10
FedAPEN 88.56 87.92 84.36 86.14 99.93 0.07
FedFed 93.43 93.57 92.36 92.97 99.98 0.02
FedML 88.75 89.21 87.36 88.29 99.96 0.04
AdaptPFL 97.21 97.74 97.22 97.17 99.99 0.01
FedAvg 92.19 93.32 92.19 92.25 99.96 0.04
FedProx 88.50 90.26 88.50 88.33 99.94 0.06
MPD SCAFFOLD 74.75 78.53 74.74 74.11 99.87 0.13
FedAPEN 94.32 93.68 95.36 94.52 99.97 0.03
FedFed 96.84 96.25 97.16 96.71 99.98 0.02
FedML 95.34 94.98 93.17 94.08 99.97 0.03
AdaptPFL 98.75 99.03 98.75 98.74 99.99 0.01
FedAvg 89.00 93.75 89.15 90.00 99.98 0.02
FedProx 88.67 93.88 88.67 89.86 99.98 0.02
Multi- SCAFFOLD 84.75 88.76 84.78 85.29 99.97 0.03
Spectral FedAPEN 97.62 97.66 98.19 97.93 99.99 0.01
FedFed 99.11 98.98 98.36 98.67 99.99 0.01
FedML 97.56 97.86 98.02 97.94 99.99 0.01
AdaptPFL 99.79 99.80 99.83 99.79 100.00 0.00

Table 2: Comparison results of baseline and SOTA methods

4.3 Ablation Study

We conduct ablation studies on three contactless palmprint
datasets to validate the effectiveness of the method’s core
modules. The results are shown in Table 3.

method XJTU-UP MPD Multi-Spectral
AdaptPFL 97.21 98.75 99.79
-IIM 93.72 94.26 96.24
-CIM 96.22 97.11 98.51
-ILAA 96.16 97.43 98.36
-GLAA 95.47 96.34 97.69

Table 3: Results of ablation studies on three datasets

This paper conducts four types of ablation studies: re-
moval of the Identity Information Module (-IIM), removal of
the Contextual Information Module (-CIM), removal of the
Intra-Local Adaptive Aggregation (-ILAA), and removal of

the Global-Local Adaptive Aggregation (-GLAA). The ex-
perimental results show that the method’s performance is de-
graded to different degrees when the core modules are re-
moved. In particular, the method’s performance degrades
most severely when we remove the identity information mod-
ule after detangling. This indicates that the decoupling mech-
anism we designed effectively separates the identity informa-
tion from the palmprint features. The performance degrada-
tion is more severe after GLAA removal compared to ILAA.
This is because the inter-client drift phenomenon is much
larger than the intra-client drift phenomenon. The results of
the ablation studies show that all our core modules are effec-
tive.

4.4 Histogram Analysis of Feature Distribution in
Different Conditions
The section verifies the method’s validity by randomly se-

lecting the distribution of palmprint features generated by a
batch of volunteers under different scenes. Specifically, by
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Figure 4: Histograms of different lighting in the dataset XJTU-UP
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Figure 5: Histograms of different brands in the dataset MPD

summing and averaging the palmprint features of each vol-
unteer in various scenarios as the current valid features, the
palmprint feature distribution of the same batch of volunteers
in different scenarios is formed. We mainly verify the effect
of the drift of two scenes, mobile phone brand and light, on
the feature distribution. The specific experimental results are
presented in Figs. 4 and 5.

The experimental results show that the traditional feder-
ated learning method using different mobile phone brands or
light conditions produced two different palmprint feature dis-
tributions for the same group of volunteers. This indicates
that traditional federated learning is susceptible to the in-
fluence of external conditions to produce client drift. The
present method produces similar feature distributions in dif-
ferent scenarios, which indicates that it can effectively mit-
igate the client-side drift phenomenon produced by external
factors.

5 Conclusion

This paper proposes an adaptive personalized federated learn-
ing method based on feature decoupling for cross-device

palmprint recognition. The method designs a decoupling
mechanism to decompose palmprint features into identity and
contextual information, effectively isolating the mutual influ-
ence between external factors and identification. Meanwhile,
we present two adaptive aggregation strategies for intra-client
and inter-client drift phenomena, respectively. They used an
intra-local adaptive module and a global-local adaptive mod-
ule to correct the drift phenomenon further. We verify the
method’s effectiveness on three public non-contact palmprint
datasets. The results show that the present model performs
better than SOTA methods.
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