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Abstract
In this work, we address the new challenge of
open-vocabulary fine-grained hand action detection,
which aims to recognize hand actions from both
known and novel categories using textual descrip-
tions. Traditional hand action detection methods are
limited to closed-set detection, making it difficult
for them to generalize to new, unseen hand action
categories. While current open-vocabulary detection
(OVD) methods are effective at detecting novel ob-
jects, they face challenges with fine-grained action
recognition, particularly when data is limited and
heterogeneous. This often leads to poor generaliza-
tion and performance bias between base and novel
categories. To address these issues, we propose a
novel approach, Open-FGHA (Open-vocabulary
Fine-Grained Hand Action), which learns to distin-
guish fine-grained features across multiple modali-
ties from limited heterogeneous data. It then iden-
tifies optimal matching relationships among these
features, enabling accurate open-vocabulary fine-
grained hand action detection. Specifically, we in-
troduce three key components: Hierarchical Hetero-
geneous Low-Rank Adaptation, Bidirectional Selec-
tion and Fusion Mechanism, and Cross-Modality
Query Generator. These components work in uni-
son to enhance the alignment and fusion of multi-
modal fine-grained features. Extensive experiments
demonstrate that Open-FGHA outperforms existing
OVD methods, showing its strong potential for open-
vocabulary hand action detection. The source code
is available at OV-FGHAD.

1 Introduction
Hand action detection (HAD) focuses on accurately recog-
nizing and localizing a broader range of specific human hand
actions, which is crucial for applications in various fields, such
as Virtual Reality (VR) [Villegas et al., 2020], Augmented
Reality (AR) [Skovsen et al., 2020], Human-Computer Inter-
action (HCI) [Hu et al., 2022], Design and Control of Robot
Hands [Palli et al., 2013], and Healthcare [Ye et al., 2022].

∗Corresponding authors: Mengya Han, Yong Luo, Zheng He
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[“grab”, “hold in”, “put up”]
hold in
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[“hold in” , “rotate”, “open”]

(a)

Training Setup : Fine-Grained Hand Action Data for Base Categories Only

Evaluation Setup : Fine-Grained Hand Action Data Covering Both Base and Novel Categories

Task : Open-Vocabulary Fine-Grained Hand Action Detection -- recognizing both known Base and unseen 
Novel fine-grained hand action categories in each frame while providing their location information.

R-O: grab L-O: pick up R-O: pick up

……

[“hold in” , “rotate”, “open”] [“press on”, “hold in”, “cut slice”]…    …… …

hold in

rotate

open
press on

hold in
cut slice

O-O：cut downO-O：cut off

(b)

Figure 1: Overview of the OV-FGHAD. (a) Detection performance
of existing representative fine-grained hand action detection methods.
(b) Basic setup of the new task (OV-FGHAD). Training and evalu-
ation configurations of our method Open-FGHA, which primarily
follows a generalized setting. Base categories are represented by light
blue boxes and text, while novel categories are shown by pink boxes
and text. Misclassified categories are highlighted in red. Missed
detections for novel categories are highlighted in pink dashed boxes.
Each hand action event is denoted as [“left hand-object interaction
(L-O)”, “right hand-object interaction (R-O)”, “object-object interac-
tion (O-O)”], indicating the corresponding fine-grained hand action.

Existing models often struggle to generalize to novel actions
not seen during training [Zhe et al., 2024; Zhang et al., 2022;
Zhu et al., 2020]. As shown in Figure 1(a), models detect and
localize known hand action categories (e.g., “hold in”) accu-
rately, but novel actions (e.g., “put up”) may be undetected or
misclassified as similar categories, such as “adjust” → “put
down”. This limits the exploration of diverse fine-grained
actions and hinders the model’s generalization capabilities.
Therefore, developing methods capable of detecting and local-
izing unseen categories is essential for advancing this field.

To address this, we propose a new task setting called
Open-Vocabulary Fine-Grained Hand Action Detection (OV-
FGHAD), which aims to develop HAD models capable of
recognizing and localizing base and novel fine-grained hand
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action categories. While recent advancements in large-scale
vision-language models, such as GDINO [Liu et al., 2024],
have shown significant promise in open-vocabulary visual
tasks, two key issues hinder their effective application to fine-
grained hand action detection.

How can we maintain exceptional performance and bal-
ance between base and novel categories when faced with
limited and heterogeneous data? A straightforward solution
adopted in previous work [Wang et al., 2024] is to freeze the
parameters of the vision or language model during the training
of vision-language models (VLMs). However, freezing the
parameters of the model limits its ability to adapt to new tasks,
often resulting in unsatisfactory performance. To overcome
this, Parameter Efficient Fine-Tuning (PEFT) methods, such
as LoRA [Hu et al., 2021], have been proposed. Nevertheless,
while PEFT methods may mitigate the adaptation issue, they
still do not effectively resolve the balance issue between base
and novel categories in the OV-FGHAD task.

How can we mitigate the impact of the “inter-categories
similarity and intra-categories variation” in fine-grained
categories for the OV-FGHAD task? In the OV-FGHAD
task, inter-category differences are minimal, as observed in
both text descriptions (e.g., “cut off” vs. “cut down”) and
visual appearances (e.g., “grab” vs. “pick up”). In contrast,
intra-category variability is significant. For instance, hand
actions such as “pick up brush” and “pick up piece-pizza” ex-
hibit substantial visual differences despite belonging to the
same hand action category, as illustrated in Figure 1(b). Cur-
rent Open-Vocabulary Detection (OVD) models [Liu et al.,
2024] primarily rely on aligning and fusing global visual fea-
tures with textual features. Such approaches often introduce
irrelevant representations and increase the risk of incorrect
alignment between multimodal fine-grained features, leading
to confusion among fine-grained categories. Consequently,
they fail to effectively address these challenges.

In this work, we propose a new baseline for the OV-FGHAD
task, Open-FGHA, based on a vision-language model (VLM).
By extracting high-quality multimodal fine-grained features
from limited and heterogeneous data and locally enhancing
cross-modality features, our method emphasizes well-matched
fine-grained features, enabling effective generalization to un-
seen hand actions while maintaining balance across categories.
Specifically, we devise three key components: (1) Hierar-
chical Heterogeneous Low-Rank Adaptation (HiH-LoRA):
To effectively extract multimodal fine-grained features, HiH-
LoRA employs low-rank adaptation with distinct parameter
settings for each weight matrix within the visual backbone
based on their characteristics. It generates heterogeneous
low-rank adaptations for each block, enabling the model to
learn diverse fine-grained features. By freezing the vision-
language model to preserve global knowledge, HiH-LoRA
facilitates knowledge exchange at both global and local lev-
els, thereby improving the balance between base and novel
categories. (2) Bidirectional Selection and Fusion (BSF)
mechanism: To identify the optimal matching relationships
between multimodal fine-grained features, we propose the BSF
mechanism, which includes multimodal bidirectional selective
cross-attention (Bi-SCA) and multiple fusion processes. By
adopting a “multiple-selection multiple-fusion” strategy, the

mechanism extracts and refines relevant local cross-modality
features from global representations, effectively reducing con-
fusion caused by fine-grained categories. (3) Cross-modality
Query Generator (CQG): Building on the high-quality mul-
timodal features produced by the first two components, we
propose a novel cross-modality query generator that generates
enhanced cross-modality queries for the cross-modality de-
coder. The CQG consists of two parts: the content part, which
concatenates the Bi-selective text features from the Bi-SCA
module with randomly initialized static content queries to gen-
erate dual content queries, and the positional part, which gen-
erates dynamic anchors from the updated fused text and image
features produced by the BSF mechanism using a GDINO-
inspired strategy [Liu et al., 2024]. This approach improves
content representation and preserves multimodal correlations.

We evaluate the effectiveness of Open-FGHA for fine-
grained hand action detection in two task settings: OVD and
closed-set Action Detection (AD). The first setting is sup-
ported by FHA-Kitchens OVD, a new benchmark established
in this study built upon the FHA-Kitchens benchmark [Zhe et
al., 2024], while the latter setting is conducted on a subset of
the FHA-Kitchens benchmark.

The contributions of this work are summarized as follows:

• We introduce Open-FGHA, a simple yet strong baseline
approach tailored specifically for the OV-FGHAD task. This
method excels at capturing the distinctions and relationships
among multimodal fine-grained features from limited and
heterogeneous data. As a result, it enables the model to
generalize effectively to unseen fine-grained hand actions
while maintaining balanced performance across both base
and novel categories.

• We propose three novel components to tackle the challenges
of fine-grained category confusion and performance im-
balance: HiH-LoRA, BSF, and CQG. These components
enhance the learning of multimodal fine-grained features
and significantly boost the prediction accuracy for unseen
fine-grained categories.

• We evaluate the proposed method on both the OV-FGHAD
and closed-set FG-HAD tasks. The experimental results
demonstrate that Open-FGHA achieves state-of-the-art
(SOTA) performance on both the OVD setting and closed-set
AD setting. For instance, on the established FHA-Kitchens
OVD benchmark, our method improves the AP50 for novel
categories by an impressive +4.17 with the Swin-T back-
bone, surpassing the performance of SOTA OVD methods.

2 Related Work
2.1 Hand Action Detection
Most existing hand action detection methods [Zhe et al., 2024;
Chen et al., 2024] rely on video- or image-based trained de-
tectors [Zhang et al., 2022; Li et al., 2022]. Early action de-
tection methods [Feichtenhofer et al., 2019; Pan et al., 2021;
Tang et al., 2020] followed a two-stage pipeline, using separate
2D and 3D backbones for localization and feature extraction.
With the advent of transformers [Vaswani et al., 2017], they be-
came a dominant backbone for visual tasks [Zhang et al., 2022;
Li et al., 2019; Wang et al., 2023], and recent methods
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shifted towards using unified backbones for action detec-
tion. For instance, MG-HAD [Zhe et al., 2024], a multi-
layer transformer-based model, leveraged multidimensional
action queries to predict fine-grained hand actions. Mean-
while, methods such as EVAD [Chen et al., 2023], built on
the ViT framework, provided efficient end-to-end solutions
for video action detection. Query-based action detectors like
WOO [Chen et al., 2021] and TubeR [Zhao et al., 2021]
followed the detection frameworks in [Sun et al., 2021;
Carion et al., 2020] to predict bounding boxes and action
categories. Additionally, STMixer [Wu et al., 2023a], another
query-based one-stage detector, adaptively sampled discrimi-
native features. Despite these advances, HAD remained more
challenging than human full-body action detection due to lim-
ited labeled hand action data and the larger number and finer
granularity of hand actions [Zhe et al., 2024]. To address these
challenges, we propose a novel method for recognizing and
localizing unseen fine-grained hand actions.

2.2 Open-Vocabulary Detection
Open-vocabulary detection is a task in object detection that
aims to detect objects from novel categories not seen dur-
ing training. OVR-CNN [Zareian et al., 2021] first intro-
duced this concept, aligning region features with nouns from
image-caption pairs as a baseline solution. OV-DETR [Zang
et al., 2022], the first DETR-style open-vocabulary detector,
addressed the issue of missing novel category assignments
using conditional matching, albeit at the cost of inefficient
inference. CORA [Wu et al., 2023b] developed a DETR-
based framework that leveraged region prompts and anchor
pre-matching to adapt CLIP for open-vocabulary detection.
RegionCLIP [Zhong et al., 2022] introduced a two-stage pre-
training mechanism to adapt CLIP [Radford et al., 2021] for
encoding region features, demonstrating its capability in OVD
and zero-shot transfer settings. GLIP [Li et al., 2022] unified
object detection and phrase grounding tasks, incorporating
a grounded vision-language pretraining model to detect un-
seen categories. GDINO [Liu et al., 2024], a recent open-set
object detector, combined the Transformer-based DINO de-
tector with grounded pretraining to detect arbitrary objects
using human-provided category names or referring expres-
sions. However, we found that existing OVD methods still
performed suboptimally in the context of fine-grained hand ac-
tion detection. To address this issue, we propose a new method
for open-vocabulary fine-grained hand action detection. By
extracting high-quality multimodal fine-grained features, our
method effectively learns the distinctions and relationships
among these features, allowing the model to generalize to
unseen hand action categories while maintaining balanced
performance across both base and novel categories.

3 Open-FGHA: A Simple Yet Strong Baseline
3.1 Overview
We propose Open-FGHA, a simple yet strong baseline, tai-
lored specifically for open-vocabulary fine-grained hand ac-
tion detection tasks. The overall framework is illustrated in
Figure 2. Open-FGHA follows a dual-encoder-single-decoder
architecture, consisting of a text backbone, an image backbone

enhanced with HiH-LoRA, and a global feature enhancer used
to fuse global image and text features. Additionally, a BSF
mechanism is introduced to locally enhance cross-modality
fine-grained features, followed by a CQG to initialize cross-
modality queries. Finally, the multi-layer cross-modality de-
coder processes the queries to generate predictions.

To extract high-quality multimodal fine-grained features
while maintaining balanced performance, we introduce hierar-
chical heterogeneous LoRA into the image backbone. Mean-
while, the text backbone extracts rich textual features from the
corresponding text descriptions. These image and text features
are then processed by a global feature enhancer to generate
global cross-modality text and image features. However, due
to the similarity among fine-grained categories, relying solely
on global multimodal features can lead to misalignment during
multimodal feature matching. To address this, we propose a
novel BSF mechanism, which locally enhances cross-modality
text and image features, reducing the similarity between fea-
tures and emphasizing the most relevant ones. Furthermore,
we introduce the CQG, consisting of two parts: the content
part and the positional part. CQG takes the previously ex-
tracted high-quality cross-modality features as input to gen-
erate enhanced queries. These queries are then processed by
the cross-modality decoder, which probes the relevant features
from both the visual and textual modalities and updates the
queries. Finally, the output queries from the last decoder layer
are used to predict bounding boxes and assign the correspond-
ing fine-grained categories to the detected regions.

3.2 HiH-LoRA: Hierarchical Heterogeneous
Low-Rank Adaptation

Existing methods for a range of multimodal tasks [Xiao et
al., 2024; Tian et al., 2024] have shown that freezing the
pre-trained VLMs while integrating LoRA [Hu et al., 2021]
effectively preserves its original capabilities, achieving supe-
rior performance on new task-specific data. The LoRA method
updates two low-rank matrices, A and B, and uses BA as the
change to the frozen pre-trained weight matrix W0 in a linear
layer, as described in Eq. (1).

h = W0x+∆Wx = W0x+BAx, (1)

where B ∈ Rd×r, A ∈ Rr×k, and r ≪ min(d, k), meaning
the low-rank r is significantly smaller than the dimensions
(d, k) of the original model. During training, W0 remains
frozen, while A and B are trainable.

Existing methods typically adopt a standard LoRA con-
figuration, applying uniform parameter updates across the
model without considering the varying influence of pre-trained
weight matrices on the new task. This approach limits the
model’s ability to effectively learn heterogeneous knowledge.
Additionally, while existing OVD methods freeze VLMs to
retain original knowledge, they often fail to generalize well
with limited data, leading to overfitting on base categories and
poor performance on novel ones, thereby causing imbalanced
results between the two. To overcome these challenges, we
propose HiH-LoRA, a hierarchical heterogeneous LoRA fine-
tuning paradigm designed for multimodal open-vocabulary
visual tasks (see the bottom left of Figure 2). HiH-LoRA ap-
plies distinct LoRA settings to specific weight matrices within
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Figure 2: The overall framework of the proposed Open-FGHA. Open-FGHA is a simple yet strong open-vocabulary fine-grained hand action
detection model. Open-FGHA consists of three novel components: (1) HiH-LoRA: A module specifically designed for limited heterogeneous
data, enabling effective extraction of multimodal fine-grained features while maintaining model balance (see Section 3.2); (2) BSF Mechanism:
Comprising a bidirectional selective cross-attention module and multiple fusion processes, this mechanism identifies the optimal matching
between multimodal fine-grained features, reducing confusion between fine-grained categories (see Section 3.3); (3) CQG: A cross-modality
decoder module that utilizes high-quality multimodal fine-grained features to generate enhanced cross-modal queries, further improving content
representation and inter-modal correlation (see Section 3.4). The top indicates the whole pipeline, and the bottom describes each module.

each block of the image backbone, focusing on QKV (Query,
Key, Value) and O (Output) matrices in the attention layers.
Let the image backbone consist of L blocks, and W l

0i ∈ Rd×k

represent the ith pre-trained weight matrix in the lth block,
where i ∈ {q, k, v, o} and l ∈ [1, L]. For HiH-LoRA, the
low-rank matrices at the ith weight matrix in the lth block are
denoted as Al

i and Bl
i. Let hl and xl denote the hidden state

and input at the lth block, respectively. The forward pass for
each hidden state hl (l ∈ [1, L]) is given by:
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0o + Sl
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l
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l
o)x

l = (W l
0o +
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o

rlo
Bl

oA
l
o)x

l i = o,

(2)

where we scale the Bl
iA

l
i by Sl

i , and Sl
i =

αl
i

rli
. Here, rli

represents the rank of the heterogeneous low-rank matrix cor-
responding to the ith weight matrix in the lth block, and αl

i

denotes the scaling factor for ith weight matrix in the lth block.
For detailed information, please refer to the Appendix.

We observe that different pre-trained weights contribute dif-
ferently to the task. To account for this, we introduce distinct
scaling factors, Sl

i , to adjust their importance throughout the
model. Specifically, we use a scaling of Sl = 1

2 for QKV
weights and Sl = 1

4 for O weights, maintaining consistent
scaling settings across different backbones.

3.3 BSF: Bidirectional Selection and Fusion
We propose a bidirectional selection and fusion mechanism to
address the issue of multimodal feature alignment confusion
caused by the low intra-category similarity and high inter-
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category similarity among fine-grained categories, leading to
increased alignment errors during the process of multimodal
fine-grained feature alignment. The BSF mechanism adopts
a “multiple-selection multiple-fusion” strategy to extract the
most relevant cross-modality text and image fine-grained fea-
tures from global representations, significantly enhancing local
multimodal fine-grained features, expanding the distinction
between similar features, and highlighting the most relevant
ones, as shown in the first row of Figure 2. The bidirectional
selection and fusion mechanism consists of two key subcom-
ponents: the multimodal bidirectional selective cross-attention
and the multiple fusion processes.

Bi-SCA. To extract the most relevant text fine-grained fea-
tures for the given image and the most relevant visual fine-
grained features for the given text, Bi-SCA performs two
rounds of cross-attention: Image-to-Text (I2T) and Text-to-
Image (T2I), as shown in the bottom middle of Figure 2. In I2T
process, the enhanced global cross-modality text and image
features undergo layer normalization, producing I ∈ Rn×d

and T ∈ Rs×d, where n represents the number of image to-
kens, s represents the number of text tokens, and d represents
the dimension of these tokens. Subsequently, I is utilized as
Q, and T is employed as both the Key K and Value V to com-
pute the cross-attention scores, resulting in the cross-attention
matrix W ∈ Rn×s. Then, W is locally sorted by row, retain-
ing the top-k weights in each row, resulting the top-k local
weight matrix Ŵ ∈ Rn×k. For example, for the i-th row,
Ŵi = [ŵi1, ŵi2, ..., ŵik]. Subsequently, according to the col-
umn indices corresponding to the top-k weights, V̂ ∈ Rk×d

and T̂ ∈ Rk×d are selected from V and T, respectively. Fi-
nally, the fused visual features Î are obtain by calculating
the weighted sum of V̂ and Ŵ. The outputs T̂ and Î from
the I2T process serve as inputs for the T2I process, where
T̂ as the query, and Î as the key and value. The subsequent
computation in the T2I process follows a similar approach to
I2T. The last output of Bi-SCA includes the top-k text features
(Bi-Selective Text features T̂′ ) and the top-m image features
(Bi-Selective Image features Î′ ).

Multiple Fusion Processes. To align the most pertinent text
and visual features at the local level, we employ the cross-
attention mechanism within the Bi-SCA module for local mul-
timodal fusion. Subsequently, to mitigate the challenge of dis-
tinguishing similar features within the global cross-modality
text and image features, we integrate the bidirectional selective
features obtained from Bi-SCA with the global text and image
features, while preserving their original extraction positions.
This approach effectively reduces the potential misalignment
during the process of multimodal feature fusion.

3.4 CQG: Cross-modality Query Generator
We observed that solely relying on feature extraction and
alignment fusion is insufficient for effectively handling fine-
grained heterogeneous data. To maintain the optimal match-
ing between multimodal features, we introduce a new cross-
modality query generator that generates enhanced cross-
modality queries for the decoder. By leveraging the previous

obtained high-quality cross-modality features, the CQG sig-
nificantly strengthens the content part of the decoder input, as
shown in the first row and bottom right of Figure 2.

Specifically, the cross-modality query generator consists of
two components: the content part and the positional part. In
the content part, we concatenate the Bi-Selective text features
generated by the Bi-SCA module with randomly initialized
static content queries to produce dual content queries. In the
positional part, we utilize the updated fused text and image
features from the BSF mechanism and follow the dynamic
anchor generation strategy of GDINO [Liu et al., 2024] to
derive positional information. These resulting enhanced cross-
modality queries are then used as the input to the decoder.
Note that if the content part does not include the Bi-Selective
text features from our BSF mechanism, the cross-modality
query generation process is identical to that of GDINO.

4 Experiments
4.1 Experiments Settings
Datasets and Metrics. To facilitate fair comparisons with
existing open-vocabulary detection methods, we propose the
FHA-Kitchens OVD benchmark. Following the convention of
the COCO OVD benchmark [Lin et al., 2014], we have restruc-
tured the publicly available FHA-Kitchens benchmark [Zhe
et al., 2024], focusing on multi-granularity hand actions. The
FHA-Kitchens benchmark includes 130 fine-grained action
categories, divided into 46 base categories and 15 novel cat-
egories. We have re-split the original train and validation
sets of the FHA-Kitchens benchmark to create new train and
validation sets suitable for the OV-FGHAD task. The model
is trained on the 46 base categories, containing 35,351 in-
stances, and evaluated on a validation set containing 9,361
instances, which includes both the 46 base and 15 novel cate-
gories. Finally, we evaluate Open-FGHA and other represen-
tative detection models in both the open-vocabulary detection
setting on the FHA-Kitchens OVD benchmark and the closed-
set action detection setting on the hand action subset of the
FHA-Kitchens benchmark.

Following previous OVD works [Zhong et al., 2022;
Wu et al., 2023b], we evaluate our model under the “gen-
eralized” setting, which requires the model to predict objects
from both base and novel categories, and then evaluate novel
objects. In the FHA-Kitchens OVD benchmark, we use
AP50 as our primary evaluation metric, which calculates the
average precision for each category at an intersection-over-
union (IoU) threshold of 50%, and then averages across all
categories. In the FHA-Kitchens subset, we adopt the mean
Average Precision (mAP) as the primary evaluation metric.
Additionally, to evaluate the Open-FGHA’s ability to balance
performance between base and novel categories, we introduce
the Harmonic Mean (HM) as a balance metric, defined as:

HM = 2× (Pbase × Pnovel)

(Pbase + Pnovel)
, (3)

where P denotes the AP50 for base or novel categories.
Implementation Details. We trained the Open-FGHA
model on the FHA-Kitchens OVD benchmark using the
MMDetection codebase [Chen et al., 2019]. The image
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Method Image Backbone Text Backbone Pre-Training Data FHA-Kitchens OVD val AP50(%) HM
Novel 15 Base 45 All

mm-Grounding DINO Swin-T
BERT-B

O365,GoldG,GRIT,V3Det 24.33 51.53 44.80 33.05
Swin-B O365,GoldG,V3Det 23.22 50.71 44.00 31.85

[Zhao et al., 2024] Swin-L O365V2,OpenImageV6,GoldG 25.16 51.98 45.40 33.91

Grounding DINO Swin-T
BERT-B

O365,GoldG,Cap4M 23.63 51.91 45.00 32.48

Swin-B COCO,O365,GoldG,Cap4M, 24.12 52.27 45.40 33.01[Liu et al., 2024] OpenImage,ODinW-35,RefCOCO

GLIP Swin-T BERT-B O365,GoldG,CC3M,SBU 24.14 51.45 44.70 32.86
[Li et al., 2022] Swin-L FourODs,GoldG,CC3M+12M,SBU 23.81 52.00 45.10 32.66

Open-FGHA (Ours)

Swin-T

BERT-B

O365,GoldG,Cap4M 28.50 ↑ 4.17 50.11 44.80 36.33 ↑ 3.28

Swin-B COCO,O365,GoldG,Cap4M, 29.16 ↑ 5.04 52.53 45.60 37.50 ↑ 4.49
OpenImage,ODinW-35,RefCOCO

Swin-L O365V2,OpenImageV6,GoldG 29.68 ↑ 4.52 52.24 45.80 37.85 ↑ 3.94

Table 1: Comparison with SOTA open-vocabulary fine-grained hand action detection models on the FHA-Kitchens OVD validation set.
It is worth noting that Open-FGHA-T and Open-FGHA-B are fine-tuned from the Grounding DINO-T and Grounding DINO-B pre-trained
models, respectively, while Open-FGHA-L is fine-tuned from the mm-Grounding Dino-L pre-trained model. HM: Harmonic Mean score.

backbone was based on the Swin Transformer [Liu et al.,
2021], while the text backbone utilized a pre-trained BERT-
based uncased model [Devlin et al., 2019]. We fine-tuned
three variants of the model for the OV-FGHAD task: Open-
FGHA-T, Open-FGHA-B, and Open-FGHA-L, using pre-
training data from the GDINO series [Liu et al., 2024;
Zhao et al., 2024]. Fine-tuning was performed with the Adam
optimizer [Kingma and Ba, 2015], using an initial learning
rate of 5× 10−5 for the tiny variant, 1× 10−4 for the base
and large variants, and weight decay set to 10−4. The experi-
ments were conducted using 4 NVIDIA GeForce RTX 4090
GPUs with the total batch size set to 16 for Open-FGHA-T
and Open-FGHA-B, and 4 for Open-FGHA-L. The model was
trained for 12 epochs by default. More details on datasets and
implementation are available in the Appendix.

4.2 Comparisons with SOTA Methods
Results on open-vocabulary fine-grained hand action de-
tection. Table 1 summarizes our main results. Since the
pre-trained model is crucial for the open-vocabulary capability
of the detector, we compare our method with baseline methods
that are trained using the same vision-language models. We
compare Open-FGHA with these SOTA OVD methods on
the FHA-Kitchens OVD benchmark, utilizing their optimal
settings (referencing the MMDetection [Chen et al., 2019]
codebase), where mm-GDINO [Zhao et al., 2024] is an en-
hanced version of GDINO [Liu et al., 2024].

Existing OVD methods in the FG-HAD task show lim-
ited performance, particularly in balancing base and novel
categories, as well as producing unstable results for novel
categories across different image backbones. We adopted the
pre-trained models with stable performance under different
image backbones and fine-tuned three model variants over
12 epochs. The results in Table 1 indicate the following key
insights: (1) Our method significantly improves performance
on the novel category compared to the SOTA methods using
the same backbone, greatly enhancing the model’s general-
ization ability. This improvement is mainly attributed to the
design of our BSF mechanism, which effectively addresses

Method Epoch BB FHA-Kitchens subset val

mAP(%) mAP50(%)

Single-modal detection

DERT [Carion et al., 2020] 150 R-50 54.10 67.90
DeformDETR [Zhu et al., 2020] 50 R-50 55.80 71.10

DINO [Zhang et al., 2022] 24 R-50 58.70 72.80
MG-HAD [Zhe et al., 2024] 24 R-50 59.20 72.80

Multi-modal detection

GLIP-T [Li et al., 2022] 12 Swin-T 57.40 72.60
GDINO-T [Liu et al., 2024] 12 Swin-T 58.60 73.40

Open-FGHA-T(Ours) 12 Swin-T 59.80 75.00

MG-HAD[Zhe et al., 2024] 12 Swin-L 59.90 73.30
Open-FGHA-L(Ours) 12 Swin-L 61.50 75.60

Table 2: Comparison with SOTA closed-set fine-grained hand
action detection models on the FHA-Kitchens hand action subset.
R-50 is short for ResNet-50, while mAP50 represents the average
precision of the model at an IoU threshold of 50%, BB: Backbone.

the challenges posed by fine-grained categories; (2) By utiliz-
ing a more powerful image backbone and larger datasets, our
method consistently outperforms in the novel category, result-
ing in a substantial improvement in the harmonic mean score,
while also demonstrating robust capability in balancing base
and novel categories. This performance is primarily attributed
to the design of our HiH-LoRA, which effectively addresses
the challenges imposed by limited and heterogeneous data.
Note that in OVD [Wu et al., 2023b], performance is primarily
assessed based on generalization to novel categories, rather
than on the base categories upon which the models are trained.

Results on closed-set fine-grained hand action detection.
To comprehensively evaluate the effectiveness of our method
in the fine-grained hand action detection task, we compare it
against representative single-modal and multimodal detection
methods [Zhang et al., 2022; Zhe et al., 2024; Li et al., 2022;
Liu et al., 2024] on the closed-set detection task using the
FHA-Kitchens hand action subset. We adopt the mAP as the
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primary metric to assess the performance of fine-grained hand
action detection across different backbone settings. As shown
in Table 2, our method demonstrates superior performance
in the closed-set fine-grained hand detection task, validating
the robust generalization and adaptability of Open-FGHA.
Specifically, using the tiny backbone, our method achieves a
+1.2% improvement in AP over the current SOTA multimodal
method [Liu et al., 2024]. For the large backbone, our method
attains 61.5% AP, surpassing the most advanced single-modal
hand action detection method [Zhe et al., 2024].

Visualization. A visualization of the results for open-
vocabulary fine-grained hand action detection is presented
in Figure 3. Utilizing the Swin-T backbone, qualitative com-
parison results against the baseline [Liu et al., 2024] on the
FHA-Kitchens OVD benchmark are shown. Our model suc-
cessfully detects all fine-grained hand actions in the current
frame. Compared to the baseline, the proposed method demon-
strates superior performance on novel fine-grained categories
while effectively maintaining balanced performance across
base categories. These findings highlight the effectiveness of
the proposed model tailored for the OV-FGHAD task.

4.3 Ablation Studies
Effectiveness of Individual Components. Our method in-
corporates the HiH-LoRA module to address the challenge
of extracting effective multimodal fine-grained representa-
tions from limited, heterogeneous data while simultaneously
maintaining model balance, as discussed in Section 3.2; the
BSF mechanism to alleviate confusion in multimodal feature
alignment caused by fine-grained categories, as outlined in
Section 3.3; and the CQG module, which further enhances
cross-modality representations, as detailed in Section 3.4. We
conducted an ablation study to assess the effectiveness of each
individual module within our method.

By incrementally integrating these modules into the full
model, we aim to understand their individual impact on perfor-
mance under the “generalized” setting. As shown in Table 3,
the baseline represents the GDINO-T [Liu et al., 2024] model,
and the strong baseline refers to GDINO-T with frozen vi-
sion and language model. Although the strong baseline shows
some improvement, the proposed Open-FGHA-T with the
three novel components substantially enhance performance on
novel categories, while also ensuring balanced performance
across base and novel categories. Each component contributes
meaningfully to improving the baseline, and their combined
effect further advances overall performance, highlighting their
complementary roles in the OV-FGHAD task.

In the design of the HiH-LoRA and BSF modules, compar-
ative experiments were conducted across various backbone
networks to determine the optimal parameter settings. The
detailed results are presented in the Appendix.

5 Conclusion
In this paper, we introduce a novel task: open-vocabulary
fine-grained hand action detection, which aims to detect fine-
grained hand actions on both base and novel categories by
using fine-grained action textual descriptions. Through a com-
prehensive evaluation, we observe that existing OVD methods

OursGround Truth Baseline

grab

hold in
cut in cut in: 42.0

hold in: 51.4

grab: 42.0

cut down: 30.0
grab: 50.5

grab: 38.7

(a) Text: [“grab”,  “hold in”, “cut in”]

grab up

hold input up

grab at: 52.8

hold in: 53.1

grab up: 53.9

hold in: 58.1
put up:49.6

(b) Text: [“grab up”,  “hold in”, “put up”]

Figure 3: Qualitative comparison on the FHA-Kitchens OVD
benchmark. (a) Base Category: Our model outperforms the baseline,
effectively distinguishing similar actions within the base categories.
(b) Base and Novel Categories: Our model successfully detects and
localizes unseen fine-grained categories while maintaining strong
performance on the base categories. This highlights the effectiveness
of the three components designed for open-vocabulary fine-grained
hand action detection. Base categories are marked with light blue
boxes and text, while novel categories are indicated with pink boxes
and text. Misclassified categories are highlighted in red.

Model Algorithm Components Generalied AP50(%) HM
HiH-LoRA BSF CQG Novel 15 Base 45 All

Baseline 23.63 51.91 45.00 32.48
StrBase 24.09 50.69 44.10 32.66

✓ 24.89 ↑ 1.26 51.45 44.90 33.55
✓ 25.74 ↑ 2.11 50.71 44.60 34.15

✓ ✓ 26.31 ↑ 2.68 51.34 45.20 34.79
Ours-T ✓ ✓ ✓ 28.50 ↑ 4.87 50.11 44.80 36.33

Table 3: Ablation study of the key components in Open-FGHA-T.
StrBase: Strong Baseline, HiH-LoRA: Hierarchical Heterogeneous
Low-Rank Adaptation, BSF: Bidirectional Selection and Fusion.
CQG: Cross-modality Query Generator, HM: Harmonic Mean score.

exhibit a bias toward base categories, while struggling to gen-
eralize to novel categories. To address this, we propose a
novel method, Open-FGHA, which integrates three novel
components: HiH-LoRA, BSF, and CQG. By learning the
distinctions and relationships among multimodal fine-grained
features from limited heterogeneous data, Open-FGHA ef-
fectively generalizes to previously unseen fine-grained hand
actions while maintaining balanced performance across base
and novel categories. It outperforms existing fine-grained
hand action detection methods and could serve as a valuable
baseline for future research in OV-FGHAD.

6 Limitations
The Open-FGHA model effectively overcomes significant
challenges faced by existing open-vocabulary detection mod-
els for fine-grained hand actions and reveals insightful observa-
tions. However, the sources of hand actions could be expanded
to encompass more diverse scenarios. In the future, we hope
to leverage richer descriptions of fine-grained hand actions to
enhance the comprehension of the Open-FGHA model.
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