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Abstract

Multi-modality image fusion (MMIF) integrates
features from distinct modalities to enhance vi-
sual quality and improve downstream task perfor-
mance. However, existing methods often over-
look the sparsity variations and dynamic correla-
tions between infrared and visible images, poten-
tially limiting the utilization of both modalities. To
address these challenges, we propose the Progres-
sive Modality-Adaptive Interactive Network (Po-
MAI), a novel framework that not only dynam-
ically adapts to the sparsity and structural dis-
parities of each modality but also enhances inter-
modal correlations, thereby optimizing fusion qual-
ity. The training process consists of two stages:
in the first stage, the Neighbor-Group Matching
Model (NGMM) models the high sparsity of in-
frared features, while the Context-Aware Model-
ing Network (CAMN) captures rich structural de-
tails in visible features, jointly refining modality-
specific characteristics for fusion. In the sec-
ond stage, the Modality-Interactive Compensa-
tion Module (MICM) refines inter-modal correla-
tions via dynamic compensation mechanism, while
freezing the first-stage modules to focus MICM
solely on the compensation task. Extensive experi-
ments on benchmark datasets demonstrate that Po-
MALI surpasses state-of-the-art methods in fusion
quality and excels in downstream tasks.

1 Introduction

The increasing demand for image processing technologies
has driven the widespread application of image fusion, par-
ticularly in complex environments [Sun e al., 2022; Zhang et
al., 2021] where single-modality images often fail to provide
sufficient information. To address this limitation, MMIF [Xu
et al., 2020; Zhao et al., 2020] combines images from differ-
ent modalities, leveraging their strengths to enhance informa-
tion representation and capture fine-grained details. Within
MMIF, infrared and visible image fusion (IVF) [Ma et al.,
2023] plays a critical role by combining the complementary
information from both modalities. It leverages the infrared’s
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Figure 1: Analysis of inter-modal variations and correlations: (a)
indicates higher sparsity in the infrared modality, while (b) demon-
strates dynamic correlation between infrared and visible modalities.

advantage in harsh conditions while benefiting from the finer
details provided by visible images. This fusion technique
generates more comprehensive and insightful images, with
significant applications [Zhang et al., 2020] in object detec-
tion and surveillance. Furthermore, MMIF also encompasses
medical image fusion (MIF) [James and Dasarathy, 2014],
where modalities such as CT and MRI are integrated to of-
fer more precise diagnostic insights, thereby facilitating ad-
vanced medical decision-making.

In recent years, numerous methods [Deng and Dragotti,
2020; Zhang and Ma, 2021] have been proposed in the field of
MMIF. Although these methods have achieved some success,
some still fail to address the distinct information distribution
characteristics of different modalities. For instance, infrared
images often contain sparse and localized information, while
visible images provide richer, more detailed content. Fur-
thermore, the correlation between modalities is not static but
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varies across different scenes, a dynamic relationship that ex-
isting methods have yet to adequately explore. This dynamic
relationship, along with the modality-specific characteristics,
plays a crucial role in multimodal image fusion, as evidenced
by quantitative analysis.

To facilitate a deeper comparison between infrared (Z) and
visible (V) image modalities, we utilize paired images from
the MSRS [Tang et al., 2022] dataset. In this study, we
compute several evaluation metrics to quantitatively assess
the relationship between these two modalities. The visual
results, as illustrated in Figure 1, consist of bar charts that
depict the differences in information sparsity across various
metrics, along with a scatter plot of JS divergence obtained
via K-Means clustering, which captures the dynamic corre-
lation across different scenes. As for the bar chart, it illus-
trates the distribution of P values across different metrics,
with each bar representing a specific metric. Given an input
pair Z; and V; (representing the j-th image pair), we compute
their feature values F'(Z;) and F'(V;) based on various met-
rics, including gradient change rate (GCR) , Laplacian vari-
ance (Lap) , entropy (H) and L1 norm (L1) . The difference
F(Z;) — F(V;) is then calculated, and the statistic P is de-
fined as the proportion of instances where this difference is
positive or negative. This provides a quantitative measure of
the distribution of differences for each metric. The bar chart
demonstrates that infrared images commonly exhibit higher
sparsity compared to visible images, clearly highlighting the
differences between the two modalities. Meanwhile, along
with the scatter plot derived from the JS divergence analy-
sis of the Z;,V; image pairs, K-Means clustering is applied
to categorize the image pairs into three distinct groups. This
clustering captures the dynamic correlation across different
scenes, revealing that the correlation between the image pairs
varies with the scene, highlighting how the image pairs com-
plement each other under different conditions. These findings
highlight the complex relationship between modality differ-
ences and correlations, offering key insights for designing the
subsequent fusion approach.

Motivated by the critical insights into the intricate interplay
between modality differences and correlations, we introduce
a novel two-stage framework designed to comprehensively
tackle these challenges. In the first stage, to accommodate
the unique characteristics of infrared and visible images, we
design two distinct modules: the Neighbor-Group Matching
Model (NGMM) and the Context-Aware Modeling Network
(CAMN), enabling modality-adaptive feature extraction. Un-
like traditional methods that apply uniform processing across
modalities, our approach tailors the processing to the intrinsic
differences of each modality, enabling finer-grained feature
extraction and effectively addressing the challenges posed
by modality disparities. Building on this, the second stage
introduces the Modality-Interactive Compensation Module
(MICM), trained with frozen first-stage modules to capture
deep inter-modality relationships through fine-grained inter-
actions. The module employs a gated-weight fusion mech-
anism to dynamically adapt to the varying correlations be-
tween image pairs, effectively addressing the evolving in-
teractions and ensuring the precise integration of modality-
specific information.

To summarize, our contributions are as follows:

* We propose an innovative asymmetric two-stage frame-
work to effectively capture the variations and correla-
tions between different modalities, enhancing the ro-
bustness and adaptability of our fusion model.

We design two distinct, modality-adaptive feature ex-
traction modules that dynamically adapt to the varying
sparsity levels and information distributions specific to
infrared and visible images, ensuring a more precise and
effective fusion process.

We propose a modality-interactive compensation mech-
anism that adeptly captures inter-modality correlations
through fine-grained interactions, enhancing fusion per-
formance by leveraging a gated-weight fusion strategy.

2 Related Works

Recent years have witnessed significant progress in deep
learning-based multimodal image fusion methods. Convo-
lutional networks, known for their ability to capture spatial
patterns, have been widely applied to image fusion tasks
[Li et al., 2018; Liu et al., 2018]. However, convolution-
based methods often struggle to capture long-range depen-
dencies due to their inherently local receptive fields. As vi-
sion attention mechanisms [Dosovitskiy, 2020; Zamir et al.,
2022] have gained prominence, Transformer-based methods
have emerged as powerful tools for capturing global depen-
dencies, greatly enhancing performance in complex fusion
tasks [Zhao and Nie, 2021; Tang et al., 2024]. Genera-
tive Adversarial Networks (GANs) [Creswell et al., 2018;
Goodfellow et al., 2020] use a game-theoretic interaction
between a generator and a discriminator to generate high-
quality fused images. Unlike convolutional and Transformer-
based methods, which focus on feature extraction, GANSs use
adversarial training to enhance fusion, effectively preserv-
ing thermal target information and retaining key details [Li
et al., 2019; Chakraborty et al., 2024]. Autoencoders (AE)
[Michelucci, 2022; Berahmand et al., 2024] have also been
widely applied to multi-modal image fusion tasks [Zhao et
al., 2020; Li er al., 2021]. AE-based methods employ an
encoder-decoder architecture to map input images into low-
dimensional representations, which are then fused in a high-
dimensional space to extract key features and produce high-
quality fused images. With the growing demand for practi-
cal applications, image fusion methods that integrate down-
stream tasks have seen rapid development [Liu ef al., 2023a;
Liu er al., 2023b]. By exploiting the synergy between up-
stream and downstream tasks, these methods effectively bal-
ance fusion quality and performance for the specific target
task. While some existing methods may not fully account
for the distinct information distribution characteristics of dif-
ferent modalities, our approach introduces a tailored pro-
cessing strategy to enhance modality-specific feature extrac-
tion. By incorporating dynamic weighting and gating mech-
anisms, our method captures the dynamic correlations be-
tween modalities, enabling effective interaction and compen-
sation across them. Together, these strategies effectively han-
dle the coexistence of modality differences and correlations,
ultimately enhancing the quality of the fused images.
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Figure 2: Overview of the proposed framework. (a) Illustration of the two-stage training workflow. (b) Detailed architecture of the Context-
Aware Modeling Network (CAMN) . (c) Detailed architecture of the Neighbor-Group Matching Model (NGMM) .

3 Method
3.1 Overall Architecture

In this paper, we propose a progressive modality-adaptive in-
teractive network (POMAI) for MMIF, designed to address
the challenges of modality-specific sparsity variations and dy-
namic correlations. As shown in Figure 2, POMAI comprises
five key modules and two training stages. The first stage fo-
cuses on learning modality-specific features, while the sec-
ond stage builds upon the first by fine-tuning the model, with
selected modules frozen, to better capture dynamic correla-
tions. To further clarify the operation of POMAI, we use the
infrared and visible image fusion (IVF) task as a case study.

3.2 Shared Encoder

We employ a shared encoder £(+), consisting of four cascaded
Transformer blocks [Zamir et al., 2022], to extract features
from the input images It € REXWxL [, ¢ RHXWX3
yielding consistent feature representations:

Toner Tone = E(I7),E(Iy). (0

The extracted features 22, ., zY . € REXWXC maintain
consistent dimensionality across modalities, facilitating effi-

cient multimodal fusion.

3.3 Neighbor-Group Matching Model
Given the feature 27 ., NGMM integrates the Hash-based

Feature Neighboring (HFN) and Group Attention Mechanism
(GAM) to better align with the sparsity characteristics of in-
frared images, as shown in Figure 2.

Specifically, #Z, . is processed by a dual-branch structure,
where separate convolutions with identical parameters are ap-

plied in each branch. The detailed formulation is as follows:

A A A A
Lieftr Lright = CO’n/Ule(xenc)v Con’l)le(xenc)' @)

Following the dual-branch processing, 7,7, €

right
RHEXWXC are flattened into frefes fright € RL*C | where
L = H xW. Leveraging the locality-sensitive hashing mech-
anism introduced in [Andoni et al., 2015], The HFN module
begins by projecting the input features =7, ght onto a spheri-

cal space. Subsequently, the indices S € R¥*Wx1 which
identify the top K most relevant elements within the feature
space, are generated through hash mapping. These indices S
are used to perform hash-based grouping of 7, ¢, %, 1., re-
sulting in gie ¢, Gright € REXC Note that the indices S are
computed in the right branch and shared with the left branch.

The grouping process is formalized as follows:

K

L
g=UJ UL 18 =5} 3)
i=1j4=1

=1

Building on HFN’s feature grouping, we introduce the
GAM to capture the relationships among grouped features.
This process ultimately produces M aggregated feature
groups, where M is the total number of groups, calculated

as M = % The attention scores for each group are re-

shaped and added to zZ,,, via a residual connection, yielding
the NGMM’s output and enhancing the features.

3.4 Context-Aware Modeling Network

Unlike infrared images that exhibit high sparsity, visible im-
ages contain a wealth of details and intricate structures. To
address this, we propose the Context-Aware Modeling Net-
work (CAMN), which integrates the Spatial-Context Block



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

p - FPM |

dIND
®
[AIIOD Lx L]

3

((avo | ||[ avo |
S
()
-
-

[ALIOD Ix []

o
-

lL
AUOD(J X/

Channel Concat Region

@Element-Wise Multiplication

Figure 3: The MICM architecture enables interaction and compen-
sation between infrared and visible modalities via FPM and GFF.

(SCB) and Channel-Context Block (CCB) to effectively ex-
tract and encode the rich information in visible images.

As shown in Figure 2, the processing of =, begins with
the SCB, designed to extract spatial contextual information.
Within the SCB, the input feature passes through a 1 x 1 conv
for initial processing, followed by a 7 x 7 dilated conv (DC)
to capture spatial dependencies. A subsequent 1x1 conv re-
fines the representation, with residual connections integrating
the original features to produce :cl/cb. The SCB module em-
phasizes spatial representation, formulated as follows:

2y, = Convixi (DCrxr(Convixi(d,.))) + Tlnee (4)
The output of the SCB, =, , is fed into the CCB for chan-

nel refinement. The CCB af)%)lies a normalization layer, fol-
lowed by two 1x1 pointwise conv (PC') to adjust channel
dimensions. A residual connection combines :L'l}cb with the
intermediate features, yielding z),. The CCB module em-
phasizes channel-wise interaction, formulated as follows:

xly = PC1x1(PCryi(Norm(a),))) + sy (5)

Finally, a residual connection combines zY,, with zY, .,
helping preserve the rich information and intricate details of

visible images, and yielding the final output 2

camn*

3.5 Modality-Interactive Compensation Module

Building on previous observations, we find that certain im-
age pairs exhibit significant modal correlations, providing a
foundation for the interaction module. Inspired by [Dai et
al., 20211, we propose the Modal Interaction Compensation
Module (MICM)), illustrated in Figure 3, which integrates the
Feature Perceptual Module (FPM) and Gated Feature Fusio
(GFF) to dynamically capture cross-modal correlations and
compensate for modal discrepancies.

Given the features #Z, . and x) ., we fuse the two modal-
ities through element-wise addition to obtain xg,,. Then,
Zsum 18 fed into both the channel attention (CA) and spa-
tial attention (SA) modules. Next, the attention scores from
CA and SA are combined via element-wise addition. Fi-
nally, the fused attention features are concatenated (denoted
as Cat(-,-)) with 2., along the channel dimension to pro-
duce the output of the FPM, x f,,,,. This process is succinctly
expressed by the following formula:

Lsum = xgnc + x}?}nm (6)
Tfpm = Cat(SA(xsum) + CA(wsum)v xsum)' (7)

The result feature 7, from the FPM is further processed
by the GFF module. First, a 7 X 7 convolution is applied to
Z fpm, and the result is passed through a sigmoid activation
o(-) to generate the gating map WW. This gating map mod-
ulates zZ,, and x) ., producing weighted features. These
weighted features are then added to %, and z¥,, ., re-
spectively. Finally, the resulting features are concatenated
along the channel dimension to form x4, which also serves
as the output of the MICM. This process can be described as:

W = o(Dconvy 7 (Z tpm)), (8)
v _ 1% v _ .V 1%

Loei = W Tencry Lenh = Lyei + Teamm> (9)
A i v z v

Lwei = (1 - W) *Tener Lenh = Lwei + xngmnm (10)

‘rgff = Cat(xgnh7wgnh>' (11)
3.6 Decoder

The decoder D(+) is used in both stages, mirroring the en-
coder’s structure to ensure consistent feature processing. In
the first stage, it takes concatenated features from both modal-
ities as input, while in the second stage, it processes the fused
features from the MICM module, ensuring visual coherence
and effective multimodal integration. Formally:

Stage I: Iy = D(Cat(xggmm, ), (12)
Stage 2:  Ir = D(Tmicm)- (13)

3.7 Progressive Training

As illustrated in Figure 2, our framework employs a progres-
sive two-stage training strategy. Specifically, in the first stage,
we jointly train the encoder £(-), NGMM, and CAMN to cap-
ture modality-specific feature from paired images {I7, Iy }.
These features are then decoded by D(-) to generate a fused
image that integrates the essential information from both
modalities. In the second stage, we freeze the first-stage mod-
ules and introduce MICM to build the dynamic correlation
between the two modalities. The resulting features, refined
through enhanced cross-modal interactions, are decoded by
D(-) to produce the final fused image, reflecting the dynamic
correlation between the modalities. Since the objective of
both stages is to synthesize a fused image that effectively in-
tegrates information from the two modalities, we employ the
same loss function £ for consistency and training efficiency.
The loss function is formulated as follows:

Liotal = 01 Lssim + 02Lmse + 3 Lins + a4£gr(zd- (14)
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Method Source TNO RoadScene M3FD MSRS

SD SF AG VIF| SD SF AG VIF| SD SF AG VIF| SD SF AG VIF
DeFusion ECCV’22|31.37 7.26 2.97 0.54|37.65 8.91 3.54 0.59(29.90 8.31 2.91 0.55|34.88 7.98 2.60 0.75
UMF IICAI’22129.95 9.09 3.34 0.56|39.47 10.86 4.14 0.64|31.44 10.00 3.33 0.61(20.76 7.10 2.13 0.43
CDDFuse CVPR’23|45.49 13.56 5.07 0.73|55.62 17.18 6.11 0.65|41.28 16.49 5.41 0.78|43.38 11.56 3.73 1.05
SegMIF ICCV’23(45.77 13.23 5.14 0.80|49.47 15.12 5.77 0.63(42.41 16.03 5.42 0.82|41.96 11.01 3.60 0.76
BDLFusion IJICATI’23|37.94 8.95 3.72 0.59|39.86 8.83 3.66 0.59|31.43 9.31 3.32 0.64(33.63 7.80 2.59 0.73
IGNet ACMMM’23|39.57 9.91 4.27 0.56|43.13 11.11 4.66 0.54|42.50 13.97 5.07 0.60{33.91 9.66 3.18 0.69
LRRNet TPAMI’23|42.78 10.86 4.30 0.55(40.90 11.60 4.29 0.48|30.13 11.63 3.95 0.56|31.76 8.47 2.64 0.54
EMMA CVPR’24|47.40 12.94 5.36 0.67|54.44 15.09 5.75 0.64|43.00 16.78 5.86 0.76|44.59 11.56 3.77 0.97
CAF IICAI’24|36.17 11.62 4.49 0.58|45.48 14.55 5.55 0.61]36.01 14.18 4.85 0.60(26.59 9.81 3.13 0.59
MMDRFuse |ACMMM’24|30.18 8.77 3.37 0.59(31.40 7.88 3.00 0.58(29.17 11.24 3.76 0.66(37.11 9.65 3.20 0.85
ITFuse PR’24|40.17 7.67 3.34 0.53|54.60 10.23 4.31 0.56|36.00 8.56 3.22 0.55(35.16 6.90 2.46 0.66
TIM TPAMI'24|44.50 9.94 3.95 0.70({38.32 9.60 3.45 0.61(37.39 13.70 4.46 0.62|43.30 11.52 3.77 0.67
PoMAI(Ours) —149.15 15.96 6.07 0.76|65.93 21.32 7.73 0.66|47.54 17.28 5.81 0.79(45.11 12.29 3.84 0.97

Table 1: Quantitative comparison of the proposed POMAI with 12 advanced image fusion methods, evaluated on multiple datasets for the IVF

task. Bold red indicates the best, Bold blue indicates the second best.

The coefficients aq, o, ag, ay in the total loss function
are weighting factors that balance the contributions of the dif-
ferent loss components to the overall objective. Each term in
the overall loss function is computed as follows:

Lssim =1- SSIM(I]:aII) +1- SSIM(I]:aIV)a (15)

Lumse = 17 — Izl + [l 17 — Iv|l3, (16)
1

Lint = WHI}' - max(II, IV)”l» a7

Lyraa = || |VIF| — max(|VIz], [VIy])|1, (18)

where SSTM(-, -) represents the structural similarity index
[Wang er al., 2004]. The operator V denotes the Sobel gradi-
ent operator, used to capture edge information. The max(-, -)
function selects the pixel-wise maximum values between I
and Iy.

4 Infrared and Visible Image Fusion

4.1 Setup

Datasets. We conduct IVF experiments on four popular
datasets: TNO [Toet and Hogervorst, 2012], RoadScene [Xu
et al., 20201, M3FD [Liu et al., 20221, and MSRS [Tang et
al., 2022]. Our proposed method, PoOMALI, is trained on the
MSRS training set (1083 pairs) and tested on TNO (20 pairs),
RoadScene (70 pairs), M3FD (100 pairs), and the MSRS test
set (361 pairs). To evaluate the generalization capability of
the model, no fine-tuning was performed on TNO, Road-
Scene, or M3FD during testing.

Metrics. We use four metrics to evaluate the fusion results:
standard deviation (SD), spatial frequency (SF), average gra-
dient (AG) and visual information fidelity (VIF). A higher
value of these metrics indicates better fusion quality, with de-
tails available in [Ma et al., 2019].

Implement details. Our experiments are implemented
with the Pytorch framework and on a machine with four
NVIDIA Tesla P100 GPUs. The training images are initially
processed by randomly cropping them into 128 x 128 patches,
ensuring a diverse set of training samples for the model. The

Infrared

ITFuse

Figure 4: Qualitative comparisons of various methods on MSRS.

training process is structured into two phases: the first phase
comprises 80 epochs, followed by the second phase with 20
epochs, both utilizing a batch size of 16. The Adam optimizer
is employed to update the parameters of each module, with an
initial learning rate of 1 x 10~* that decreases by a factor of
0.5 every 20 epochs. In Eq. 14, the values of o, a2, g, and
ay4 are setto 5,1, 1, and 10.
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Configuration SD SF AG VIF
I w/o NGMM 4451 11.69 3.65 092

II w/o CAMN 4448 11.72 3.69 091
1 w/o MICM 4293 1136 3.57 0.84
v w/o Two-Stage 43.04 1148 372 0.89
V  w/o Weight-Frozen 43.67 11.33 3.70 0.92

PoMAI (Ours) 45.11 1229 3.84 0.97

Table 2: Ablation studies on MSRS test datasets. Two-Stage denotes
using MICM in stage two. Weight-Frozen denotes freezing stage-
one weights.

4.2 Comparison with SOTA Methods

We conduct comprehensive qualitative and quantitative anal-
yses on four popular datasets, comparing our approach with
12 state-of-the-art (SOTA) methods, including DeFusion
[Liang et al., 2022], UMF [Wang et al., 2022], CDDFuse
[Zhao et al., 2023], SegMiF [Liu et al., 2023al, BDLFu-
sion [Liu et al., 2023b], IGNet [Li er al., 2023b], LRRNet
[Li et al., 2023al, EMMA [Zhao et al., 2024], CAF [Liu et
al., 2024a], MMDRFuse [Deng et al., 20241, ITFuse [Tang et
al., 2024] and TIM [Liu et al., 2024b].

Qualitative Comparisons. Figure 4 presents visual com-
parisons on MSRS dataset. Compared with other methods,
the proposed approach better preserves the rich details from
the visible modality (highlighted by the green-colored box)
while simultaneously retaining the thermal information from
the infrared image (highlighted by the red-colored box) to the
greatest extent, achieving superior fusion results.

Quantitative Comparisons. Beyond visual comparisons,
we evaluate our method quantitatively on four datasets using
four metrics, as shown in Table 1. Our method achieves sig-
nificant performance improvements, with superior SD values
ensuring optimal contrast and competitive VIF scores indicat-
ing effective correlation preservation.

4.3 Ablation Study

We conduct a series of ablation studies on the MSRS dataset,
using the same evaluation metrics as in the IVF experiments,
to evaluate the individual contributions of the three proposed
modules and the effectiveness of the progressive training
strategy. The results are summarized in Table 2.

NGMM. To evaluate the effectiveness of the NGMM mod-
ule, we conduct an ablation study by removing it from the Po-
MALI framework, while keeping all other components intact.
This setup, denoted as Exp.I, demonstrates that the removal of
the NGMM module leads to a significant performance decline
across most evaluation metrics, failing to match the perfor-
mance of the full POMAI model. This highlights the crucial
role of the NGMM module in enhancing system performance.

CAMN. To assess the contribution of CAMN, we per-
form an ablation study by removing CAMN from the POMAI
framework while retaining all other components. This ex-
perimental setup is denoted as Exp.II. The result consistently
demonstrates that the removal of CAMN resulted in a notable
decline in performance across the majority of evaluation met-
rics, highlighting its critical role in augmenting the model’s
overall effectiveness.

Method \ Source| SD SF AG VIF
DeFusion ECCV’22(54.28 17.12 4.36 0.63
UMF 1ICATI’22|33.86 16.48 4.10 0.39
CDDFuse CVPR’23|61.59 19.96 5.09 0.66
SegMiF ICCV’23163.09 19.92 495 0.61
BDLFusion 1ICAI’23|53.20 14.06 4.00 0.58
IGNet ACMMM’23(38.44 13.42 4.25 0.50
LRRNet TPAMI'23|38.20 11.94 3.15 0.35
EMMA CVPR’24166.70 19.25 5.23 0.59
CAF 1ICAI’24|52.90 21.56 5.51 0.55
MMDRFuse |ACMMM’24|57.26 28.09 4.81 0.53
TIM TPAMI’'24 |38.06 9.87 2.98 0.37
PoMAI(Ours) —|74.96 30.59 7.55 0.66

Table 3: Quantitative comparison on Harvard Medical datasets.
Bold red indicates the best, Bold blue indicates the second best.

’F"‘

CDDFuse

TIMFusion

Figure 5: Qualitative comparisons of various methods on Harvard
Medical dataset.

MICM and Training Strategy. Finally, to evaluate the
effectiveness of incorporating the MICM module and adopt-
ing the two-stage training strategy, in which the weights of
the first-stage modules (including the Shared Encoder £(+),
NGMM, CAMN and Decoder D(-)) are frozen and only the
MICM module is trained, we design three ablation experi-
ments. Specifically, Exp.IIl employs only the first-stage net-
work without introducing the MICM module, equivalent to
training without the two-stage strategy. Exp.IV integrates the
MICM module’s training process directly into the first-stage
network, effectively eliminating the two-stage architecture.
Finally, Exp.V introduces the MICM module while allowing
the first-stage network’s weights to be updated during train-
ing, thereby exploring the impact of weight optimization. The
results of the three ablation experiments clearly demonstrate
the necessity of incorporating the MICM module, as well as
the benefits of adopting a two-stage training strategy. Specif-
ically, by freezing the weights of the first-stage modules and
progressively training the MICM module in the second stage,
we observe a significant improvement in the model perfor-
mance. This approach underscores the importance of both
the MICM module and the progressive training strategy in
achieving superior results.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Method MMOD . MMSS

Peo Car Bus Mot Lam Tru mAP| Unl Car Per Bik Cur CS GR CC BumlOU
Visible 77.74 93.38 96.13 91.96 81.19 91.69 88.68|97.61 86.09 56.40 65.35 40.73 60.96 66.74 49.64 58.73 64.70
Infrared 83.59 91.52 94.74 80.41 87.14 84.60 87.00(97.44 84.48 66.73 62.52 36.31 44.97 4.25 35.44 55.26 54.16
DeFusion 83.06 93.74 95.91 90.64 79.41 89.72 88.74|97.76 86.46 65.79 65.52 37.97 58.23 54.43 48.85 58.53 63.73
UMF 83.31 93.49 95.45 90.88 81.49 89.83 89.07|97.61 86.18 63.62 64.93 38.45 53.81 44.17 47.52 51.39 60.85
CDDFuse 82.64 93.44 94.43 90.28 82.92 91.11 89.14|97.78 86.62 65.56 64.86 40.16 60.05 61.24 49.45 60.37 65.12
SegMIF 82.43 93.09 94.14 91.11 81.32 89.45 88.59|97.75 86.65 66.00 66.03 38.35 58.38 56.01 46.79 60.07 64.00
BDLFusion [82.85 93.44 95.70 89.56 85.54 88.57 89.29(97.71 86.33 66.67 64.44 38.68 57.54 57.77 46.90 58.65 63.85
IGNet 82.64 93.09 95.31 91.23 83.38 89.02 89.11|97.64 85.70 63.91 65.27 36.38 54.68 43.17 47.00 54.11 60.88
LRRNet 81.73 93.53 95.70 91.29 81.74 89.53 88.92|97.75 86.63 63.88 64.88 41.80 58.22 53.23 48.67 58.11 63.69
EMMA 83.24 93.85 95.74 91.94 84.11 91.64 90.09(97.79 86.73 66.04 65.54 40.22 60.50 62.44 48.85 60.33 65.38
CAF 83.96 93.24 95.83 88.88 84.23 88.48 89.10(97.60 85.76 64.99 63.57 34.78 53.63 41.07 45.87 57.89 60.57
MMDRFuse [82.66 93.26 95.04 92.00 82.01 90.18 89.19(97.76 86.55 65.65 65.59 39.09 58.86 53.61 48.77 58.47 63.82
ITFuse 82.82 93.19 93.66 90.37 81.60 91.23 88.81(97.72 86.55 66.50 65.80 37.97 55.88 44.99 49.05 55.63 62.23
TIM 81.00 93.48 94.37 91.92 84.31 90.79 89.31|97.63 85.69 63.25 64.04 36.49 55.92 51.55 47.32 56.98 62.10
PoMAI(Ours)|[84.81 94.03 96.09 91.62 91.55 92.70 91.80{98.05 88.94 68.23 66.66 46.21 62.09 63.72 53.16 66.49 68.17

Table 4: Quantitative comparison of the proposed POMAI with 12 advanced image fusion methods, evaluated on multiple downstream tasks
across diverse datasets. Bold red indicates the best, Bold blue indicates the second best.

S Medical Image Fusion

Setup. We perform MIF experiments using 50 image pairs
from the Harvard Medical dataset [Johnson and Becker,
2005]. Notably, we directly apply the model trained on IVF
tasks to the Harvard dataset without fine-tuning. The quanti-
tative metrics were consistent with those used in IVF task.

Comparison with SOTA Methods. We conduct compre-
hensive qualitative and quantitative analyses with 12 state-of-
the-art (SOTA) competitors, all of which are trained exclu-
sively on IVF-related datasets without fine-tuning on MIF.
These methods are consistent with those mentioned in the
IVF section. The qualitative results, as illustrated in Figure
5, demonstrate that POMALI effectively preserves fine-grained
texture details, avoids color distortion and accentuates struc-
tural information. Quantitatively, as shown in Table 3, Po-
MALI outperforms most existing methods across the majority
of metrics, highlighting its potential for MIF tasks.

6 Downstream IVF Applications

6.1 Evaluation in Object Detection

Setup. The multi-modal object detection (MMOD) is per-
formed on the M3FD dataset, which consists of 4,200 pairs
of infrared and visible images, categorized into six labels:
people, car, bus, motorcycle, truck, and lamp. The dataset
is split into training, validation, and test sets with an 8:1:1
ratio. YOLOV5 [Jocher, 2020] is employed to evaluate detec-
tion performance using the mAP@0.5 metric. The training
configuration consists of 100 epochs, a batch size of 8, the
SGD optimizer and an initial learning rate of le-2.

Comparison with SOTA Methods. Table 4 indicates
that POMALI achieves competitive performance across mul-
tiple evaluation metrics, with notably higher performance in
the mAP@0.5 score compared to existing methods. These
results suggest that our approach demonstrates certain effec-
tiveness in improving object detection tasks.

6.2 Evaluation in Semantic Segmentation

Setup. The multi-modal semantic segmentation (MMSS) is
performed on the MSRS dataset with pixel-level semantic
information of nine object categories(e.g., background, car,
person, bike, curve, car stop, guardrail, color cone and bump).
DeepLabV3+ [Chen et al., 2018] is utilized to assess seman-
tic segmentation performance based on the intersection-over-
union (IoU) metric. The training process is configured with
300 epochs, where the backbone network is frozen for the
first 100 epochs. Additional settings include a batch size of
8, the SGD optimizer and an initial learning rate of 7e-3.

Comparison with SOTA Methods. Table 4 summarizes
the quantitative semantic segmentation results of various fu-
sion methods on the MSRS dataset. Our method achieves
competitive performance across multiple metrics, particularly
attaining the highest mloU score. These results indicate that
our approach effectively improves the performance of seman-
tic segmentation tasks.

7 Conclusion

In this paper, we propose a progressive modality-adaptive
interactive network (PoMAI) for multi-modality image fu-
sion. We analyze the sparsity differences and dynamic corre-
lations between infrared and visible modalities in the MSRS
dataset using diverse metrics. Our analysis reveals that in-
frared features exhibit sparsity and localization characteris-
tics, while visible features contain richer and more detailed
information, with their cross-modal correlations dynamically
evolving across different scenes. Based on these findings,
we design modality-adaptive feature extraction modules and
an modality-interactive compensation module to effectively
address these challenges. Our experiments demonstrate Po-
MAT’s superior performance in MMIF, with significant gains
in downstream tasks. In future work, we will explore ad-
vanced feature integration methods beyond simple channel
concatenation to enhance inter-modal fusion.
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