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Abstract
Machine Unlearning (MU) technology facilitates
the removal of the influence of specific data in-
stances from trained models on request. Despite
rapid advancements in MU technology, its vulner-
abilities are still underexplored, posing potential
risks of privacy breaches through leaks of osten-
sibly unlearned information. Current limited re-
search on MU attacks requires access to original
models containing privacy data, which violates the
critical privacy-preserving objective of MU. To ad-
dress this gap, we initiate the innovative study on
recalling the forgotten class memberships from un-
learned models (ULMs) without requiring access
to the original one. Specifically, we implement a
Membership Recall Attack (MRA) framework with
a teacher-student knowledge distillation architec-
ture, where ULMs serve as noisy labelers to trans-
fer knowledge to student models. Then, it is trans-
lated into a Learning with Noisy Labels (LNL)
problem for inferring correct labels of the forget-
ting instances. Extensive experiments on state-
of-the-art MU methods with multiple real datasets
demonstrate that the proposed MRA strategy ex-
hibits high efficacy in recovering class member-
ships of unlearned instances. As a result, our study
and evaluation have established a benchmark for
future research on MU vulnerabilities.

1 Introduction
Data privacy is a core concept in the era of big data and ex-
tensive interconnectivity [Wu et al., 2024; Bao et al., 2023].
If a machine learning model has been trained on sensitive and
private data, it can lead to significant security risks. In this
context, the emergence of machine unlearning (MU) has been
driven by stringent data privacy regulations such as GDPR
[Hoofnagle et al., 2019] and CCPA [Itakura and Terada,
2018], which require the removal of specific sensitive data

∗Corresponding author
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Figure 1: The demonstration of recall attack on the unlearned model
(ULM) to recover class memberships having been unlearned via
MU. This study is critical to the vulnerability of current MU models.

upon request. MU is designed to forget particular data points
from the learned models [Cao and Yang, 2015]. As concerns
about the increasing data misuse and privacy breaches, MU
has gained more attention as a critical component in building
safe machine learning systems.

Rapid advancements in MU research have increasingly
posed a potential risk of privacy breaches by recovering the
unlearned information about private data, highlighting the
limited research on the full scope of MU vulnerabilities. In
fact, the most relevant research [Hu et al., 2024] that inves-
tigates inversion attacks against MU models was published
recently. However, this work is based on an impractical
assumption that unlearning inversion attacks require access
to both Trained Model (TRM, M(ΘT )), and Unlearned
Model (ULM, M(ΘU )), as shown in Figure 1. In general,
only ULM is accessible to users, where sensitive privacy has
been removed from TRM.

The membership inference attack (MIA) [Shokri et al.,
2017] is originally used to detect data samples used to train a
machine learning model. Recently, MIA has been used to
assess whether the influence of a forgetting dataset Df =
{Xf ,Yf} has been successfully erased after MU [Chen et
al., 2021]. To go one step further, we formulate the attack
on recovering the forgotten class memberships by only ac-
cessing ULM. As shown in Figure 1, our objective is to learn
a Recalled Model (RCM, M̃(ΘR)) from the ULM M(ΘU )
to correctly infer the labels of the input data Xp, where Xp
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contains a subset of instances in Xf in which the class mem-
berships, Yf , have been forgotten in the ULM. As a result,
we propose a Membership Recall Attack (MRA) framework
to learn RCM in this paper. As most MU models restrict the
scope of the investigation to the area of image classification
tasks [Bourtoule et al., 2021; Fan et al., 2024; Jia et al., 2023;
Chen et al., 2023; Chen et al., 2024], we correspondingly
study the proposed MRA on these MU models in this area.

To implement the MRA framework, we designed a teacher-
student architecture to distill the knowledge from the ULM
M(ΘU ) (as a teacher) to a Student Model (STM, M̃(ΘS)).
More specifically, given an input image set Xp, the ULM
M(ΘU ) outputs the prediction labels M(Xp; ΘU ) 7→ Yp,
where the prediction labels Yp may be noisy, especially when
Xp contains many instances of forgetting data Xf . There-
fore, we use the ULM M(ΘU ) to serve as a noisy labeling
teacher for knowledge distillation, that is, using {Xp,Yp} to
train the STM M̃(ΘS). In this context, MRA can be further
translated into a Learning with Noisy Labels (LNL) problem
[Algan and Ulusoy, 2021] over {Xp,Yp} that aims to infer
correct labels from the noisy ones. Consequently, we selected
samples with high confidence agreement between the teacher
model M(ΘU ) and the STM M̃(ΘS) for LNL. In particular,
we discuss two cases for MRA, one is the closed-source case
where the parameters of ULM ΘU are not accessible, and the
other is the open-source case where the parameters are open
for use. Moreover, we design a unified learning scheme of
MRA to train the RCMs for these two cases. We summarize
our contributions as follows.

• To our knowledge, this is the first attempt study of the recall
attack of class membership, which can effectively assess
the risk of data privacy breaches and promote the robust-
ness of the MU study.

• We propose MRA, a model-agnostic attack framework,
to effectively recover class memberships of forgotten in-
stances from unlearned ULMs via various MU methods.

• We implement MRA with a teacher-student architecture
where the ULM serves as a noisy labeling teacher to dis-
till the knowledge to train the STM with noisy labels.

• We conducted extensive experiments in four widely used
datasets in MU research, demonstrating both the theoretical
and practical efficacy of our MRA approach against various
SOTA MU methods.

2 Related Work
2.1 Machine Unlearning
Exact Unlearning. Retraining the model from scratch after
removing specific data can intuitively and effectively achieve
exact unlearning. In addition, [Bourtoule et al., 2021] pro-
posed SISA (Sharded, Isolated, Sliced, Aggregated) training,
which trains isolated models on data shards for efficient un-
learning by retraining only affected shards. Although effec-
tive, these unlearning approaches are computationally expen-
sive and impractical for large-scale models and datasets.
Approximate Unlearning. The idea of modestly sacrific-
ing the accuracy of forgetting in exchange for significant

improvements in unlearning efficiency has spurred the ex-
ploration of approximate unlearning techniques. Gradient
ascent (GA) [Graves et al., 2021; Golatkar et al., 2020;
Thudi et al., 2022; Miao et al., 2024] reverses the training
of the model by adding gradients, thus moving the model to-
wards greater loss for the data points targeted for removal.
Random labeling (RL) [Golatkar et al., 2020] that involves
finetuning the original model on the forgetting dataset using
random labels to enforce unlearning. Several methods esti-
mate the impact of forgetting samples on the model param-
eters and conduct forgetting through the fisher information
matrix (FF) [Becker and Liebig, 2022] or influence function
(IU) [Koh and Liang, 2017; Izzo et al., 2021]. ℓ1-sparse (L1-
SP) [Jia et al., 2023] infuses weight sparsity into unlearning.

Moreover, most MU methods may degrade model perfor-
mance. and lead to “over-unlearning”. Some recent work has
explored more precise unlearning on target forget instances.
Boundary unlearning (BU) [Chen et al., 2023] shifts the de-
cision boundary of the original model to imitate the decision
behavior of the model retrained from scratch. SalUn [Fan
et al., 2024] introduces the concept of ‘weight saliency’ to
narrow the performance gap with exact unlearning. To avoid
over-unlearning, UNSC [Chen et al., 2024] constrains the un-
learning process within a null space tailored to the remaining
samples to ensure that unlearning does not negatively impact
the model performance.

2.2 Attacks on Machine Unlearning

Despite advances in MU techniques, the study of their vul-
nerabilities remains underexplored. To date, very limited
MU attack methods have been proposed to affect efficiency
[Marchant et al., 2022] or fidelity [Di et al., 2022; Hu et
al., 2023]. Studying attacks on MU is crucial to developing
robust and secure MU methods.
Membership Inference Attack (MIA). MIA is originally
used to infer if data samples are used to train a machine learn-
ing model [Shokri et al., 2017]. With the development of
MU, MIA has been widely used to check if the influence of
forgetting data had been removed from the original model.
However, [Chen et al., 2021] show that MU can jeopardize
privacy in terms of MIA. The goals of MIA and the proposed
MRA are different. MIA aims to detect data samples if used
for training, whereas MRA aims at recalling and inferring the
class memberships of forgetting samples from ULMs.
Model Inversion Attack. It aims to reconstruct the origi-
nal input data from the model outputs. [Fredrikson et al.,
2015] introduced model inversion attacks using the confi-
dence scores output by a model to reconstruct input images.
[Hu et al., 2024] proposed the first inversion attack against
unlearning. It extracts features and labels of forgetting sam-
ples, which most closely match the objectives of our study.
Although the attack demonstrates notable effectiveness, it re-
quires access to the original TRM before unlearning, which is
impractical in real scenarios. In contrast, the proposed MRA
only needs to access ULMs and supports more versatile MU
methods. To our knowledge, we are the first to explore the
attack only using ULMs to recall the class memberships of
forgetting samples, without comparable prior work.
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3 Preliminaries
We first introduce the datasets and models used in our study,
followed by a formal definition of the problem.

3.1 Involved Datasets
Training dataset Dtr : {Xtr,Ytr} is all data used to initially
train machine learning models, where Xtr denotes the image
set and Ytr denotes the corresponding label set.
Forgetting dataset Df : {Xf ,Yf} is a subset of Dtr, that is,
Df ⊂ Dtr. In MU, Df is a set of sensitive data that should
be unlearned from the trained model, that is, the ULM cannot
tell the true labels when Xf is input.
Remaining dataset Dr : {Xr,Yr} is the remaining data of
Dtr, that is, Dr = Dtr \ Df , which should not be forgotten.
Prediction dataset Dp : {Xp,Yp} is the dataset for predic-
tion, where Xp = Xts∪Xu can be decomposed into two parts.
Xu ⊆ Xf is the subset of the forgotten instances while Xts is
the unseen dataset for testing.

3.2 Involved Models
Trained Model (TRM) M(ΘT ) is the model that has been
trained on the training dataset Dtr.
Unlearned Model (ULM) M(ΘU ) is the model that has un-
learned the forgetting dataset Df based on M(ΘU ). It will
serve as a noisy labeling teacher to distill knowledge.
Student Model (STM) M̃(ΘS) is the model that receives the
knowledge distilled from M(ΘU ).
Recalled Model (RCM) M̃(ΘR) is the model that has re-
called forgotten class memberships based on M(ΘU ).

3.3 Problem Formulation
MU models remove the influence of forgetting the dataset Df

from TRM M(θT ), and release a ULM M(ΘU ) for public
use. This paper aims to implement the MRA framework to
recall forgotten class memberships given M(ΘU ). In par-
ticular, we employ M(ΘU ) as a noisy labeler (i.e., teacher
model) to distill the knowledge inferred from the prediction
dataset Xp to the STM M̃(ΘS).

Moreover, we discuss two common cases that lead to the
final RCM M̃(ΘR). In the first case, ULM M(ΘU ) is usable
but not trainable, e.g. M(ΘU ) is only accessible as a black-
box service (closed-source case), and the STM M̃(ΘS) will
finally serve as RCM M̃(ΘR). In the second case, M(ΘU )
is trainable, for example, M(ΘU ) is released with its ULM
parameters ΘU (open-source case), and the ULM M(ΘU ) is
recovered to serve as the RCM M̃(ΘR).

4 Proposed Method
4.1 Overview
Firstly, we can easily obtain ULMs by applying various MU
methods on a TRM. Given a ULM, Figure 2 demonstrates
the workflow to implement the proposed MRA framework,
which consists of two alternative learning steps to obtain the
RCM M̃(ΘR).
(1) Denosing Knowledge Distillation: The ULM M(ΘU )
serves as a noisy labeler on the prediction dataset Dp with

(1) Denoising Knowledge Distillation

𝓧𝒑

𝓜 𝚯𝑼

Mixup ෩𝓧𝒑

෪𝓜 𝚯𝑺

෪𝓜 𝚯𝑺

෩𝓨𝑼

෩𝓨𝑺

Mixup ෩𝓨𝑼𝑺

(2) Confident Membership Recall

𝓧𝒑

𝓜 𝚯𝑼

෪𝓜 𝚯𝑺

𝓨𝒑
𝑼

𝓨𝒑
𝑼

Top-K
Agreement

𝓧𝑪𝑭

Update STM

𝓨𝑪𝑭

𝓜 𝚯𝑼

Update STM

෪𝓜 𝚯𝑺

Update ULM
(Open-source Case)

Figure 2: The workflow of proposed MRA framework. It consists of
two alternative learning steps to obtain RCM: (1) Denosing Knowl-
edge Distillation; (2) Confident Membership Recall.

some augmentation strategy, and the inferred pseudo labels
with the augmented images are used to train STM M̃(ΘS).
(2) Confident Membership Recall: Both ULM M(ΘU ) and
STM M̃(ΘS) are to generate the prediction on Dp, and the
top-K data samples with the highest probability of joint pre-
diction, that is, the most confidently agreed pseudo labels
for each class are selected to train STM M̃(ΘS) and ULM
M(ΘU ) (optional for the open source case).

4.2 Model Training and Unlearning
Given the training dataset Dtr = Df∪Dr, we use Dtr to train
the model M, which results in the TRM M(ΘT ) with the
parameters ΘT . Then, we apply various SOTA MU methods
on TRM M(ΘT ), which leads to ULMs M(ΘU ).

4.3 Implementation of MRA Framework
We implement the MRA framework with the following two
alternative learning steps to obtain RCM M̃(ΘR).

(1) Denoising Knowledge Distillation
A sophisticated MU method should only unlearn the influ-
ence of forgetting dataset Df but retain the classification ca-
pability that is learned from the remaining dataset Dr. As a
result, the ULM M(ΘU ) can serve as a noisy labeler to dis-
till knowledge to the STM M̃(ΘS) given the set of prediction
images Xp. M(ΘU ) is prone to mislabeling on Xp if it con-
tains forgotten instances in Df . To avoid the input of orig-
inal images that have been forgotten, we create augmented
images by mixup [Zhang et al., 2018] which is an effective
regularization technique to deal with label noise [Carratino et
al., 2022]. Given an image x1 ∈ Xp, we randomly sample
another image x2 from Xp, and mix them as follows:

x̃ = βx · x1 + (1− βx) · x2 (1)

where βx ∼ Beta(αx, αx) (αx = 0.2 in this paper). Then,
we take x̃ as input to retrieve the soft pseudo label from ULM
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M(ΘU ) and STM M̃(ΘS):

ỹU = M(x̃; ΘU ), ỹS = M̃(x̃; ΘS) (2)

Then, we can obtain the mixed soft pseudo label:

ỹUS = βy · ỹU + (1− βy) · ỹS (3)

where βy = 1 is applied in the first warmup epoch (i.e. com-
pletely accept the knowledge from the teacher model) and
βy ∼ Beta(αy, αy) (αy = 0.75 in this paper) for label de-
noising after the warmup stage. Following Eqs (1) to (3), we
can obtain ỸS = {ỹS} and ỸUS = {ỹUS} over the aug-
mented set x̃ ∈ X̃p. As a result, the parameters of STM
M̃(ΘS) can be updated by decreasing the mini-batch gra-
dient in terms of minimizing cross-entropy (CE) loss.

ΘS = argmin
ΘS

CE(ỸS , ỸUS) (4)

(2) Confident Membership Recall
After the above step, STM M̃(ΘS) has been trained on the
augmented dataset based on Xp with pseudo labels from the
noisy labeler M(ΘU ). Inspired by the LNL methods [Algan
and Ulusoy, 2021], we design a balanced class membership
recall strategy based on the highest confidence agreements
between M(ΘU ) and M̃(ΘS). More specifically, we first in-
put Xp into both ULM M(ΘU ) and STM M̃(ΘS) to predict
soft labels (that is, probability over each class):

YU
p = M(Xp; ΘU ), YS

p = M̃(Xp; ΘS) (5)

where YU
p ,Y

U
p ∈ RN×C , N = |Xp| denotes the number of

samples in Xp and C denotes the number of classes. For each
instance xi ∈ Xp, we apply Laplace smoothing on its soft
label yU

i = YU
p [i, :] to avoid zero probability:

ỹU
i =

yU
i + γl · 1
1 + C · γl

(6)

As a result, we obtain the smoothed probability matrices ỸU
p

over Xp. ỸS
p can be obtained in the same way. Then, we have

the joint probability ỹi on xi:

ỹi = ỹU
i ⊙ ỹS

i for ỹU
i ∈ ỸU

p , ỹ
S
i ∈ ỸS

p (7)

For all xi ∈ Xp, we have Ỹp = ỸU
p ⊙ ỸS

p in the matrix
form, where ⊙ is the element-wise product. Given a class c,
we have the joint probabilities yc = Ỹp[:, c] of all instances.
A higher joint probability yi ∈ yc implies greater confidence
in the teacher and student models that the instance xi should
have the membership of the class c. Consequently, we apply
a balanced strategy to select top-K instances with the maxi-
mum joint probability for each class.

DCF = {XCF ,YCF } = {(xi, ỹc)|yi ∈ top-K(yc) (8)
for c ∈ {1, · · · , C}

where K = ⌈τ ·N/C⌉, and ỹc = (1−γs) ·yc+
γs

K ·1 denotes
the smoothing of the label versus the hard label c (yc stands
for the one-hot encoding of c) which can effectively mitigate

Algorithm 1 The Scheme of MRA
Input: Prediction Set: Xp, Number of Epochs: KE ,KD,KR

Output: Recalled Labels: Ŷp

1: for e in {1, · · · , KE} do
2: (1) Denoising Knowledge Distillation
3: for i in {1, · · · , KD} do
4: X̃p, ỸUS ▷ Mixup augmentation by Eqs (1) to (3)
5: ΘS = argminΘS

CE(ỸS , ỸUS) ▷ Update STM
6: end for
7: (2) Confident Membership Recall
8: for i in {1, · · · , KR} do
9: DCF ▷ Confident agreements by Eqs (5) to (8)

10: ΘS = argminΘS
CE(YS ,YCF ) ▷ Update STM

11: if M(ΘU ) is trainable (open-source case) then
12: DCF ▷ Confident agreements by Eqs (5) to (8)
13: ΘU = argminΘU

CE(YU ,YCF ) ▷ Update ULM
14: end if
15: end for
16: end for
17: return Ŷp = M̃(Xp; ΘS) ▷ Closed-source case
18: Ŷp = M(Xp; ΘU ) ▷ Open-source case

label noise [Lukasik et al., 2020]. Then, the STM M̃(ΘS) is
updated on DCF to learn the confident memberships.

YS = M̃(XCF ; ΘS) (9)
ΘS = argmin

ΘS

CE(YS ,YCF ) (10)

In the open-source case, the parameters of ULM M(ΘU )
are also accessible, so we will construct DCF to refine ΘU

by Eqs (5) to (8) with the above updated STM M̃(ΘS).

YU = M(XCF ; ΘU ) (11)
ΘU = argmin

ΘU

CE(YU ,YCF ) (12)

As a result, it leads to an alternative improvement co-
training process between the teacher M(ΘU ) and the stu-
dent M̃(ΘS), which can more effectively recall class mem-
berships thanks to the knowledge retained by M(ΘU ).

In Algorithm 1, we concisely summarize the above MRA
scheme. After MRA, the updated STM M̃(ΘS) (in closed-
source case) or ULM M(ΘU ) (in open-source case) will
serve as the RCM to predict the labels Ŷp of Xp.

5 Experiments
5.1 Experiment Setup
Data Preparation
In our experiments, four real datasets are used, which cover
both low- and high-resolution data, providing a comprehen-

Dataset # Classes Dtr Dts Df

CIFAR-10 10 50,000 10,000 2500×5
CIFAR-100 100 50,000 10,000 250×5
Pet-37 37 3,680 3,669 50×5
Flower-102 102 3,074 1,020 224

Table 1: Statistic summary of the datasets and their splits
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TRM FF RL GA IU BU L1-SP SalUn UNSC

CIFAR-10
T: EFN
S: EFN

Dts 0.833

ULM 0.164 0.388 0.505 0.105 0.462 0.451 0.486 0.193

RCM 0.252 0.479 0.528 0.115 0.651 0.456 0.697 0.568

∆Acc 0.088 0.091 0.023 0.010 0.188 0.005 0.211 0.375

Df 1.000

ULM 0.142 0.153 0.267 0.090 0.082 0.154 0.117 0.031

RCM 0.195 0.328 0.358 0.096 0.507 0.231 0.615 0.513

∆Acc 0.053 0.175 0.091 0.005 0.424 0.077 0.498 0.482

CIFAR-100
T: EFN
S: EFN

Dts 0.643

ULM 0.159 0.593 0.531 0.140 0.529 0.537 0.410 0.275

RCM 0.295 0.607 0.551 0.297 0.566 0.550 0.522 0.480

∆Acc 0.137 0.014 0.020 0.157 0.037 0.013 0.112 0.206

Df 1.000

ULM 0.094 0.086 0.201 0.201 0.254 0.199 0.227 0.209

RCM 0.214 0.537 0.270 0.256 0.423 0.258 0.358 0.372

∆Acc 0.119 0.451 0.070 0.055 0.169 0.058 0.130 0.163

Pet-37
T: ResNet
S: ResNet

Dts 0.895

ULM 0.257 0.754 0.740 0.622 0.646 0.740 0.706 0.769

RCM 0.486 0.816 0.757 0.682 0.785 0.758 0.778 0.799

∆Acc 0.229 0.062 0.018 0.060 0.140 0.018 0.072 0.030

Df 1.000

ULM 0.224 0.332 0.224 0.200 0.084 0.196 0.128 0.304

RCM 0.388 0.884 0.520 0.448 0.856 0.440 0.712 0.660

∆Acc 0.164 0.552 0.296 0.248 0.772 0.244 0.584 0.356

Flower-102
T: Swin-T
S: ResNet

Dts 0.939

ULM 0.294 0.756 0.314 0.512 0.706 0.530 0.496 NA

RCM 0.376 0.831 0.510 0.589 0.758 0.655 0.599 NA

∆Acc 0.082 0.075 0.196 0.077 0.052 0.125 0.103 NA

Df 1.000

ULM 0.235 0.150 0.239 0.291 0.340 0.324 0.267 NA

RCM 0.312 0.567 0.352 0.364 0.478 0.538 0.429 NA

∆Acc 0.077 0.417 0.113 0.073 0.138 0.215 0.162 NA

Table 2: Performance comparison of MRA (closed-source case) on various SOTA MU methods, where ULM indicates the Acc after MU
while RCM indicates the Acc after MRA, and ∆Acc shows the improvement (the Top-2 ∆Acc are marked in red while the Lowest-2 are
marked in blue). TRM illustrates the Acc of original model.

sive evaluation. CIFAR-10 and CIFAR-100 [Krizhevsky et
al., 2009] consist of 60,000 low-resolution images classified
into 10 and 100 classes, respectively. Oxford-IIIT Pet (Pet-
37) [Parkhi et al., 2012] contains 7,349 high-resolution im-
ages of cats and dogs in 37 classes. In particular, Oxford
102 Flower (Flower-102) [Nilsback and Zisserman, 2008]
has 8,189 high-resolution images in 102 classes, where each
class consists of between 40 and 258 images.

As shown in Table 1, we use the official splits of the
training dataset Dtr and the testing dataset Dts provided in
the dataset package. For each dataset, five classes are se-
lected to construct the forgetting dataset Df by randomly
sampling 50% of data from Dtr, and the prediction dataset
used for evaluation is constructed by mixing Dts and Df , i.e.,
Dp = Dts ∪ Df to jointly assess the prediction and recovery
capability of RCM.

Model Configuration
The proposed MRA framework is model-agnostic, so we use
EfficientNet (EFN) [Tan and Le, 2019] on CIFAR datasets,
ResNet [He et al., 2016] on Pet-37, and Swin-Transformer
(Swin-T) [Liu et al., 2022] on Flower-102 for a comprehen-
sive study. Moreover, in our framework, the STM does not
necessarily have the same architecture as the ULM (Teacher
Model). Therefore, we also evaluate the case of heteroge-
neous architectures on Flower-102, where the ULM is based

on Swin-T while the STM is based on ResNet, as shown in
Tables 2 and 3.

We use SGD optimizer for MU methods with a momen-
tum of 0.9, a weight decay of 0.005, and AdamW for our
MRA scheme. Other more detailed settings can be found in
the online extended version. For each comparison model, we
carefully tuned their hyperparameters to achieve optimal per-
formance.

MU Methods for MRA Evaluation
In the experiments, a set of SOTA MU methods, including
GA [Graves et al., 2021], RL [Golatkar et al., 2020], FF
[Becker and Liebig, 2022], IU [Koh and Liang, 2017], BU
[Chen et al., 2023], L1-SP [Jia et al., 2023], UNSC [Chen et
al., 2024] and SalUn [Fan et al., 2024], are involved to com-
prehensively evaluate the recall capability of proposed MRA.
In particular, UNSC does not support the Swin-T architec-
ture, so the evaluation results on Flower-102 are not available.

5.2 MRA in The Closed-source Case
First, we evaluated the performance of MRA in the closed-
source case, i.e., ULMs are used as a black-box service where
the model parameters are not accessible.

Overall MRA Efficacy Analysis
Table 2 show the accuracy (Acc) of prediction dataset Dp in
terms of its subsets Dts and Dts respectively. We compared
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Figure 3: Comparison of the Acc between ULM and RCM (closed-source case) after MRA w.r.t. each forgetting class on CIFAR-10 dataset.
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Figure 4: Comparison of the Acc between ULM and RCM (closed-source case) w.r.t. each forgetting class on Pet-37 dataset.

the Acc of ULM and RCM over four datasets and diverse con-
figurations of the MU model. From the point of view of this
table, all of the Acc on Df of TRM are 1.000 after training,
while they drop to low Acc after MU, illustrating that all se-
lected MU methods can successfully mitigate the influence of
Df from well-trained models. Furthermore, according to all
the results of improvement (∆Acc) on both Df and Dts, we
find that RCMs can unexceptionally improve the prediction
accuracy on all datasets for all MU models, which overall
proves that the proposed MRA is an effective and versatile
model-agnostic framework to recover the class memberships
of forgotten instances from ULMs.

More specifically, the improvement (∆Acc) of L1-SP is
overall smaller than that of other MU methods on both Df

and Dts. This can be attributed to the weight pruning on
TRM, which makes the parameters of ULM significantly dif-
ferent from those of TRM. As a result, the knowledge distil-
lation from ULM is prone to having higher label noise. In
contrast, the improvement (∆Acc) of SalUn and UNSC is
overall larger than that of other MU methods. This is because
most MU methods degrade the model performance after un-
learning, known as “over-unlearning”. In comparison, SalUn
and UNSC, can precisely unlearn target forgetting samples
without over-unlearning. As a result, SalUn and UNSC can
provide less noisy pseudo labels for knowledge distillation,
leading to better recall from ULMs.

According to the observation and analysis above, it reveals
a phenomenon that “The MU methods in precise unlearning
may lead to high success rate to recall the forgotten class
memberships via MRA”. As a result, MRA can serve as a
valuable tool to assess the potential risk of privacy leakage
for MU methods, thus facilitating the development of more
robust MU models.

Demonstration of Class-specific Recovery Efficacy
To intuitively demonstrate the capacity of MRA to recall the
forgotten class memberships on the prediction images Xf , we
further conducted detailed evaluations with respect to each
forgetting class. Figures 3 and 4 demonstrate the comparison

of the Acc between ULM and RCM after MRA on CIFAR-10
and Pet-37 for each forgetting class. By checking the im-
provement of Acc for each class, we can observe a similar
phenomenon as shown in Table 2. For example, the improve-
ment of Acc for each class on L1-SP is relatively small due to
over-unlearning. In comparison, the ULM via SalUn can pre-
cisely unlearn the target forgetting images, that is, Xf , which
leads to very low Acc for each forgetting class, whereas the
improvement for each class after MRA is the most significant.
That is, “precise forgetting, easy recalling”.

5.3 MRA in The Open-source Case
In comparison to the closed-source case, the ULMs are re-
leased with their parameters in the open-source case. As a
result, the ULMs can be updated during the MRA process.

Overall MRA Efficacy Analysis
For the open-source case, we can find that the improvement
(∆Acc) of SalUn and UNSC is significant again due to the
same reason presented above. Comparing Table 3 with Ta-
ble 2, it is easy to find that the improvement of Acc in the
open-source case method is significantly greater than that
in the closed-source case. Especially, we find IU achieves
the Lowest-2 improvement three times in the closed-source
case but it achieves the Top-2 improvement three times in the
open-source case. This is because the Confident Membership
Recall step (cf. Algorithm 1) can effectively recall the knowl-
edge retained by the ULM (as a noisy labeler) using confident
pseudo-label samples. Then, the improved teacher model can
distill less noisy knowledge to the STM. This alternative op-
timization process results in significant improvement.

Demonstration of Class-specific Recovery Efficacy
The analogy to the closed-source case, Figures 5 and 6
demonstrate the comparison of the Acc between ULM and
RCM after MRA on CIFAR-10 and Pet-37 for each forget-
ting class in the open-source case. Compared to Figures 3
and 4, we can find that the gaps between different MU meth-
ods are much smaller in Figures 5 and 6. Especially, we can
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TRM FF RL GA IU BU L1-SP SalUn UNSC

CIFAR-10
T: EFN
S: EFN

Dts 0.833

ULM 0.164 0.388 0.505 0.105 0.462 0.451 0.486 0.193

RCM 0.708 0.471 0.582 0.689 0.783 0.479 0.829 0.774

∆Acc 0.544 0.083 0.077 0.584 0.321 0.027 0.343 0.581

Df 1.000

ULM 0.142 0.153 0.267 0.090 0.082 0.154 0.117 0.031

RCM 0.726 0.351 0.509 0.759 0.877 0.338 0.997 0.921

∆Acc 0.584 0.197 0.242 0.668 0.795 0.184 0.880 0.890

CIFAR-100
T: EFN
S: EFN

Dts 0.643

ULM 0.159 0.593 0.531 0.140 0.529 0.537 0.410 0.275

RCM 0.521 0.599 0.589 0.596 0.587 0.598 0.564 0.598

∆Acc 0.363 0.006 0.058 0.456 0.058 0.061 0.154 0.324

Df 1.000

ULM 0.094 0.086 0.201 0.201 0.254 0.199 0.227 0.209

RCM 0.686 0.898 0.682 0.967 0.970 0.764 0.945 0.985

∆Acc 0.592 0.813 0.481 0.766 0.715 0.565 0.718 0.776

Pet-37
T: ResNet
S: ResNet

Dts 0.895

ULM 0.257 0.754 0.740 0.622 0.646 0.740 0.706 0.769

RCM 0.782 0.850 0.843 0.838 0.846 0.841 0.849 0.856

∆Acc 0.525 0.096 0.103 0.216 0.200 0.102 0.143 0.087

Df 1.000

ULM 0.224 0.332 0.224 0.200 0.084 0.196 0.128 0.304

RCM 0.904 0.960 0.952 0.936 0.960 0.920 0.948 0.976

∆Acc 0.680 0.628 0.728 0.736 0.876 0.724 0.820 0.672

Flower102
T: Swin-T
S: ResNet

Dts 0.939

ULM 0.294 0.756 0.314 0.512 0.706 0.530 0.496 NA

RCM 0.607 0.915 0.772 0.829 0.889 0.856 0.857 NA

∆Acc 0.313 0.159 0.458 0.318 0.183 0.325 0.361 NA

Df 1.000

ULM 0.235 0.150 0.239 0.291 0.340 0.324 0.267 NA

RCM 0.482 0.988 0.709 0.725 0.972 0.935 0.915 NA

∆Acc 0.247 0.838 0.470 0.433 0.632 0.611 0.648 NA

Table 3: Performance comparison of MRA (open-source case) on various SOTA MU methods, where ULM indicates the Acc after MU while
RCM indicates the Acc after MRA, and ∆Acc shows the improvement (the Top-2 ∆Acc are marked in red while the Lowest-2 are marked in
blue). TRM illustrates the Acc of original model.

find the improvement of Acc on different MU methods af-
ter the MRA is close for each forgetting class in Figure 6.
Even the over-unlearning models, the ULMs via IU and L1-
SP are effectively recalled their forgotten instances through
the MRA process in terms of the balanced class membership
recall strategy (cf. Section 4.3).

5.4 Ablation Study

In this section, we discuss the effectiveness of each key
component in the implementation of the MRA framework.
Since the MRA framework consists of two alternative learn-
ing steps, we will evaluate the following components.
DST: This component is the Denosing Knowledge Distilla-
tion step presented in Section 4.3, which aims to distill knowl-
edge from noisy labeling teacher M(ΘU ) to STM M̃(ΘS).
STU: The component serves as the class membership recall
process for STM, as presented in the Confident Membership
Recall step. That is, DST+STU is equivalent to the closed-
source case of MRA.
TCH: The component serves as the class membership re-
call process for teacher models, as presented in the Confident
Membership Recall step. That is, DST+STU+TCH is equiv-
alent to the open-source case of MRA.

Component FF BU SalUn UNSC
DST STU TCH Dts Df Dts Df Dts Df Dts Df

✓ 0.223 0.168 0.659 0.128 0.698 0.108 0.767 0.320

✓ ✓ 0.486 0.388 0.785 0.856 0.778 0.712 0.799 0.660

✓ ✓ ✓ 0.782 0.904 0.846 0.960 0.849 0.948 0.856 0.976

Table 4: Ablation results (Acc) of MRA on Pet-37 dataset

Comparison Results
Table 4 reports the results of MRA on Pet-37, where the Acc
on testing dataset Dts and forgetting dataset Df is reported.
Additional results for ablation on other datasets can be found
in the online extended version.

From the results, we can easily find that DST underper-
forms DST+STU and DST+STU+TCH. This is because the
DST component only distills knowledge inferred from the
prediction dataset Dp from the ULM to the student model,
where the distilled knowledge inevitably contains label noise
from the ULM. As a result, the Acc of DST is close to that of
ULM. In comparison, DST+STU and DST+STU+TCH are
based on the alternative learning process with both distillation
and recall steps (cf. Algorithm 1). In the recall step, samples
with high-confidence agreement are extracted, which can ef-
fectively recall forgotten class memberships. The model with
all components, i.e., DST+STU+TCH, achieves the best per-
formance because the additional TCH component can further
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Figure 5: Comparison of the Acc between ULM and RCM (open-source case) after MRA w.r.t. each forgetting class on CIFAR-10 dataset.
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Figure 6: Comparison of the Acc between ULM and RCM (open-source case) w.r.t. each forgetting class on Pet-37 dataset.
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(c) DST+STU
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(d) DST+STU+TCH

Figure 7: Confusion matrices with different configurations of MRA components, where C0 stands for all other classes except the forgetting
ones. (a) demonstrates the confusion matrices after unlearning with different MU methods. Due to space limit, more cases can be found in
the online extended version.

recall the knowledge retained by the ULM, as illustrated in
Section 5.3.

Visualization of Confusion Matrices
Figure 7 (a-d) visualize the normalized confusion matrices
on Df w.r.t. ULM, DST, DST+STU and DST+STU+TCH.
From Figure 7 (a) ULM, we can observe the highlights in
the first column of each subfigure, which illustrates that MU
methods have successfully unlearned true class memberships
of forgetting instances. From Figure 7 (b) to (c), the di-
agonals of confusion matrices w.r.t. DST, DST+STU and
DST+STU+TCH become more and more noticeable, that is,
more and more forgotten class memberships have been suc-
cessfully recalled, which shows that each component plays an
important role in the MRA framework.

6 Conclusion
This study is the first attempt to explore MRA against MU
techniques to recall unlearned class memberships, highlight-

ing vulnerabilities of MU in data privacy protections. By
using ULMs as noisy labelers, our implementation of MRA
can recall forgotten class memberships from the ULMs with-
out the need for the original model. Extensive experiments
on four real-world datasets show that the proposed MRA
framework exhibits high efficacy in recovering forgotten class
memberships carried out by various MU methods. In particu-
lar, it reveals the phenomenon that “The MU methods in pre-
cise unlearning may lead to high success rate to recall the for-
gotten class memberships via MRA”. Consequently, the pro-
posed MRA can serve as a valuable tool to assess the poten-
tial risk of privacy leakage for existing and new MU methods,
thus gaining deeper insights into MU.
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