
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Projection, Interaction and Fusion: A Progressive Difference Fusion Network for
Salient Object Detection

Xiao Ke1,2 , Weijie Zhou1,2 , Yuzhen Niu∗1,2

1Fujian Provincial Key Laboratory of Networking Computing and Intelligent Information Processing,
College of Computer and Data Science, Fuzhou University, Fuzhou 350116, China

2Engineering Research Center of Big Data Intelligence, Ministry of Education, Fuzhou 350116, China
kex@fzu.edu.cn, lovthero@gmail.com, yuzhenniu@gmail.com

Abstract
In recent years, deep learning-based Salient Ob-
ject Detection (SOD) methods have made tremen-
dous progress; however, their performance in com-
plex scenarios has reached a bottleneck. In this
paper, we propose a novel Progressive Difference
Fusion Network (PDFNet) based on fine-grained
feature fusion. First, to address the scale vari-
ability of salient objects, we introduce a Self-
Guided Module (SGM) with dynamic receptive
fields. Second, to tackle the shape variability
of salient objects, we design a Feature Aggre-
gation Module (FAM) incorporating cross convo-
lutions and a feedback loop. Finally, to alle-
viate the issue of confusion between global and
detail information during multi-scale feature fu-
sion in existing models, we develop a Progressive
Difference Fusion Unit (PDFU) to project multi-
scale features into fine-grained nodes and enhance
them through node interaction based on differ-
ence features. Additionally, we propose a Con-
ditional Random Field Based on Patch (CRFbp),
which focuses on handling discrete points, fur-
ther improving the model’s performance. Ex-
tensive experiments demonstrate that our method
achieves state-of-the-art (SOTA) performance on
five benchmark datasets. Code is available at:
https://github.com/pdfnet2025/PDFNet.git.

1 Introduction
Salient Object Detection (SOD) [Jiang et al., 2013; Zhou et
al., 2024], also known as saliency detection, aims to mimic
the mechanism of the human visual system by identifying
and highlighting the most prominent or important objects and
regions in natural images. In recent years, deep learning-
based salient object detection methods have made significant
progress, but the performance of these methods has gradually
reached a saturation point. To delve deeper into this issue, we
adopted the CIEDE2000 [Luo et al., 2001] color difference
formula to classify five commonly used datasets [Wang et al.,
2017; Yang et al., 2013; Yan et al., 2013; Li and Yu, 2015;
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Figure 1: Comparison of our PDFNet with other SOTA methods in
complex scenarios. (a) MAE, Location IoU (IoUL), and Bound-
ary IoU (IoUB) on the challenging examples dataset TOP-30. The
methods are sorted from left to right according to their publication
dates. (b) Visualization of IoUL and IoUB computed on the TOP-
30 dataset for recent SOTA methods. Orange pixels represent the
predicted boundary pixels of the salient objects, blue pixels repre-
sent the predicted salient object body pixels, and green pixels repre-
sent misclassified pixels.

Li et al., 2014] in the SOD field and selected the top 30% of
the most challenging samples to form a subset named TOP-
30. TOP-30 can be considered as encapsulating the most
challenging cases in the SOD field. Building upon this, we
introduced two metrics, Location IoU (IoUL) and Boundary
IoU (IoUB) [Cheng et al., 2021], to measure a model’s local-
ization accuracy and segmentation quality. As shown in Fig-
ure 1(a), starting in 2022, the localization and segmentation
capabilities of methods in challenging and complex scenar-
ios have started to plateau. As shown in Figure 1(b), existing
SOTA methods perform poorly in complex scenarios, which
can be attributed to three main reasons: (i) the scale vari-
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Figure 2: The pipeline of the peoposed method. We choose Swin-B as the backbone network to extract multi-level features. Unlike the
traditional U-shaped structure, we use the patch embedding layer output of Swin Transformer as the 0th layer of the backbone network,
serving as a transition to avoid information loss caused by excessive upsampling.

ability of salient objects (row 1); (ii) the shape variability of
salient objects (row 2); and (iii) the confusion between global
and detail information during the multi-scale feature fusion
stage (row 3).

To address the aforementioned challenges, we propose a
novel architecture—Progressive Difference Fusion Network
(PDFNet). First, to overcome the scale variability of salient
objects, we design the Self-Guided Module (SGM) with dy-
namic receptive fields using large kernel convolutions. This
allows the model to dynamically adjust the receptive field
during the multi-scale feature extraction phase, enhancing the
model’s scale adaptability. Second, to address the shape vari-
ability of salient objects, we use cross convolutions to de-
sign the Feature Aggregation Module (FAM) with a feed-
back loop. This module can preliminarily aggregate features
from the deepest three layers of the encoder to generate initial
global features, thereby improving the model’s shape adapt-
ability. Third, to alleviate the confusion between global and
detail information during multi-scale feature fusion, we pro-
pose a Fine-Grained Feature Fusion Stage (F3 Stage) com-
posed of Progressive Difference Fusion Units (PDFU). This
stage models multi-scale features as fine-grained nodes and
enhances the feature representations of nodes at different
scales through the interaction of difference features between
the nodes.

In summary, our main contributions can be summarized as
follows:

1) We propose a novel SOD architecture—Progressive Dif-
ference Fusion Network (PDFNet). Our method achieves
state-of-the-art performance on five commonly used
datasets.

2) We designed the Self-Guided Module (SGM) and Feature

aggregation module (FAM), which enhance feature repre-
sentation and improve the model’s adaptability to the size
and shape variations of salient objects.

3) We propose a Progressive Difference Fusion Unit
(PDFU), which projects multi-scale features into fine-
grained nodes to facilitate fine-grained fusion across
multi-scale features.

Additionally, we optimize the traditional post-processing
technique, the fully connected CRF [Lafferty et al., 2001],
and propose the Conditional Random Field based on Patch
(CRFbp) that focuses on handling discrete points, further im-
proving the accuracy of predictions.

2 Related Works
2.1 Vision Transformer
When the Transformer [Vaswani, 2017] was first introduced,
it was primarily used for natural language processing tasks.
ViT [Dosovitskiy, 2020] was the first to apply the pure Trans-
former architecture to computer vision, achieving remarkable
results in image classification, semantic segmentation, and
other tasks. VST [Liu et al., 2021a] proposed the first pure
Transformer-based saliency object detection model, proving
the effectiveness and potential of Transformer-based models
for saliency detection. Swin Transformer [Liu et al., 2021c],
a variant of Vision Transformer, innovatively introduced the
sliding window mechanism, which efficiently extracts local
features while effectively capturing global context informa-
tion.

Owing to their superior global context modeling capability
compared to CNNs, Transformer-based methods often out-
perform CNN-based methods in SOD.
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Figure 3: (a) The proposed Self-Guided Module (SGM). (b) The proposed Feature Aggregation Module (FAM).

2.2 Multi-Scale Feature Fusion
The method of integrating multi-scale features has made sig-
nificant progress in SOD. For example, U-Net [Ronneberger
et al., 2015] proposed a U-shaped encoder-decoder architec-
ture, which became the foundational framework for many
subsequent SOD works. VST [Liu et al., 2021a] was the first
to use a Transformer for saliency object detection, construct-
ing global features from a patch set to obtain a global per-
spective that guides feature fusion. PAKRN [Xu et al., 2021]
proposed the first dual-stream architecture of ”localization
first, then segmentation,” where the localization branch first
obtains global context information and then progressively re-
fines the prediction results through feature fusion. EDN [Wu
et al., 2022] deepens the encoder layers further to obtain
global context information, which is used as an attention map
for channel attention to guide feature fusion. GPONet [Yi et
al., 2024] uses a gated recurrent network to filter redundant
information during feature fusion.

Despite significant progress in existing methods for SOD,
confusion between global and detail information remains a
key challenge, particularly in complex scenes.

3 Method
3.1 Overall Architecture
As shown in Figure 2, for a given input image I ∈ R3×H×W ,
we represent its multi-level outputs generated by the back-
bone encoder as a set FEn = {F (i)

En|i ∈ {0, 1, 2, 3, 4}}. Then,
we enhance the feature set FEn through the SGM, reducing
the number of channels to 64 to obtain the enhanced fea-
ture set FSG = {F (i)

SG|i ∈ {0, 1, 2, 3, 4}}. Following this, the
FAM aggregates F

(2)
SG, F (3)

SG and F
(4)
SG to generate the initial

global feature map. Next, the F3 Stage, composed of multiple
PDFUs, performs fine-grained fusion of multi-scale features
from adjacent levels. Finally, the predictions are refined using
CRFbp to enhance the overall results.

3.2 Self-Guided Module
Previous research [Luo et al., 2016] has shown that increas-
ing the size of the convolution kernel can enlarge the effec-
tive receptive field (ERF). However, larger convolution ker-
nels increase computational costs and hinder the deepening

of the model. Therefore, we combine large kernel dilated
convolutions with depthwise separable mechanisms [Chollet,
2017] and introduce Scale-Aware Attention (SAA) to further
enhance the network’s scale adaptability.

As shown in Figure 3(a), suppose the input of SSA is
X ∈ RC×H×W . We first use two depthwise separable con-
volutions with different receptive fields to expand the global
receptive field of the input features, resulting in receptive field
enhanced features X(1)

ds and X
(2)
ds :

X
(1)
d = DwC(5,1)(X),

X
(1)
ds = FC(X

(1)
d ),

X
(2)
ds = FC(DwC(7,3)(X

(1)
d )).

(1)

Where X
(i)
ds ∈ RC

2 ×H×W ; and DwC(k,d)(·) denotes a
depthwise convolution layer with a kernel size of k × k and
a dilation rate of d; and FC(·) represents a fully connected
layer, which is technically implemented by a 1 × 1 convolu-
tion layer.

Next, channel-wise average pooling and max pooling are
applied to obtain Aavg and Amax, which are then used to
weight and sum with X

(1)
ds and X

(2)
ds to produce the output of

SSA:

S = Cat(X
(1)
ds , X

(2)
ds ) ∈ RC×H×W ,

Aavg = σ(Avg(S)) ∈ R1×H×W ,

Amax = σ(Max(S)) ∈ R1×H×W ,

ASSA = FC(Aavg ⊙X
(1)
ds ⊕Amax ⊙X

(2)
ds ).

(2)

Where ASSA ∈ RC×H×W , which is consistent with the
input feature X; Cat(·) denotes the concatenation operation,
⊕ represents the element-wise addition operation, ⊙ indi-
cates the element-wise multiplication operation, and σ(·) rep-
resents the sigmoid activation function.

Assuming the input feature of the encoder is FEn ∈
RC×H×W , the process of SGM can be described as follows:

F
′

En = CBR1×1(FEn),

FSG = FC(FEn ⊕ FC(F
′

En ⊙ SSA(F
′

En))).
(3)
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Figure 4: (a) The proposed Fine-grained Node Projection (FGNP). (b) The proposed External Interaction (EI). (c) The proposed Internal
Interaction (II).

Where FSG ∈ RC′×H×W , the SGM compresses the fea-
ture channels to C ′ in the final FC layer and C ′ is set to 64
in this paper; CBRk×k(·) denotes a sequence of operations
consisting of a convolution layer, batch normalization, and
ReLU activation; and k represents the size of the convolution
kernel as k × k.

3.3 Feature Aggregation Module
The structure of the Feature Aggregation Module (FAM) is
shown in Figure 3(b). Since the first two stages of the en-
coder (Stage 0 and 1) contain excessive low-level detail in-
formation, we select the features F

(2)
SG, F (3)

SG and F
(4)
SG from

the three deepest stages of the encoder for preliminary aggre-
gation:

Ffuse = CBR5×5(Cat(F
(2)
SG, U2(F

(3)
SG), U4(F

(4)
SG))) (4)

Where Ffuse ∈ R64×H×W ; Ui(·) represents the dynamic
upsampling operation [Liu et al., 2023], with i denoting the
upsampling factor.

Previous works have demonstrated [Ding et al., 2019;
Guo et al., 2022] that a cross-shaped asymmetric convolu-
tion can serve as a complement to square convolutions, help-
ing capture elongated objects, enhancing the model’s shape
adaptability. Based on this, we design the Cross-Feedback
Attention (CFA). The process can be represented as:

F
(i)
M =

{
DwC1×ki

(DwCki×1(Ffuse)), i = 0

DwC1×ki
(F

(i−1)
M ⊕DwCki×1(Ffuse)), i > 0

(5)

ACFA =
3∑

i=1

F
(i)
M ∈ R64×H×W (6)

Where DwCk×k(·) represents the depthwise convolution
operation, and k denotes the size of the convolution kernel.

CFA captures multi-scale contextual information through
multi-path asymmetric depthwise convolutions and aggre-
gates local information from other branches via feedback
connections.

Finally, multi-scale dynamic weights are used to enhance
the fused features:

A
′

CFA = FC(ACFA ⊕ Ffuse) ∈ R64×H×W ,

FFA = A
′

CFA · Ffuse.
(7)

Where FFA ∈ R64×H×W and represents the initial aggre-
gated features.

3.4 Progressive Difference Fusion Unit
Fine-grained Node Projection
Typically, researchers assume that the deepest features from
the encoder represent global features [Zhao et al., 2017;
Zhao et al., 2021; Wu et al., 2022]. However, high-level fea-
tures may contain some detail information, and low-level fea-
tures may also carry some global information. As shown in
Figure 4(a), to extract feature information at a finer granu-
larity, we design the Fine-grained Node Projection (FGNP),
which projects the features into detail nodes and global nodes
based on different scales. In general, for an input feature
X ∈ RC×H×W , the FGNP process can be expressed as:

d(i) = CBR3×3(X
(i)) ∈ R

C
r ×H×W ,

g(i) = ABR(3,4)(X
(i)) ∈ R

C
r ×H×W .

(8)

Where i denotes the layer of the input feature from the en-
coder; r is the channel reduction factor used to decrease the
computational load during node interactions, which is set to 2
in this paper; ABR(k,d)(·) represents an operation sequence
consisting of an atrous convolution with kernel size k × k,
dilation rate d, followed by BatchNorm and ReLU layers.
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Fine-grained Node Interaction
For convenience in discussion, we define two different nodes
to be interacted as x and y. Then, the difference feature from
x to y, denoted as fx→y

d , is defined as:

fx→y
d = σ(FC(x− y)) ∈ R1×H×W (9)

As shown in Figure 4(b) and (c), we define the interaction
between nodes of the same level but different scales as in-
ternal interaction I(·, ·), while the interaction between nodes
of different levels but the same scale is defined as external
interaction E(·, ·). This process can be expressed as:

x(k+1) = E(x(k), y)

= x(k) + y ⊙ fy→x
d ,

x(k+1) = I(x(k), y)

= x(k) + γ · CG(y ⊙ fx→y
d , x(k)).

(10)

Where k denotes the number of iterations; CG(·) represents
convGRU [Ballas et al., 2015]; and γ represents the learnable
parameter, and its initial value is set to 0 in this paper.

Let the low-level feature be X(i) ∈ RC×H×W and the
high-level feature be X(i+1) ∈ RC×H×W . The initial fine-
grained node set generated from X(i) is denoted as V (i) =

{d(i)(0,0), g
(i)
(0,0)}. Here, v

(i)
(t1,t2)

represents the fine-grained
node obtained by projecting the feature X(i), which has un-
dergone t1 rounds of internal interactions and t2 rounds of
external interactions. For the fine-grained node set V (i), one
round of external interaction can be represented as:

d
(i)
(t1+1,0) = E(d

(i)
(t1,0)

, d
(i+1)
(t1,0)

),

g
(i)
(t1+1,0) = E(g

(i)
(t1,0)

, g
(i+1)
(t1,0)

).
(11)

One round of internal interaction can be represented as:

d
(i)
(K,t2+1) = I(d

(i)
(K,t2)

, g
(i)
(K,t2)

),

g
(i)
(K,t2+1) = I(g

(i)
(K,t2)

, d
(i)
(K,t2)

).
(12)

Where K is the total number of iterations, set to 2 in this
paper. After K interactions, all nodes in V (i) and V (i+1)

undergo fine-grained fusion to obtain the output of the i-th
layer PDFU:

F
(i)
PDFU = FC(Cat(d

(i)
(K,K), g

(i)
(K,K), d

(i+1)
(K,K), g

(i+1)
(K,K)))

(13)

Where F
(i)
PDFU ∈ RC×H×W , which is consistent with the

input features.

Fine-grained Feature Fusion Stage
We designed the Fine-Grained Feature Fusion Stage (F3
Stage) based on PDFUs to progressively perform fine-grained
fusion of multi-scale features layer by layer and output inter-
mediate prediction results for multi-scale supervision:

P
(2)
M = FC(FFA) ∈ R

H
8 ×W

8 ,

P
(1)
M = FC(F

(1)
PDFU )⊕ U2(P

(2)
M ) ∈ R

H
4 ×W

4 ,

P
(0)
M = FC(F

(0)
PDFU )⊕ U2(P

(1)
M ) ∈ R

H
2 ×W

2 .

(14)
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Figure 5: Visualization of fine-grained nodes within the PDFU at
different levels.

Where P
(i)
M represents the intermediate prediction results,

with i indicating the decoder’s layer. The model’s generated
prediction results can be expressed as:

P = FC(U2(F
(0)
PDFU + F

(0)
SG)) + U2(P

(0)
M ) ∈ RH×W

(15)
The visualization results of the fine-grained nodes are

shown in Figure 5. It can be observed that for the same level
of PDFU, global nodes mainly process global localization in-
formation, while the weights of detail nodes are concentrated
around the edges of the salient objects, processing detailed
segmentation information. Specifically, as interactions with
other nodes progress, the model enhances its learning of edge
information, which is crucial for segmentation in SOD.

3.5 Supervision Strategy
For training, we adopted the widely used multi-level supervi-
sion strategy in this field. For the loss function, we use the
combination of Lwbce and Lwiou proposed by F3Net [Wei et
al., 2020]. The saliency loss and total loss can then be defined
as:

Lsal = Lwbce + Lwiou,

Ltotal = Lsal(P,GT ) + β
2∑

i=0

Lsal(P
(i)
M , D2i+1(GT )).

(16)
Where GT ∈ RH×W represents the ground truth; Di(·)

denotes the downsampling operation implemented by bilinear
interpolation, with i indicating the downsampling factor; β is
a hyperparameter and in this work, and it is set to 1.

4 Experiment and Analysis
4.1 Datasets
Following the setup of most existing studies, our model will
be trained on the DUTS-TR [Wang et al., 2017] dataset
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Method Soure DUTS-TE DUT-OMRON ECSSD HKU-IS PASCAL-S
Sα↑ F ω

β ↑ Ea
ξ ↑ M↓ Sα↑ F ω

β ↑ Ea
ξ ↑ M↓ Sα↑ F ω

β ↑ Ea
ξ ↑ M↓ Sα↑ F ω

β ↑ Ea
ξ ↑ M↓ Sα↑ F ω

β ↑ Ea
ξ ↑ M↓

F3Net AAAI”20 .888 .835 .920 .035 .838 .747 .864 .053 .924 .912 .948 .033 .917 .900 .952 .028 .861 .816 .898 .061
TSPOANet TPAMI”21 .860 .767 .885 .049 .818 .697 .840 .061 .907 .876 .927 .046 .902 .862 .931 .038 .842 .775 .871 .077
VST* ICCV”21 .896 .828 .919 .037 .850 .755 .871 .058 .932 .910 .951 .033 .928 .897 .952 .029 .872 .816 .902 .061
PAKRN AAAI”21 .901 .861 .935 .033 .853 .779 .888 .050 .928 .918 .950 .032 .923 .909 .956 .027 .858 .817 .839 .067
PoolNet+ TPAMI”22 .887 .817 .910 .037 .831 .725 .848 .054 .926 .904 .945 .035 .919 .888 .945 .030 .865 .809 .896 .065
EDN TIP”22 .909 .867 .937 .030 .865 .792 .890 .045 .938 .929 .958 .027 .934 .918 .960 .023 .877 .842 .909 .056
ICON-S* TPAMI”22 .917 .886 .954 .025 .869 .804 .900 .043 .941 .936 .966 .023 .935 .925 .968 .022 .885 .854 .924 .048
PGNet* CVPR”22 .911 .874 .942 .027 .855 .775 .879 .045 .938 .929 .959 .027 .929 .916 .959 .024 .880 .844 .916 .052
SelfReformer* TMM”23 .911 .872 .943 .027 .861 .784 .884 .043 .936 .926 .957 .027 .931 .915 .960 .024 .881 .848 .919 .051
BBRF* TIP”23 .909 .886 .949 .025 .861 .803 .896 .044 .939 .944 .969 .022 .932 .932 .969 .020 .878 .856 .923 .049
MENet CVPR”23 .905 .870 .938 .028 .850 .771 .871 .045 .928 .920 .951 .031 .927 .917 .960 .023 .872 .838 .910 .054
MGuidNet TOMM”23 .888 .818 .908 .037 .836 .751 .865 .056 .927 .900 .956 .036 .922 .890 .944 .031 .869 .812 .897 .061
DASOD IMAVIS”24 .893 .856 .933 .034 .850 .782 .884 .053 .932 .930 .961 .027 .924 .916 .962 .025 .865 .833 .909 .059
GLSTR* TETCI”24 .919 .873 .944 .027 .868 .787 .890 .046 .942 .930 .961 .025 .936 .914 .961 .024 .886 .846 .919 .052
ISNet PR”24 .896 .849 .929 .034 .848 .764 .877 .052 .929 .917 .951 .032 .922 .905 .954 .027 .864 .822 902 .062
GPONet* PR”24 .919 .872 .941 .028 .874 .799 .898 .045 .945 .932 .962 .025 .937 .918 .961 .023 .880 .839 .912 .055
Ours* —— .931 .918 .963 .019 .875 .824 .906 .040 .948 .952 .970 .019 .942 .942 .973 .017 .889 .872 .930 .044

Table 1: Quantitative comparisons between our proposed method and other 16 methods on five benchmark datasets under metrics of S-
measure (Sα), Weighted F-measure (Fω

β ), Average E-measure (Ea
ξ ), Mean Absolute Error (M ). Methods marked with an asterisk (*) are

based on the Transformer encoder. Text in bold indicates the best performance.

Figure 6: Precision-Recall Curves (row 1) and F-measure Curves (row 2) comparison on five saliency benchmark datasets. As shown above,
our network achieved the best results among all networks across five datasets.

and evaluated on five widely recognized benchmark datasets:
DUT-OMRON [Yang et al., 2013], DUTS-TE [Wang et al.,
2017], ECSSD [Yan et al., 2013], HKU-IS [Li and Yu, 2015],
and PASCAL-S [Li et al., 2014].

4.2 Implementation Details
Our PDFNet employs Swin-B as the backbone network.
Training and testing were conducted on an NVIDIA 2080 Ti,
with input images resized to 384x384. During model train-
ing, the Adam optimizer is employed with an initial learning
rate set to 1.0 × 10−5. The learning rate adjustment follows
a polynomial decay (PolyLr) strategy, with the entire train-
ing process spanning 80 epochs. The batch size is set to 4 to
balance memory consumption and training efficiency.

4.3 Evaluation Metric
We will evaluate all methods using the following widely used
evaluation metrics in the SOD field: Mean Absolute Error

(M) [Perazzi et al., 2012], S-measure (Sα) [Fan et al., 2017],
Weighted F-measure (Fω

β ) [Margolin et al., 2014], and Aver-
age E-measure (Ea

ξ ) [Fan et al., 2018].

4.4 Comparisons with State-of-the-Art
This paper compares the proposed method with the top 16
state-of-the-art models in recent years, including: F3Net [Wei
et al., 2020], TSPOANet [Liu et al., 2021b], VST [Liu et
al., 2021a], PAKRN [Xu et al., 2021], PoolNet+ [Liu et
al., 2022], EDN [Wu et al., 2022], ICON-S [Zhuge et al.,
2022], PGNet [Xie et al., 2022], SelfReformer [Yun and Lin,
2023], BBRF [Ma et al., 2023], MENet [Wang et al., 2023],
MGuidNet [Hui et al., 2023], DASOD [Asheghi et al., 2024],
GLSTR [Ren et al., 2024], ISNet [Zhu et al., 2024], and
GPONet [Yi et al., 2024]. Specifically, some models have
two implementations, one based on CNNs and the other on
Transformers. We have chosen the Transformer-based imple-
mentations for comparison.
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No. Components DUTS-TE DUT-OMRON ECSSD HKU-IS PASCAL-S
SGM FAM PDFU CRFbp Sα↑ F ω

β ↑ Ea
ξ ↑ M↓ Sα↑ F ω

β ↑ Ea
ξ ↑ M↓ Sα↑ F ω

β ↑ Ea
ξ ↑ M↓ Sα↑ F ω

β ↑ Ea
ξ ↑ M↓ Sα↑ F ω

β ↑ Ea
ξ ↑ M↓

0 .913 .873 .934 .031 .862 .789 .881 .057 .930 .923 .947 .029 .928 .914 .954 .030 .874 .844 .905 .059
1 ✓ ✓ .926 .903 .950 .024 .872 .811 .895 .045 .940 .939 .962 .022 .936 .926 .963 .024 .885 .860 .921 .048
2 ✓ ✓ .928 .905 .953 .024 .873 .813 .896 .044 .941 .941 .963 .022 .937 .928 .963 .023 .885 .861 .922 .046
3 ✓ ✓ .925 .895 .948 .026 .870 .804 .891 .047 .938 .935 .959 .024 .934 .925 .959 .026 .883 .857 .916 .049
4 ✓ ✓ ✓ .933 .912 .961 .020 .877 .818 .904 .041 .949 .948 .968 .020 .942 .936 .970 .018 .891 .868 .928 .044
5 ✓ ✓ ✓ ✓ .931 .918 .963 .019 .875 .824 .906 .040 .948 .952 .970 .019 .942 .942 .973 .017 .889 .872 .930 .044

Table 2: Ablation study on each component of PDFNet on SGM, FAM, PDFU and CRFbp. Text in red represents the best result, while blue
indicates the second-best result.

Image GT Ours GPONet ISNet GLSTR DASOD MENet BBRF PGNet ICON-S

Figure 7: Visual comparisons between our proposed method and 8 state-of-the-art networks.

Quantitative Comparison
As shown in Table 1, our PDFNet achieves the best perfor-
mance across five classic benchmark datasets, outperform-
ing other state-of-the-art methods. Furthermore, Figure 6
presents the PR curves and F-measure curves for the afore-
mentioned networks. From the figure, it is clearly observed
that our method (denoted by the red curve) outperforms other
methods.

Visual Comparison
The visual comparison results are shown in Figure 7. Com-
pared to other methods, our predictions perform excellently in
complex scenes: for scenes with salient objects of inconsis-
tent scales (row 1), our method achieves better localization.
For elongated and irregularly shaped objects (row 2), our
method generates more refined boundaries. In scenes where
salient objects are difficult to identify (row 3), our method is
able to accurately locate and segment.

4.5 Ablation Study
Effectiveness of SGM
As shown in Table 2, to validate the effectiveness of SGM, we
removed it from model (4) to obtain model (1). It can be ob-
served that on five datasets, the performance metrics have all
decreased. Specifically, Ea

ξ decreased by 1.1%, 0.9%, 0.6%,
0.7%, and 0.7%, respectively. This indicates that SGM sig-
nificantly enhances the model’s scale adaptability.

Effectiveness of FAM
To validate the effectiveness of FAM, we removed FAM from
model (4) to obtain model (2). It can be observed that on five
datasets, the performance metrics have all decreased. Specif-
ically, Ea

ξ decreased by 0.8%, 0.8%, 0.5%, 0.7%, and 0.6%,
respectively. This indicates that FAM enhances the model’s
shape adaptability.

Effectiveness of PDFU
To further validate the effectiveness of PDFU, we removed
PDFU from model (4) to obtain model (3). It can be ob-
served that the performance metrics have all decreased on five
datasets. Specifically, Fω

β decreased by 1.7%, 1.4%, 1.3%,
1.1%, and 1.1%, respectively. This demonstrates that PDFU
effectively alleviates the issue of confusion between global
and detail information.

Effectiveness of CRFbp
From (4) and (5) in Table 2, we can observe that after adding
the CRFbp post-processing, the results of model (5) gener-
ally outperform those of model (4). With the inclusion of
CRFbp, the Fω

β of (5) increased by 0.6%, 0.6%, 0.4%, 0.6%
and 0.4% on five datasets compared to (4). At the same time,
we notice that Sα in (5) slightly decreased compared to (4).
This may be because CRFbp focuses on processing local dis-
crete points, which may disrupt the structural integrity of the
predicted map. Therefore, we recommend using CRFbp as an
optional step during the model prediction phase.

5 Conclusion
In this paper, to address the performance bottleneck of SOD
models in complex scenes, we propose a new SOD architec-
ture—PDFNet. Specifically, we first design the Self-Guided
Module (SGM) to enhance the model’s scale adaptability.
Then, we design the Feature Aggregation Module (FAM),
which enhances the model’s shape adaptability. Finally, we
design the F3 Stage based on Progressive Difference Fusion
Units (PDFU) to alleviate the issue of information confu-
sion within features. Additionally, we optimize the fully con-
nected CRF and propose CRFbp, which further improves the
model’s performance. Our proposed PDFNet achieves state-
of-the-art results on five widely used datasets.
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