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Abstract
The task of generating novel views in dynamic
scenes plays a critical role in the 3D vision domain.
Neural Radiance Fields (NeRFs) and 3D Gaussian
Splatting (3DGS) have shown great promise in this
domain but struggle with motion blur, which of-
ten arises in real-world scenarios due to camera
or object motion. Existing methods address cam-
era motion blur but fall short in dynamic scenes,
where the coupling of camera and object motion
complicates multi-view consistency and temporal
coherence. In this work, we propose EDyGS, a
model designed to reconstruct sharp novel views
from event streams and monocular videos of dy-
namic scenes with motion blur. Our approach in-
troduces a motion-mask 3D Gaussian model that
assigns each Gaussian an additional attribute to dis-
tinguish between static and dynamic regions. By
leveraging this motion mask field, we separate and
optimize the static and dynamic regions indepen-
dently. A progressive learning strategy is adopted,
where static regions are reconstructed by jointly
optimizing camera poses and learnable 3D Gaus-
sians, while dynamic regions are modeled using an
implicit deformation field alongside learnable 3D
Gaussians. We conduct both quantitative and quali-
tative experiments on synthetic and real-world data.
Experimental results demonstrate that EDyGS ef-
fectively handles blurry inputs in dynamic scenes.

1 Introduction
Novel view synthesis [Zhou et al., 2016] plays a critical role
in the 3D vision domain and enables more immersive experi-
ences in applications such as augmented reality/virtual reality
(AR/VR), autonomous driving, and 3D content creation. Re-
cently, methods based on reconstructing radiance fields, such
as Neural Radiance Field (NeRF) [Mildenhall et al., 2021]
and 3D Gaussians Splatting (3DGS) [Kerbl et al., 2023], have
demonstrated remarkable potential in novel view synthesis.

Such methods leverage multi-view consistency to recon-
struct radiance fields, relying on high-quality calibrated im-
ages as inputs [Cannici and Scaramuzza, 2024]. However,

such inputs are rarely available in real-world scenarios. In
dynamic scenes, the presence of motion blur, caused by both
camera motion and object motion, further complicates the re-
construction process, preventing NeRF and 3DGS from pro-
ducing sharp radiance fields and significantly limiting their
practical applicability.

Recent works [Ma et al., 2022; Lee et al., 2023; Wang et
al., 2023] address motion blur caused by camera motion by
estimating camera movement during exposure time. How-
ever, these methods are not well-suited for dynamic scenes,
where motion blur arises from a combination of camera and
object motion. Simulating camera motion alone is insufficient
to ensure multi-view consistency, making it difficult to accu-
rately represent object motion and maintain temporal coher-
ence. A straightforward approach is to separate the sources of
blur: camera motion and object motion. However, decoupling
these two types of blur from blurry images is a challenging
task. Some recent works [Sun et al., 2024] attempt to address
this by using pre-trained networks to predict 2D-level object
motion masks from blurry images. However, this approach
is constrained by the severity of the blur and the absence of
multi-view consistency (Figure 1 (a)).

Event cameras [Gallego et al., 2020] are high-resolution
neuromorphic sensors that capture motion cues during im-
age exposure. We observe that in dynamic scenes, event
streams maintain consistency across viewpoints in static re-
gions but lose consistency in dynamic regions due to object
motion (Figure 1 (b)). By analyzing the multi-view informa-
tion from event streams, we can differentiate between static
and dynamic regions, further decoupling the blur caused by
the two types of motion. This facilitates the reconstruction of
dynamic radiance fields.

In this work, we propose EDyGS1, a model specifically
designed to take event streams and monocular videos of dy-
namic scenes with motion blur as inputs and generate sharp
novel views. To tackle the challenge of decoupling the two
types of motion blur, we leverage the multi-view informa-
tion from the event stream to construct a motion mask field
that differentiates between static and dynamic regions. This
allows us to handle deblurring and reconstruction separately
for each region. Specifically, we introduce a motion-mask

1Source code and Supplementary Materials are available at:
https://github.com/zju-bmi-lab/EDyGS
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Figure 1: (a) Our method generates a motion mask field by adding attributes to 3D Gaussians to distinguish between static and dynamic
regions. This mask enables the separation of two types of motion blur: camera motion and object motion. The right side shows a comparison
between the 2D masks rendered from our method’s motion mask field from different viewpoints (different time) and the 2D masks generated
by other methods [Sun et al., 2024]. It can be seen that the mask we generate ensures multi-view consistency and temporal continuity
across different time frames. (b) Event streams in the static regions of dynamic scenes exhibit consistency across viewpoints at different time
instances (green box). However, in the dynamic regions, due to object motion, event streams lack consistency across viewpoints at different
time instances (yellow box). In contrast, blurry images lack multi-view consistency in both static and dynamic regions.

3D Gaussian Splatting model, where each Gaussian is as-
signed an additional attribute to indicate whether it belongs to
a static or dynamic region. By leveraging event streams to su-
pervise this model, we create a 3D-level mask that guides the
reconstruction process. We then adopt a progressive learning
strategy, sequentially reconstructing the static and dynamic
regions. For static regions, we optimize both the camera pose
and the learnable 3D Gaussians. For dynamic regions, we
train an implicit deformation field alongside learnable 3D
Gaussians. Experimental results demonstrate that EDyGS
outperforms existing dynamic 3D radiance field methods, of-
fering a significant advancement in reconstructing sharp, dy-
namic scenes.

In summary, the major contributions of our work are:

• We introduce EDyGS, the event-enhanced dynamic
3DGS model specifically designed to effectively tackle
motion-blurred monocular video.

• We propose a motion-mask 3D Gaussian Splatting
model that uses event streams to reconstruct the motion
mask field, separating static and dynamic regions for tar-
geted deblurring and reconstruction.

• Experimental results demonstrate that our method
achieves the state-of-the-art performance.

2 Related Work
Novel View Synthesis for Dynamic Scenes. Synthesizing
novel views from a series of 2D images is an important and
challenging task in 3D static [Liao et al., 2024; Zhang et
al., 2024] and dynamic reconstruction. For dynamic recon-
struction, some NeRF-based methods [Park et al., 2021a;
Park et al., 2021b; Pumarola et al., 2021] incorporate a
deformation field to map point coordinates to a canonical
space that corresponds to a specific timestamp. They syn-
thesize high-quality novel views, but the training and render-
ing speeds are slow. Besides, some Gaussian-based meth-

ods [Yang et al., 2024; Wu et al., 2024b; Duan et al., 2024;
Li et al., 2024; Yang et al., 2025] are proposed, achieving
both fast training and high rendering quality. Both NeRF-
based and Gaussian-based methods heavily rely on sharp in-
puts. When dealing with images affected by motion blur due
to rapid objects or camera movement, they perform poorly
because they lack accurate spatial information in the image
to guide the supervision.

Our method accounts for camera and object motion blur
and handles the motion blur effectively.

Novel View Synthesis from Blurry Images. In static 3D
scene reconstruction, some methods [Ma et al., 2022; Wang
et al., 2023; Cannici and Scaramuzza, 2024; Lee et al., 2025;
Chen et al., 2025a; Chen et al., 2025b] are proposed to ad-
dress motion blur caused by camera movement. However, in
dynamic 3D scene reconstruction, motion blur occurs due to
the combined effect of camera motion and object motion. Dy-
BluRF [Sun et al., 2024] and Deblur4DGS [Wu et al., 2024c]
attempt to recover the sharp scene from blurry images. How-
ever, they rely on inaccurate blur information with a lack of
multi-view consistency, thereby limiting their effectiveness.
Additionally, since DyBluRF is based on NeRF, its training
and rendering process are relatively slow (2 days for training
on an RTX A6000 GPU).

We integrate event streams with more precise information
into reconstructing 3D dynamic scenes from blurry images
with 3DGS (1.5 hours for training on an RTX 3090 GPU).

Event-based Novel View Synthesis. The event cam-
era [Brandli et al., 2014], also called the Dynamic Vision
Sensor (DVS), captures the intensity change of each pixel.
The high temporal resolution of event cameras enables them
to record events with precise information at a high fre-
quency [Yan et al., 2025; Wu et al., 2024d]. As a result,
event cameras are commonly used in static 3D scene recon-
struction tasks [Chen et al., 2021; Chen et al., 2024]. As-
suming the camera motion is predefined, some 3D scene re-
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construction techniques [Qi et al., 2023; Klenk et al., 2023;
Low and Lee, 2023; Cannici and Scaramuzza, 2024] leverage
multi-view data from events to refine the 3D scene. Other
methods [Qi et al., 2024; Yu et al., 2024; Ma et al., 2024]
jointly optimize both camera motion and the 3D scene. How-
ever, dynamic scenes introduce additional challenges due to
object motion, which makes traditional methods unsuitable
for such scenarios.

We leverage observations from event streams to separately
consider camera motion blur and object motion blur, thereby
optimizing 3D dynamic scenes from blurry images.

3 Proposed Method
In this section, we demonstrate how to reconstruct dynamic
3D radiance fields using monocular videos with motion blur
B = {B0, B1, ..., Bn−1} and their corresponding event
streams ET0,0→Tn−1,k−1

. For each frame Bp and the corre-
sponding event stream ETp,0→Tp,k−1

, the exposure start time
and end time are Tp,0 and Tp,k−1 respectively.

We first describe the method for decoupling two types of
motion blur (camera motion blur and object motion blur)
in Section 3.1. We then introduce a 4D field M to repre-
sent dynamic and static regions and propose motion-mask 3D
Gaussians to implement this field in Section 3.2. Finally, we
demonstrate how to utilize this field to reconstruct dynamic
3D radiance fields from blurry monocular videos B and their
corresponding event streams E in Section 3.3.

3.1 Decoupling Two Types of Motion Blur
In dynamic scenes, motion blur can be categorized into two
types according to its source: camera motion and object mo-
tion. Camera motion blur occurs when the camera moves dur-
ing the exposure time, while object motion blur arises from
objects in the scene moving during the same period [Sun et
al., 2024]. Distinguishing between these two types of blur in
an image with motion blur is a challenging task.

To tackle this problem, we propose dividing a dynamic
scene into dynamic regions and static regions. Dynamic re-
gions correspond to parts of the scene that undergo changes
over time t, such as moving objects. On the other hand, static
regions remain invariant over time t, representing stationary
background elements. This division allows us to associate
motion blur more specifically with its source.

We find that motion blur caused by the camera movement
is confined to static regions, while blur caused by the object
movement is limited to dynamic regions. By leveraging this
distinction between dynamic and static regions, we can de-
couple the two types of motion blur in an image. This decou-
pling is not precise but serves as a robust starting point for
further analysis.

Distinction Between Dynamic and Static Regions. As
a camera moves through a dynamic scene, it naturally gen-
erates a monocular video. Each frame in the video repre-
sents a specific moment in time and a distinct viewpoint. For
static regions, these areas remain unchanged over time, so
they appear the same when observed from different view-
points (or moments in time). In contrast, dynamic regions
change over time, resulting in differences when viewed from

different viewpoints (or moments). This fundamental dis-
tinction between dynamic and static regions allows us to uti-
lize multi-view relationships inherent in images to identify
them. Static regions will maintain consistent appearance and
structure across views, while dynamic regions will exhibit
changes, making them distinguishable.

However, blurry images do not provide accurate multi-
view relationship information [Cannici and Scaramuzza,
2024]. In contrast, event streams, with their high temporal
resolution and lack of blur [Gallego et al., 2020], can provide
precise information. Therefore, we can utilize the multi-view
relationships of event streams to identify static and dynamic
regions in a dynamic scene (Shown in Figure 1 (b)).

3.2 Motion Mask Field
We propose a motion mask field M to represent the dynamic
and static regions in the dynamic scene. This motion mask
field represents the probability that a point x in the canonical
space belongs to a dynamic region at time t,

m = M(x, t), (1)

where m ranges between 0 and 1. A value of m = 0 indicates
that the point belongs entirely to a static region, while m = 1
means that the point is fully within a dynamic region.

This motion mask field plays a crucial role in decoupling
motion blur caused by camera motion and object motion. By
leveraging this field, we can optimize the dynamic and static
components of the scene separately, ensuring accurate recon-
struction and rendering for both regions.

Motion-mask 3D Gaussian Splatting. We approximate
this motion mask field representation using motion-mask
3D Gaussians, an extension of the vanilla 3DGS frame-
work [Kerbl et al., 2023]. Unlike vanilla 3DGS, which fo-
cuses solely on rendering images C, our proposed 3D Gaus-
sians model is capable of rendering both images C and 2D
mask images for each viewpoint. These masks enable the dis-
tinction between dynamic and static regions within the scene,
providing an essential tool for decoupling motion blur.

To achieve this, we introduce an additional attribute m for
each Gaussian. This attribute represents the probability that
the corresponding Gaussian belongs to a dynamic region. The
2D mask image M is rendered using the alpha blending of the
splatted 3D Gaussians onto the 2D image plane. The process
is defined as:

M =
∑
t∈N

mtαt

t−1∏
u=1

(1− αu), (2)

where mt represents the dynamic probability for each Gaus-
sian, αt is the alpha value of the Gaussian, and the prod-
uct term

∏t−1
u=1(1 − αu) accounts for the accumulated trans-

parency of the Gaussians layered before t.
This field enables the generation of view-specific motion

masks, which are crucial for capturing the temporal and spa-
tial variation of dynamic regions in a scene. Unlike other
methods [Sun et al., 2024], which obtain masks from blurry
images using a pre-trained model, our approach generates
masks at the 3D level, ensuring multi-view consistency.
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motion refinement

pose refinement

Eq 4

γ(t)
time

δx, δr, δs

COLMAP

EDI

Initial Poses

Eq 7&8

Pose Initialization Static Region Reconstruction

Dynamic Region Reconstruction

Events Images

Events Images

Render

2D mask

Backward

Forward

Motion-mask 3D Gaussian

3D mask

Initial Poses

Latent Images

Events Blurry Video

Refine Poses

Figure 2: Overall pipeline. Our framework is divided into three stages: Pose Initialization, Static Region Reconstruction, and Dynamic
Region Reconstruction. The event stream E and the blurry monocular video B first pass through the Pose Initialization stage, generating
relatively latent sharp images and corresponding initial poses. In the Static Region Reconstruction stage, our method jointly optimizes the
static region, motion mask field, and initial poses. In the Dynamic Region Reconstruction stage, we focus on reconstructing the dynamic
region while simultaneously refining the motion mask field and poses.

3.3 EDyGS
Overview. Figure 2 illustrates the framework of our
method. Our framework is divided into three stages: Pose
Initialization, Static Region Reconstruction, and Dynamic
Region Reconstruction. In the Pose Initialization stage, the
event stream and the blurry monocular video are processed
to generate relatively latent sharp images and corresponding
initial poses. In the Static Region Reconstruction stage, our
method jointly optimizes the static region, motion mask field,
and initial poses. In the Dynamic Region Reconstruction
stage, we focus on reconstructing the dynamic region while
simultaneously refining the motion mask field and poses.
Pose Initialization. To obtain the initial trajectory of
the event camera and the point cloud of the dynamic scene
for 3DGS optimization, we follow the approach outlined in
E2NeRF [Qi et al., 2023]. First, we preprocess the n motion-
blurred images {Bp}n−1

p=0 using the EDI model [Pan et al.,
2019]. Specifically, for each motion-blurred image Bp, we
uniformly sample k − 2 timestamps to segment the corre-
sponding event streams ETp,0→Tp,k−1

. Using the EDI model,
we then generate nk latent sharp images {B̂i}nk−1

i=0 , which
capture more texture details compared to the original blurry
image. Finally, we employ COLMAP [Schonberger and
Frahm, 2016] to obtain the initial trajectory {Pi}nk−1

i=0 of the
event camera and initial point cloud of the dynamic scene.
Static Region Reconstruction. Given that the static re-
gions within dynamic scenes exhibit consistency across dif-
ferent viewpoints and time instances, we focus solely on op-
timizing the static region of the Gaussian field and the trajec-
tory of the event camera in the first stage. We first construct a
differentiable path from the static region of the Gaussian field

to the trajectory of the event camera. According to Equa-
tion 2, the rendered result related to the static region of the
Gaussian field is given by Ĉi

st = Ĉi(1 − Mi), where Ĉi is
the rendered image. Then we build the partial derivatives be-
tween Ĉi

st and the trajectory {Pi}nk−1
i=0 of event camera:

∂Ĉi
st

∂Pi
=

∂Ĉi

∂Pi
−Mi

∂Ĉi

∂Pi
− Ĉi

∂Mi

∂Pi
. (3)

Using the above differentiable path (as detailed in the Sup-
plementary Materials), we jointly optimize the camera trajec-
tory and the static part of the Gaussian field. Meanwhile, to
adaptively distinguish between the static and dynamic regions
of the Gaussian field, we bias M towards classifying as static,
so that the 3D mask can better identify the parts that satisfy
multi-view consistency.

We separately utilize events and latent sharp images to su-
pervise the joint training process, which includes the static
region of the Gaussian field, the motion mask field, and the
trajectory of the event camera:

L = (1− λ)L1 + λLD-SSIM,

Levent = L((ln(Ĉi+1)− ln(Ĉi)),
∑

e∈Ei→i+1

eΘ),

Ledi = L(Ĉi, B̂i) + L(Ĉi
st, B̂i(1−Mi)),

Lreg = ||Mi||1,

(4)

where Θ is the threshold of the event camera, and λ is 0.2.

Dynamic Region Reconstruction. Following the ap-
proach in [Yang et al., 2024], we control the Gaussian using
the deformation field Fθ. First, we predict the motion of each
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Gaussian, which transforms the canonical 3D Gaussian to the
deformed space:

(∆µi,∆ri,∆si) = Fθ(γ(sg(µi)), γ(t)), (5)
where sg(·) is the stop-gradient operation, γ is the positional
encoding, ∆µi, ∆ri, and ∆si represent the offset of per-
Gaussian center point, rotation, and scale. Then we use the
motion mask field obtained from the first stage to suppress
the motion of the static part of the Gaussian field:

(∆µst
i ,∆rst

i ,∆sst
i ) = (∆µi,∆ri,∆si)(1−mi). (6)

Finally, we refine the motion of the Gaussian field by reg-
ularizing the motion of the static part:

Lmotion = ||∆µst
i ||22 + ||∆rst

i ||22 + ||∆sst
i ||22. (7)

This enables the dynamic part of the Gaussian field to more
effectively learn the object motion in the dynamic scene from
the event streams. Meanwhile, we continue to fine-tune the
mask field and the camera trajectory using both events and la-
tent sharp images, which helps to better decouple the camera
motion from the object motion:

Levent = L((ln(Ĉi+1)− ln(Ĉi)),
∑

E∈ei→i+1

EΘ),

Ledi = L(Ĉi, B̂i),

Lreg = ||Mi − M̂i||1,

(8)

where M̂i is the rendered 2D mask image in the static region
reconstruction stage.

4 Experiment
In this section, we introduce the datasets, experimental
setup, comparisons with other methods, and ablation study
to demonstrate the effectiveness of our approach. More ex-
perimental results are in the Supplementary Materials.

4.1 Datasets
Synthetic Data. Since no publicly available dynamic scene
datasets contain both blurry images and event streams, we
collect four synthetic scenarios. The data for these scenes is
sourced from [Wu et al., 2024a]. We first generate the cor-
responding events by applying Vid2E [Gehrig et al., 2020]
to sharp images with a resolution of 400 × 400, rendered in
Blender. Next, we process nine sharp images using the sim-
ulation method in E2NeRF [Qi et al., 2023] to produce one
blurry image. As a result, we obtain 60 blurry images for
each scenario, along with their corresponding event streams.
Real-world Data. We use the DAVIS346C [Taverni et al.,
2018] to capture six real-world dynamic scenes with both
RGB frames and spatial-temporal aligned event streams.
Each video is 5 seconds long, with the RGB frames having
an exposure time of 100 milliseconds and a resolution of 346
× 260. The real-world dynamic scenes contain blurry images
along with their corresponding events.

4.2 Experiment Settings
Metrics. We utilize standard metrics to evaluate the ef-
fectiveness of our method, including PSNR [Huynh-Thu
and Ghanbari, 2008], SSIM [Wang et al., 2004], and
LPIPS [Zhang et al., 2018].

Input View Novel View

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
D3DGS 25.78 .7796 .3430 25.13 .7657 .3269
DyBluRF 25.18 .7670 .3436 20.28 .6067 .4171
E2V+D3DGS 20.07 .7267 .3819 20.45 .7341 .3707
GEM+D3DGS 27.72 .8513 .2638 26.86 .8370 .2697

Ours 31.84 .9050 .1923 30.90 .8993 .1950

Table 1: Comparison of PSNR, SSIM, and LPIPS across different
methods on deblurring input view and synthesizing novel view.

Baselines. We compare our method with four approaches:
(1) Deformable 3DGS (D3DGS) [Yang et al., 2024], a
method used for dynamic scene reconstruction; (2) Dy-
BluRF [Sun et al., 2024], a method for dynamic scene re-
construction from blurry video; (3) E2V [Rebecq et al.,
2019]+D3DGS, a combined method that uses E2V to gen-
erate latent sharp images from events and then employs
D3DGS for dynamic scene reconstruction; (4) GEM [Zhang
et al., 2023]+D3DGS, a combined method that uses an event-
guided deblur method (GEM) to deblur images first, then em-
ploys D3DGS for dynamic scene reconstruction.

4.3 Results
Quantitative Analysis on Synthetic Data. The results of
the synthesis of novel views and input views are shown in
Table 1. Compared to other methods, our quantitative re-
sults outperform them. D3DGS [Yang et al., 2024], lacking
a module specifically designed for blurry image inputs, fails
to reconstruct sharp dynamic scenes under blurry conditions.
DyBluRF [Sun et al., 2024] leverages optical flow and depth
information derived from blurry images but lacks precise spa-
tial data, resulting in poor performance. E2V [Rebecq et al.,
2019]+D3DGS and GEM [Zhang et al., 2023]+D3DGS suf-
fer from multi-view inconsistency, preventing D3DGS from
producing effective and high-quality results.

Qualitative Analysis on Synthetic Data. Figure 3 shows
the visual comparison results of the input view and the novel
view in synthetic scenes. Both D3DGS and DyBluRF lack
precise spatial information as inputs, resulting in overall
blurry images. E2V+D3DGS, due to significant image in-
consistencies, deviates from the training images required by
D3DGS, leading to more distorted renderings. Additionally,
images generated by GEM exhibit certain inconsistencies,
causing GEM+D3DGS to produce blurry details. Since these
methods do not distinguish between coupled camera and ob-
ject motion blur, they perform poorly in dynamic regions.
Our method separates the two types of motion blur, resulting
in good performance in both static and dynamic regions.

Qualitative Analysis on Real-world Data. We further val-
idate the conclusions obtained from the synthetic datasets on
the real-world datasets. Figure 4 shows the rendered im-
ages of several methods on the real-world datasets. The
D3DGS rendered image is highly blurry. DyBluRF removes
only a small amount of blur. The rendered images from
E2V+D3DGS and GEM+D3DGS still contain some blurred
details. Our method achieves better deblurring results, and
the rendered images in the novel view synthesis task are also
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Figure 3: Results on synthetic scenes. The red box highlights the detailed magnification of the dynamic region, while the green box shows
the detailed magnification of the static region. The leftmost column shows inputs, including blurry images (top) and event streams (bottom).

notably better since we separate static and dynamic regions
for targeted deblurring and reconstruction.
Depth Visualization. Figure 5 shows the visualization of
depth maps for both real-world and synthetic scenes. It can be
observed that our method reconstructs dynamic scenes with
well-defined geometric structures, making it beneficial for the
novel view synthesis task.

5 Ablation Study
To validate the effectiveness of each component of our frame-
work, we conduct ablation experiments as presented in Ta-
ble 2 and Table 3.
Effect of EDI+event. In Table 2, when using only the event
loss, the sparse spatial information of events is insufficient to
effectively supervise D3DGS in modeling dynamic scenes.
Utilizing latent sharp images from EDI with dense spatial
information as supervision results in an average PSNR im-
provement of 19.68. However, these images exhibit some
color distortion and noise. By incorporating the event loss
alongside the latent sharp images supervision to jointly su-
pervise D3DGS, a further increase in PSNR is observed.
Effect of optimizing poses. To achieve more accurate cam-
era motion, we optimize the estimated poses, resulting in an
average PSNR improvement of 1.33. We further validate that

PSNR↑ SSIM↑ LPIPS↓
event 7.94 .1122 .6407
EDI 27.62 .8440 .2687
EDI+event 28.95 .8714 .2195
pose, w/o mask 30.28 .8889 .2141
pose, mask 30.90 .8993 .1950

Table 2: Ablation study on EDI, event, optimizing poses and motion
mask. By leveraging these components, our method achieves the
highest PSNR of 30.90.

w/o optimizing poses Ours

RPEt↓ RPEr↓ ATE↓ RPEt↓ RPEr↓ ATE↓
0.3543 0.0248 0.0065 0.1765 0.0148 0.0024

Table 3: Ablation study on optimizing poses.

our method can optimize the camera motion trajectory more
accurately by comparing it with the ground truth pose in syn-
thetic scenes. The quantitative result is shown in Table 3.
Effect of motion mask. To separate object motion blur
from multi-view information and camera motion blur, we use
a mask to learn the dynamic components. This approach re-
sults in an average PSNR increase of 0.62 in Table 2.
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Figure 4: Results on real-world scenes. The red box highlights the detailed magnification of the dynamic region, while the green box shows
the detailed magnification of the static region. The leftmost column shows the inputs (blurry images and the event streams).

6 Conclusion

In conclusion, we present EDyGS, a method for recovering a
sharp dynamic scene representation from event streams and
blurry monocular video. With EDyGS, we can deblur in-
put views and generate sharp novel views of dynamic scenes.
The core of our approach is the decoupling of two types of
motion blur by leveraging multi-view information from the
event stream, accounting for both camera and object motion
blur. Experimental results demonstrate that EDyGS achieves
the state-of-the-art performance in dynamic scene reconstruc-
tion with blurry images as inputs.

Limitations. Although EDI can effectively leverage event
data to perform a coarse deblurring of blurry images, the la-
tent sharp images after EDI still exhibit some gap compared
to the sharp ground truth images.

53,235
32,30

Blurry Input Image Input View Synthesis Depth

Figure 5: Depth visualization. The first row shows the real-world
scene data, and the second row shows the synthetic data.
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