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Abstract
While metabolic imaging can facilitate early di-
agnosis by revealing physiological changes of le-
sions, it is limited by high cost, high radiation
risk, and potential renal impairment. Thus, de-
veloping an effective approach for Anatomical-to-
Metabolic Image Synthesis (A2MIS) is highly re-
quired. However, existing methods are heavily hin-
dered by the gap between distinct domains, and fail
to provide a confidence score for the synthesized
images, severely restricting their clinical applica-
tions. Here, we propose a novel Residual-guided
Latent Brownian-bridge Co-Diffusion (RLBCD)
model for A2MIS. Specifically, RLBCD starts with
a co-diffusion process that leverages a residual dif-
fusion branch to capture inter-domain differences,
which are injected into an enhanced diffusion
branch to maximally reconstruct modality-specific
details. Furthermore, to explore desired residual
guidance, we investigate the encoder and decoder
features in diffusion models, and accordingly de-
sign a Hybrid-Granularity Fusion to integrate con-
sistent semantics and complementary information
for fine-grained reconstruction. Additionally, a la-
tent consistency score is developed to enhance the
restoration of modality-specific information, which
also serves as an indicator of the inherent confi-
dence of the synthesized images. Extensive ex-
periments conducted on five public and in-house
datasets demonstrate that RLBCD not only outper-
forms state-of-the-art methods for A2MIS, but also
is valuable for downstream clinic applications.

1 Introduction
Metabolic imaging (e.g. computed tomography angiography
(CTA) and positron emission tomography (PET)) provides es-
sential insights into physiological and metabolic status of le-
sions, facilitating early diagnosis and treatment [Torigian et
al., 2007; Lv et al., 2024]. However, compared to anatomi-
cal imaging, the acquisition of metabolic imaging is limited

*Corresponding Author.

by high cost, slow scanning speed, high radiation risk, and
potential renal impairment caused by contrast agents [Faucon
et al., 2019; Lv et al., 2022]. Therefore, it is necessary to
develop computational methods for automatic and effective
Anatomical-to-Metabolic Image Synthesis (A2MIS).

Given that the A2MIS problem can be regarded as an
image-to-image (I2I) task, various deep learning-based ap-
proaches, including Generative Adversarial Network (GAN)-
based methods, diffusion model (DM)-based methods, and
other techniques, have the potential to address this challenge.
GAN-based methods [Goodfellow et al., 2014], such as
Pix2Pix [Isola et al., 2017] and CycleGAN [Zhu et al., 2017],
have shown promising results by learning the conditional dis-
tribution of the metabolic images given the samples from the
anatomical domain. However, GAN-based I2I methods are
notoriously hard to train and often suffer from mode collapse
in the output distribution. Other methods, such as Autore-
gressive Models [Parmar et al., 2018], Variational Autoen-
coders (VAEs) [Vahdat and Kautz, 2020], and Normalizing
Flows [Kingma and Dhariwal, 2018], have achieved success
in specific applications but fail to acquire the same level of
sample quality and general applicability as GANs. Recently,
DM [Ho et al., 2020; Song et al., 2021] has emerged as a
competitive alternative, showing the ability to generate high-
quality images compared to GAN-based models. Several
conditional diffusion models (CDMs) [Batzolis et al., 2021;
Saharia et al., 2022; Rombach et al., 2022] have proposed for
the I2I task by integrating the source image into the reverse
diffusion process to guide generation toward the target do-
main. However, CDMs struggle to generate consistent results
due to their inherent stochasticity. Even when employing de-
terministic samplers like DDIM, their reliance on sampling
from random noise introduces uncertainty, undermining re-
producibility and medical reliability.

In Particular, the aforementioned methods face several
challenges when directly applied to A2MIS. First, anatomi-
cal and metabolic images often exhibit similarities in shape
(structure) and style (brightness and contrast) at certain lo-
cations. This resemblance presents a significant challenge
for existing I2I methods, as they struggle to effectively cap-
ture the differences between the two domains, leading to syn-
thesized images that do not accurately reflect the intended
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metabolic characteristics. Second, DM-based methods can
sample diverse results for a given anatomical image. It is es-
sential to provide a confidence score associated with these
synthesized images for physicians and patients, such as Al-
phaFold [Jumper et al., 2021; Abramson et al., 2024]. This
knowledge enables professionals to make informed decisions.
Unfortunately, existing methods primarily overlook this cru-
cial point. Thus, a core question for A2MIS is how to opti-
mally decouple and leverage anatomical and metabolic fea-
tures while incorporating a synthesis confidence score.

To address these challenges, we propose a novel Residual-
guided Latent Brownian-bridge Co-Diffusion (RLBCD)
model for precise and reliable A2MIS. Specifically, RL-
BCD constructs a co-diffusion process that leverages a la-
tent residual diffusion branch to capture inter-domain differ-
ences, which are then injected into an latent enhanced diffu-
sion branch to optimally reconstruct modality-specific details.
Our method employs a stochastic Brownian bridge process
[Li et al., 2023a] that directly learns translation between two
domains without any conditioning mechanism. To achieve
the desired residual guidance, we investigate the encoder and
decoder features in diffusion models and accordingly pro-
pose a hybrid-granularity fusion, which integrates consistent
semantics and complementary information for fine-grained
reconstruction. Moreover, we develop a latent consistency
score to improve the restoration of modality-specific infor-
mation, which also serves as an indicator of the inherent con-
fidence of the synthesized images. We conduct extensive ex-
periments on various public and in-house datasets and tasks,
including CT-to-CTA, CT-to-PET, and pre-contrast MRI-to-
post-contrast MRI generation, as well as downstream diagno-
sis and segmentation tasks. Experimental results demonstrate
the superiority of our approach not only performance but also
valuable medical applications. Specific contributions of this
work can be summarized as follows:

• We propose RLBCD, a novel framework for A2MIS,
leveraging a designed residual-guided latent Brownian-
bridge co-diffusion process for the optimal reconstruc-
tion of modality-specific details.

• We propose Hybrid-Granularity Fusion to integrate con-
sistent semantics and complementary information from
a residual diffusion for fine-grained generation.

• We propose latent consistency score, serving as an indi-
cator of the inherent confidence of synthesized images.

• Extensive experiments demonstrate the superiority of
our approach in terms of translation performance and its
value in downstream diagnosis and segmentation tasks.

2 Related Work
2.1 Anatomical-to-Metabolic Image Synthesis
Metabolic images, compared to anatomical images, provide
a different perspective on the body’s physiological function-
ing, thereby facilitating early disease detection and moni-
toring treatment efficacy [Torigian et al., 2007]. However,
metabolic imaging presents several obvious limitations, in-
cluding high cost, significant radiation exposure, and poten-
tial risks to renal function. Several approaches have been

proposed for A2MIS, including 1) Synthesis of PET from
MRI or CT [Hu et al., 2021; Lee et al., 2024; Vega et al.,
2024]; 2) Synthesis of CTA from CT [Lyu et al., 2023]; 3)
Synthesis of Post-contrast CT from Pre-contrast CT [Kim
et al., 2021; Choi et al., 2021]; and 4) Synthesis of Post-
contrast MRI from Pre-contrast MRI [Calabrese et al., 2021;
Wang et al., 2022]. Current studies mainly utilize or modify
existing I2I methods, overlooking the unique characteristics
inherent to A2MIS, such as the relations between anatomi-
cal and metabolic images, and the requirement for confidence
scores of the synthesized images. This confidence assessment
is crucial for clinical applications, as it provides a measure of
the reliability of the synthesized images. Thus, our objective
is to develop an approach for precise and reliable A2MIS.

2.2 Diffusion Models in Image Translation

Diffusion models (DMs) are initially developed for image
generation such as DDPM [Ho et al., 2020] and DDIM [Song
et al., 2021]. Subsequent image translation methods [Batzo-
lis et al., 2021; Saharia et al., 2022; Rombach et al., 2022]
based on DMs treat the I2I task as conditional image gen-
eration, guiding the diffusion towards the target domain by
feeding the source image or its encoded feature into the de-
noising U-Net during the reverse process. Despite achiev-
ing some practical success, this condition mechanism lacks a
clear theoretical guarantee that the final diffusion result will
yield the desired conditional distribution. Recently, a Brow-
nian bridge stochastic process-based diffusion model termed
BBDM [Li et al., 2023a], which directly learns the transla-
tion between two domains through a bidirectional diffusion
process, provides a promising tool for effective I2I. However,
it fails to capture discriminative features between source and
target domains, especially when they exhibit some similari-
ties in shape and style. Thus, it is important to enhance the
model’s understanding of the discriminative features between
domains while maintaining its ability to capture semantic
content of source images. Motivated by this, we present a
residual-guided latent Brownian-bridge co-diffusion process
to capture inter-domain differences for optimal reconstruction
of modality-specific details.

2.3 Encoder-decoder Features in Diffusion Models

Recent studies in exploring the possibility of using DM for
representation learning [Preechakul et al., 2022] have demon-
strated the encoder-decoder features in denoising networks
e.g. U-Net, for downstream semantic tasks, such as classifi-
cation [Sigger et al., 2024], segmentation [Baranchuk et al.,
2021; Lv et al., 2023], and fusion[Yang et al., 2025]. More
recently, several studies show that the encoder features in de-
noising U-Net change minimally, whereas the decoder fea-
tures exhibit substantial variations across different time steps
[Li et al., 2023b; Ma et al., 2024]. Inspired by these works,
we investigate the encoder-decoder features in DMs and ac-
cordingly propose a Hybrid-Granularity Fusion to integrate
consistent semantics and complementary information from a
residual diffusion for fine-grained generation.
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Figure 1: a) Architecture of RLBCD, composed of a latent co-diffusion process (i.e. a residual Brownian-bridge diffusion to capture inter-
domain differences and an enhanced Brownian-bridge diffusion for precise A2MIS), a Hybrid-Granularity Fusion (HGF) including a Semantic
Alignment network HS (b) and a Complementary Attention network HC (c) to integrate consistent semantics and complementary information
from the residual diffusion, as well as a latent evaluation network HE to evaluate the confidence of synthesized images.

3 Methodology
3.1 Problem Formulation
Given an anatomical image IA and a metabolic image IB
from domain A and B, the inter-domain difference can be
calculated as IRes = IB − IA, and A2MIS aims to learn a
mapping from domain A to domain B. The key to our method
is the infusion of residual information by transforming IA to
IRes. To improve the learning efficiency and model general-
ization, the diffusion process is conducted in a latent space.
Given an image IA sampled from domain A, we first extract
its latent feature LA using a VAE Encoder [Esser et al., 2021]
that maps between raw-voxel space and low-dimensional la-
tent space, followed by a co-diffusion process to obtain the
corresponding latent representation LB and LRes in domain
B and B-A. The final translated images IB and IRes can be
generated by a pre-trained VAE decoder [Esser et al., 2021].

3.2 Overview
Fig. 1(a) shows the architecture of RLBCD, which consists
of a latent residual-guided co-diffusion process designed to
capture inter-domain differences and maximally reconstruct
modality-specific details, a Hybrid-Granularity Fusion com-
posed of a Semantic Alignment network HS (b) and a Com-
plementary Attention network HC (c) to integrate consistent
semantics and complementary information from the residual
diffusion, as well as a latent evaluation network HE to assess
the confidence of synthesized images.

3.3 Residual-guided Co-Diffusion
We take similar notations as DDPM, and let (x,y, r) repre-
sent the paired data from domains A, B, and Res. To speed
up the training and inference process, we conduct diffusion
process in the latent space of VQGAN [Esser et al., 2021].
For simplicity, we use x, y, r to denote the corresponding
latent features (x := LA(x),y := LB(y), r := LRes(r)).
Residual Branch. To effectively capture inter-domain dif-
ferences, we employ a Brownian bridge diffusion that directly
learns the translation from the source domain to the resid-
ual domain. Unlike DDPM that conclude at Gaussian noise
xT ∼ N (0, I), Brownian bridge diffusion assumes that both
endpoints of the diffusion process as fixed data points from
an arbitrary joint distribution, i.e. (xT ,x0) ∼ qdata(x, r).
The forward process of the Brownian bridge forms a bridge
between two fixed endpoints at t = 0 and T :

q(xt|x0, r) = N (xt; (1−mt)x0 +mtr, δtI) (1)
where x0 = x, xt = r, mt = t/T and the variance term
δt = 2(mt −m2

t ). The reverse process of residual diffusion
aims to predict xt−1 based on xt:

pθr (xt−1|xt, r) = N (xt−1;µθr (xt, t)δ̃tI) (2)

where δ̃t is the variance of Gaussian noise at step t and
µθr (xt, t) is the predicted mean value of the noise to be
learned. The training objective of Residual Branch is opti-
mizing the Evidence Lower Bound (ELBO):

Ex0,r,ϵ[cϵt ∥ mt(r − x0) +
√
δϵ− ϵθr (xt, t) ∥2] (3)
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where cϵt denotes the coefficient term of the estimated noise
ϵθr in mean value term µ̃t. As thus, we build a map from
the source domain A to the residual domain Res, which can
provide a guidance for the following enhanced branch.
Enhanced Branch is designed to build a mapping from
the source domain A to the target domain B by integrat-
ing complementary information from the residual branch. To
maintain consistency with the residual branch, the enhanced
branch uses a Brownian bridge diffusion process that learns
to establish the bridge from a fixed initial point xT = x to
the target x0 = y. Formally, the forward enhanced diffusion
process is defined as follows:

q(xt|x0,y) = N (xt; (1−mt)x0 +mty, δtI) (4)
where x0 = x, xt = y, mt = t/T and the variance term
δt = 2(mt −m2

t ). Unlike conventional diffusion processes,
the reverse process of the enhanced diffusion aims to predict
xt−1 based on xt and the estimated residual information rt
from the residual branch:

pθe(xt−1|(xt, rt),y) = N (xt−1;µθe(xt, rt, t)δ̃tI) (5)
where µθe(xt, rt, t) is the learned mean value of the noise.
In particular, we employ an enhanced noise predictor network
(ϵθe(xt, rt, t)) to predict the noise component at the step t:

Ex0,y,ϵ[cϵt ∥ mt(y − x0) +
√
δϵ− ϵθe(xt, rt, t) ∥2] (6)

3.4 Hybrid-Granularity Fusion
As aforementioned, we establish a bridge between the co-
diffusion branches, and the information from the residual
branch is injected into the enhanced branch to guide the
A2MIS process. However, despite the abundant semantic in-
formation contained in the encoder-decoder features of de-
noising models, its application in optimizing I2I has not been
fully explored, especially for the Brownian bridge diffusion.
Thus, we investigate the encoder-decoder features within de-
noising models in the Brownian bridge diffusion process. For
clarity, we implement diffusion in the voxel space ranter than
latent space. As shown in Fig. 2, for the same source im-
age, the encoder features are similar whether diffusing to the
residual image or the target image, mainly capturing the se-
mantic information of the source image. However, we ob-
serve significant differences in the decoder features, which
are primarily related to the translated images. Building on the
observations, we propose the Hybrid-Granularity Fusion, in-
cluding a Semantic Alignment module to strengthen semantic
representations and a Complementary Attention mechanism
to integrate complementary features.
Semantic Alignment. To effectively enhance the semantic
representation, we introduce the Semantic Alignment (SAM)
that is embedded in different scales (l ∈ {1, 2, 3}) of the
down-sampling blocks in ϵθe , where we refer F l

e and F l
eo to

its input and output. Specifically, the SAM is designed to
refine the learned representations by aligning and integrating
semantic information from the residual branch F l

re:

AliCof = σ(P (Cl
3(Cl

1(F
l
re)⊕ Cl

2(F
l
e)))) (7)

F l
eo = F l

eAliCof + F l
re(1−AliCof) (8)

where Cl
1, Cl

2, Cl
3 are 1 × 1 convolutions for the l-th scale

down-sampling block and P is the adaptive average pooling.

Source Image

Residual Diffusion Branch

Enhanced Diffusion Branch

Encoder-feature Decoder-feature Residual Image

Source Image Encoder-feature Decoder-feature Target Image

Figure 2: Visualization of encoder-decoder features of the denoising
model during the Brownian bridge diffusion process, with the trans-
formation from the same source image to the residual image (top)
and the target image (bottom).

Complementary Attention. To adaptively incorporate the
residual details from the decoder features in the residual
branch, we introduce the Complementary Attention (CMA)
that is embedded in different scales (l ∈ {1, 2, 3}) of up-
sampling blocks in ϵθe , where we refer F l

d and F l
do to its in-

put and output. Given the multi-scale residual feature maps
F l
re from ϵθr , the CMA module aims to compensate for the

missing necessary details. Specifically, we propose to inject
multi-scale residual details by biasing the queries of cross-
attention n the up-sampling blocks as shown in Fig. 1(c), i.e.,

Q = W l
qF

l
d, K = W l

kF
l
rd, V = W l

vF
l
rd (9)

A = softmax(
QKT

√
d

), Fdo = AV (10)

where W l
q , W l

k, W l
v are specific projection layers for the l-th

scale up-sampling block of dimension d.

3.5 Latent Consistency Score
To enhance the credibility of synthesized images, we propose
a self-constraint latent consistency score (LCS). It does not
require target images, allowing it to serve as an indicator for
sampled images. Specifically, we consider that the latent fea-
tures LRes and LB can be effectively fused to generate LA.
Thus, we pre-train a sample convolution-based fusion model
that takes LRes and LB as inputs and outputs the correspond-
ing LA. We first utilize a paired datasets to pre-train this fu-
sion network, enabling that it accurately fuses LB and LRes

to generate LA. After pre-training, we incorporate it into our
proposed RLBCD as a latent evaluation network HE . It re-
ceives estimated representations L̂B and L̂Res to predict the
fused representation L̂A. During the training stage of RL-
BCD, we impose a constraint on the similarity between the
predicted L̂A and the true latent representation LA as an aux-
iliary loss::

ELA,L̂A
[∥ LA − L̂A ∥2] (11)

Besides, during the generation phase, we can evaluate the re-
liability of the synthesized images by assessing the similarity
to select the best-performing one.
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4 Experiments
4.1 Datasets
To comprehensively validate our proposed method, we con-
duct extensive experiments on five datasets involving vari-
ous anatomical-metabolic modality translations. Initially, we
conduct experiments on three datasets, including two public
datasets, i.e. Head-Neck-PET-CT [Vallières et al., 2017] and
Duke-Breast-Cancer-MRI [Saha et al., 2021], as well as an
in-house dataset, i.e. Chest-CTA. Head-Neck-PET-CT con-
tains a total of 93 patients with the FDG-PET/CT scan. Each
PET/CT volume consists of 119 slices and the size of each
slice is 128×128. Duke-Breast-Cancer-MRI contains a total
of 922 patients with the contrast-enhanced MRI scan. Each
MR volume consists of 60 slices and the size of each slice is
256×256. Chest-CTA contains a total of 114 patients with
the CT/CTA scan. Each CT/CTA volume consists of 560
slices and the size of each slice is 256×256. The above
three datasets are split in a 7:1:2 ratio based on case-level
for training, validation and testing. Subsequently, we utilize
two independent datasets to assess the models’ generaliza-
tion ability and downstream value, including a public dataset,
i.e. Breast-MRI-NACT-PiloT [Newitt and Hylton, 2016], and
an in-house dataset, i.e. HUASHANCT-PET. Breast-MRI-
NACT-PiloT contains a total of 64 patients with the contrast-
enhanced MRI protocol. Each MR volume consists of 60
slices and the size of each slice is 256×256. Ground truth
segmentation of the data are provided in the dataset for tu-
mor annotation. HUASHANCT-PET contains a total of 43
patients with the FDG-PET/CT scan and corresponding car-
diac amyloidosis diagnostic labels. Each volume consists of
148 slices and the size of each slice is 128×128.

4.2 Baselines and Evaluation Metic
We compare our proposed method with six state-of-the-art
A2MIS approaches, including Pix2Pix [Isola et al., 2017],
CycleGAN [Zhu et al., 2017], VQI2I [Chen et al., 2022], QS-
Attn [Hu et al., 2022], BBDM [Li et al., 2023a], and UNSB
[Kim et al., 2024]. All baselines are trained using paired
anatomical-metabolic images for a fair comparison. We com-
prehensively evaluated the experimental results from both the
synthesis and downstream segmentation and diagnosis. In
the synthesis evaluation, we evaluate the quality of translated
images using Mean Absolute Error (MAE), Peak Signal-to-
Noise Ratio (PSNR), and Structural Similarity Index (SSIM).
As for the segmentation evaluation, we assess the cancer seg-
mentation value of the translated images through a unified
segmentation model, i.e. U-Net, and quantify the segmenta-
tion results using Dice Similarity Coefficient (DSC) and Jac-
card Index (JI). As for the diagnosis evaluation, we assess the
cardiac amyloidosis prediction value of the translated images
through a unified classification model, i.e. ResNet, and quan-
tify the classification results using accuracy (ACC) and the
area under the curve (AUC).

4.3 Implementation Details
The developed model is implemented using Pytorch and the
experiments in this study are executed on a platform compris-
ing four NVIDIA RTX A6000 GPUs to accelerate the training

process. We first pre-train VQGAN [Esser et al., 2021] with
downsampling factor of 8 using the collected datasets. The
number of time steps of Brownian bridge diffusion is set to
be 1000 during the training stage, and then we employ 200
sampling steps during the sample stage with the considera-
tions of both sample quality and efficiency following [Li et
al., 2023a]. All models are first trained and evaluated on the
Head-Neck-PET-CT, Duke-Breast-Cancer-MRI, and Chest-
CTA datasets. Then we directly assess the performance of
the models trained on the Duke-Breast-Cancer-MRI dataset
using the Breast-MRI-NACT-PiloT dataset, and we evaluate
the performance of the models trained on the Head-Neck-
PET-CT dataset using the HUASHANCT-PET dataset to ver-
ify their generalization ability. For the downstream diagnosis
and segmentation tasks, we use a five-fold cross-validation
strategy and the mean scores of results are presented.

4.4 Comparison with Baselines
Table 1 and Fig. 3 report the performances of our proposed
method and state-of-the-art approaches on the Head-Nect-
PET-CT, Duke-Breast-Cancer-MRI, and Chest-CTA datasets
for various anatomical-metabolic modality translations. The
best score in each column is in bold and the second best is
underlined. Experimental results demonstrate that the pro-
posed RLBCD comprehensively outperforms other methods
on all three datasets across all evaluation metrics. This re-
sult verifies the effectiveness of our framework for diverse
A2MIS, including translations from CT to PET, pre-contrast
MRI post-contrast MRI, and CT to CTA. In three different
datasets, our methods achieves SSIM of 5.20%, 5.90%, and
4.52% gain over the best baseline model. This signifies that
our RLBCD is capable of integrating critical complementary
information in residual branch that other models may over-
look. Among all baselines, CycleGAN and BBDM achieves
better performance on different datasets, indicating the effec-
tiveness of GAN-based and Diffusion-based approaches. In
comparison, the proposed method utilizes a co-diffusion pro-
cess with a Hybrid-Granularity Fusion to capture consistent
semantics and inter-domain differences for the maximal re-
construction of modality-specific details.

4.5 Ablation Study
To explore the impact of each designed component in the pro-
posed method, we conduct an extensive ablation analysis by
evaluating different RLBCD variants as follows:

• RLBCD without the Semantic Alignment (w/o SAM):
This variant replace the SAM with a direct combination
of two encoder features in denoising models.

• RLBCD without the Complementary Attention (w/o
CMA): This variant replace the CMA with a direct com-
bination of two decoder features in denoising models.

• RLBCD without the Hybrid-Granularity Fusion
(w/o HGF): This variant replace the HGF with a direct
combination of encoder-decoder features.

• RLBCD without the Latent Consistency Score in
training (w/o LCS): This variant removes the auxiliary
latent consistency loss during the training phase.

Preprint – IJCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.



Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Head-Neck-PET-CT Duke-Breast-Cancer-MRI Chest-CTA
CT → PET Pre-contrast MRI → Post-contrast MRI CT → CTA

MAE (Voxel)↓ PSNR (dB)↑ SSIM (%)↑ MAE (Voxel)↓ PSNR (dB)↑ SSIM (%)↑ MAE (Voxel)↓ PSNR (dB)↑ SSIM (%)↑
Pix2Pix 11.42±2.97 19.42±1.87 68.00±5.55 6.73±1.35 23.86±1.53 70.88±4.47 9.74±2.13 21.22±1.99 76.60±4.71
CycleGAN 8.42±4.66 22.06±4.86 65.82±8.64 6.91±1.20 24.42±1.46 65.39±4.84 8.57±2.11 22.56±2.29 81.34±4.82
VQI2I 9.10±4.70 21.90±3.21 58.81±5.88 7.32±1.39 24.50±1.27 68.51±4.93 18.95±2.29 16.06±0.85 58.63±3.71
QS-Attn 10.22±2.70 19.48±1.10 48.49±7.07 9.29±1.43 24.11±1.65 42.69±4.65 10.66±3.33 20.99±2.36 80.14±5.30
BBDM 3.85±2.19 23.91±3.68 86.06±6.98 5.73±1.11 25.65±1.41 75.55±4.65 12.70±1.95 19.31±1.10 72.80±4.61
UNSB 6.09±2.70 23.20±1.10 84.89±7.07 7.68±2.12 23.54±2.16 71.98±6.05 10.00±3.90 21.33±3.26 78.78±6.71
RLBCD 2.97±1.23 25.97±3.77 91.26±4.67 3.59±1.12 27.14±2.35 81.45±5.41 6.51±0.98 24.92±0.85 85.86±3.68

Table 1: Comparison of RLBCD and baselines for A2MIS prediction on two public and one in-house datasets. (Mean ± Std)

TargetSource OursBBDMPix2Pix CycleGAN VQI2I QS-Attn UNSB
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Figure 3: Qualitative comparison with state-of-the-art baselines on three datasets with various A2MIS tasks.

Head-Neck-PET-CT Chest-CT-CTA
CT → PET CT → CTA

MAE PSNR SSIM MAE PSNR SSIM
RLBCD 1.97 25.97 91.26 6.51 24.92 85.86
w/o SAM 2.21 25.45 90.02 6.85 24.51 85.47
w/o CMA 2.88 24.85 88.14 8.47 23.08 83.78
w/o HGF 3.20 24.56 87.49 9.28 21.50 80.26
w/o LCS 2.36 25.18 89.55 6.68 24.56 84.99
w/o RDB 3.85 23.91 86.06 12.70 19.31 72.80
w/o EDB 4.01 23.51 85.23 11.83 19.88 73.56

Table 2: Ablation study of designed components in RLBCD.

• RLBCD without the Residual Branch (w/o RDB):
This variant removes the residual branch, representing
the original Brownian bridge diffusion model (BBDM).

• RLBCD without the Enhanced Branch (w/o EDB):
This variant removes the enhanced branch and aims to
predict the residuals of two images for translation.

Table 2 reports the performance of RLBCD and its six vari-
ant s on Head-Neck-PET-CT and Chest-CT-CTA datasets. It
can be observed that all variants of RLBCD produce the de-
creased performance, demonstrating that all components con-
tribute to A2MIS.

4.6 Influence of Latent Consistency Score
We investigate the relationship between the latent consistency
score (LCS) and the quality of generated images. For each
anatomical image, we employ RLBCD to generate ten corre-
sponding metabolic images. We then categorized these im-
ages into five groups based on the normalized LCS values

Figure 4: Relation between LCS and the quality of sampled images.

and calculate the SSIM metric for each group. As illustrated
in Fig. 4, as the LCS increases, the quality of the correspond-
ing generated images also improves. The findings underscore
the importance of the LCS as a valuable metric for evaluating
the quality of generated samples, providing insights into the
effectiveness of our generative models.

4.7 External Validation
Medical Images typically exhibit diversity across different
data sources due to imaging protocols, patient demographics,
and the variability in disease presentation. To assess the gen-
eralization ability of the models, we conduct external valida-
tion using two independent datasets. Specifically, we directly
apply the models trained on the Duke-Breast-Cancer-MRI
dataset to test its performance on the Breast-MRI-NACT-
PiloT dataset for synthesizing post-contrast MRI from pre-
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HUASHANCT-PET
CT → PET

MAE (Voxel) ↓ PSNR (dB) ↑ SSIM (%) ↑
Pix2Pix 13.15 18.35 60.82
CycleGAN 15.16 17.81 73.02
VQI2I 11.54 19.55 48.75
QS-Attn 15.98 18.28 53.65
BBDM 10.43 19.16 67.49
UNSB 9.23 20.10 69.71
RLBCD 6.53 22.15 78.85

Table 3: Comparison of RLBCD and baselines for PET generation
from CT on an external dataset.

Breast-MRI-NACT-PiloT
Pre-MRI → Post-MRI

MAE (Voxel) ↓ PSNR (dB) ↑ SSIM (%) ↑
Pix2Pix 15.89 20.41 28.98
CycleGAN 11.59 23.69 43.72
VQI2I 17.12 19.41 33.97
QS-Attn 16.88 18.94 55.58
BBDM 12.82 22.83 36.45
UNSB 14.20 21.48 41.76
RLBCD 8.12 24.58 60.23

Table 4: Comparison of RLBCD and baselines for post-contrast
MRI generation from pre-contrast MRI on an external dataset.

contrast MRI. Meanwhile, we utilize the models trained on
the Head-Neck-PET-CT dataset to test its performance on the
HUASHANCT-PET dataset for synthesizing PET from CT.
As reported in Tables 3,4, all methods exhibit decreased re-
sults in external testing. Despite this, our proposed RLBCD
still achieves the best performance across both independent
test sets. This indicates that our proposed method maintain a
higher level of robustness and adaptability compared to base-
lines by effectively capturing inter-domain differences.

4.8 Diagnostic Value of Synthetic Images
We further evaluate the diagnostic value of the generated im-
ages by diagnosing the status of cardiac amyloidosis on the
HUASHANCT-PET dataset. Specifically, we first utilize the
generative models to generate PET from CT. Then both the
generated PET and the original CT are fed into a ResNet net-
work for the training and testing of cardiac amyloidosis diag-
nosis. Classification results are presented in Table 5. When
using only CT for diagnosis, the AUC and ACC are 43.07%
and 69.88%, respectively. In comparison, predictions using
the generated PET by each model demonstrate an improve-
ment in diagnosis performance. This enhancement highlights
the significance of the A2MIS task, which effectively capture
physiological changes of lesions from anatomical images to
facilitate early diagnosis. Besides, among all various methods
evaluated, our proposed method achieves the superior perfor-
mance, further verifying its effectiveness in clinical practice.

4.9 Annotation Value of Synthetic Images
We also evaluate the annotation value of the synthesized im-
ages by segmenting breast tumors in the Breast-MRI-NACT-
PiloT dataset. Specifically, we employ generative models to

HUASHANCT-PET
Cardiac Amyloidosis Classification

AUC (%) ↑ ACC (%) ↑
IA 43.07 69.88
IA+ÎB (Pix2Pix) 66.82 (+23.75) 73.17 (+3.29)
IA+ÎB (CycleGAN) 49.01 (+5.94) 71.72 (+1.84)
IA+ÎB (VQI2I) 56.56 (+13.49) 73.26 (+3.38)
IA+ÎB (QS-Attn) 53.52 (+10.45) 72.78 (+2.90)
IA+ÎB (BBDM) 62.18 (+19.11) 72.89 (+3.01)
IA+ÎB (UNSB) 57.38 (+14.31) 71.43 (+1.55)
IA+ÎB (RLBCD) 69.45 (+26.38) 75.02 (+5.14)

Table 5: Comparison of RLBCD and baselines for disease classifi-
cation on an external dataset using synthesized images.

Breast-MRI-NACT-PiloT
Breast Cancer Segmentation
DSC (%) ↑ JI (%) ↑

IA 49.56 32.94
IA+ÎB (Pix2Pix) 54.84 (+5.28) 37.78 (+4.84)
IA+ÎB (CycleGAN) 55.48 (+5.92) 38.39 (+5.45)
IA+ÎB (VQI2I) 54.47 (+4.91) 37.43 (+4.49)
IA+ÎB (QS-Attn) 51.63 (+2.07) 34.79 (+1.85)
IA+ÎB (BBDM) 52.28 (+2.72) 36.19 (+3.25)
IA+ÎB (UNSB) 51.94 (+2.38) 35.08 (+2.14)
IA+ÎB (RLBCD) 57.12 (+7.56) 39.08 (+6.14)

Table 6: Comparison of RLBCD and baselines for breast cancer
segmentation on an external dataset using synthesized images.

generate post-contrast MRI from pre-contrast MRI. Subse-
quently, both the generated post-contrast MRI and the orig-
inal pre-contrast MRI are fed into a U-Net network for the
training and testing of tumor annotation. The segmentation
results are reported in Table 6. When using only pre-contrast
MRI for tumor segmentation, the DSC and JI metrics are
49.56% and 32.94%, respectively. In comparison, predic-
tions made using the generated post-contrast MRI from each
model exhibit an improvement in segmentation performance.
This improvement highlights the effectiveness of A2MIS,
which also provide valuable information for voxel-level tasks.
Moreover, our RLBCD achieves the best performance among
all competing baselines, indicating its superiority in facilitat-
ing accurate tumor annotation.

5 Conclusion
In this work, we propose a residual-guided latent Brownian-
bridge co-diffusion network (RLBCD) for A2MIS. By lever-
aging a residual diffusion branch to capture inter-domain dif-
ferences, RLBCD is able to maximally reconstruct modality-
specific details. A Hybrid-Granularity Fusion is embedded
in RLBCD to enhance consistent semantics and complemen-
tary information. Besides, we devise LCS that severs as an
indicator of the quality of the synthesized images. Compre-
hensive experiments demonstrate that RLBCD not only sur-
passes the performance of recent state-of-the-art methods on
various datasets and tasks, but provides valuable information
for downstream diagnosis and segmentation applications.
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