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Abstract

Federated Graph Neural Network (FedGNN) in-
tegrate federated learning (FL) with graph neu-
ral networks (GNN5s) to enable privacy-preserving
training on distributed graph data. Vertical Fed-
erated Graph Neural Network (VFGNN), a key
branch of FedGNN, handles scenarios where data
features and labels are distributed among partici-
pants. Despite the robust privacy-preserving design
of VFGNN, we have found that it still faces the risk
of backdoor attacks, even in situations where labels
are inaccessible. This paper proposes BVG, a novel
backdoor attack method that leverages multi-hop
triggers and backdoor retention, requiring only four
target-class nodes to execute effective attacks. Ex-
perimental results demonstrate that BVG achieves
nearly 100% attack success rates across three com-
monly used datasets and three GNN models, with
minimal impact on the main task accuracy. We also
evaluated various defense methods, and the BVG
method maintained high attack effectiveness even
under existing defenses. This finding highlights the
need for advanced defense mechanisms to counter
sophisticated backdoor attacks in practical VFGNN
applications.

1 Introduction

Graph Neural Networks (GNNs), with their powerful capabil-
ity to process graph-structured data, have demonstrated sig-
nificant value in cross-domain applications such as bioinfor-
matics, chemical analysis, medical diagnosis, and financial
risk management [Wu et al., 2020]. Specifically, in financial
fraud detection scenarios, the use of transaction relationship
graphs to identify potential fraudulent activities highlights the
unique advantages of GNNs [Cheng et al., 2023]. However,
in real-world settings, graph data is often distributed across
different stakeholders, and due to data privacy regulations and
the need to protect commercial secrets, traditional centralized
training paradigms face severe challenges [Liu er al., 2024].
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Figure 1: An example of VFGNN backdoor attack

Federated Graph Neural Networks (FedGNN), as a combi-
nation of Federated Learning (FL) and GNNs, provide an in-
novative solution to this challenge [He ef al., 2021]. Among
them, Vertical Federated Graph Neural Networks (VFGNN)
demonstrate unique value in cross-organizational collabora-
tion scenarios due to their ability to handle heterogeneous
distributions of features and labels [Mai and Pang, 2023]. For
instance, as shown in Figure 1, in a credit evaluation sys-
tem, financial institutions hold user transaction records and
credit labels, social media platforms possess social graphs,
and e-commerce platforms provide consumer behavior fea-
tures. This collaborative multi-party data setting is a typical
application scenario for VFGNN.

Although VFGNN effectively protects privacy in dis-
tributed scenarios, it also faces significant security chal-
lenges, with backdoor attacks being a major potential threat.
Attackers can implant concealed trigger patterns to induce
specific inputs to produce predefined malicious outputs while
maintaining the model’s normal predictive performance, pos-
ing severe risks to the practical application of VFGNN. For
example, in the credit evaluation scenario illustrated in Fig-
ure 1, malicious participants could use backdoor attacks to
enable high-risk users to obtain credit approvals, leading to
serious financial security issues. However, research on back-
door attacks targeting VFGNN remains nearly nonexistent.
This is primarily due to two major challenges faced by tradi-
tional backdoor attacks in VFGNN scenarios: first, the label
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isolation mechanism among participants restricts traditional
attack paths based on label manipulation; second, the com-
plex topology of graph data requires backdoor triggers to not
only maintain structural consistency but also satisfy conceal-
ment requirements.

To address the above challenges, this paper proposes a
novel graph-structured backdoor attack method based on
multi-hop adjacency relationships, termed BVG. This method
innovatively designs a backdoor injection mechanism tailored
for VFGNNS . First, it employs a multi-hop adjacency trigger
generation algorithm to covertly propagate target-class fea-
tures within the graph structure. Second, a backdoor retention
strategy is adopted to enhance the attack’s stability. Experi-
mental results demonstrate that BVG requires knowledge of
only four target-class nodes to achieve an attack success rate
of over 99%, with minimal impact on the performance of the
main task. The main contributions of this paper are as fol-
lows:

* Reveal backdoor attack risks in VFGNNs: A sys-
tematic analysis of security threats within the VFGNN
framework highlights unique risk characteristics distinct
from traditional scenarios.

¢ Design multi-hop graph structural triggers: A bi-
level optimization strategy generates backdoor triggers
for graph propagation, enabling flexible and covert back-
door injection without disrupting the graph structure.

* Develop a backdoor retention strategy: This effec-
tively addresses instability issues in backdoor injection
during federated training, improving attack persistence.

* Validate effectiveness through experiments: Exten-
sive experiments on widely-used benchmark datasets
demonstrate that BVG is efficient and stable, maintain-
ing high attack success rates even under various back-
door defense mechanisms.

2 Related Work

In the fields of VFL and GNN, researchers are investigating
backdoor attacks specifically tailored to each domain.

2.1 Backdoor Attacks on VFL

Federated Learning is especially vulnerable to backdoor at-
tacks due to its distributed nature [Zhang et al., 2024]. How-
ever, the vertically split model of VFL restricts the attacker’s
access to the training labels, let alone modify them.

There are two notable directions in attempting to solve this
issue. The first is to conduct label inference attacks [Fu et
al., 2022] to get some labels in advance. For example, VIL-
LAIN [Bai er al., 2023] leverages label inference to pinpoint
samples of the target label and then poisons these samples
to inject the backdoor. BadVFL [Naseri er al., 2024] and
LR-BA [Gu and Bai, 2023] assume attackers can acquire la-
bels of a certain number of samples from each category with
label inference. Another direction is to make the knowl-
edge of a small number of labeled samples from the target
class a prerequisite [Chen er al., 2024; Chen et al., 2023a;
He et al., 2023]. These methods try to use as few as possible
(e.g., 500 for [Chen er al., 2024] and 0.1% for [Chen ef al.,

2023al) the labeled target-class samples to establish links be-
tween backdoor triggers and target labels. Normally, in VFL,
the backdoor attack can only be conducted in a clean-label
manner [Zhao et al., 2020]. Therefore, works like TPGD [Liu
et al., 2022] assuming the label modification capability of the
active party are impractical.

2.2 Backdoor Attacks on GNN

The unique challenge to graph-oriented backdoor attacks lies
in the inherently unstructured and discrete nature of graph
data [Xi et al., 2021]. For structured and continuous data like
images, attackers can directly stamp a trigger pattern (e.g., a
black square on the bottom right of the image) s onto a benign
image  to achieve a poisoned sample =, = x + s [Li et al.,
2022al. However, the backdoor attacks against GNN involve
design triggers within a large spectrum, including topological
structures and descriptive (nodes and edges) features [Xi et
al., 2021]. The effectiveness of backdoor attacks largely de-
pends on designing triggers tailored to the specific attributes
of the target task. These triggers mainly fall into three cate-
gories: malicious subgraph structures, graph structure pertur-
bations, and node attribute manipulation.

Malicious subgraph structures involve adding malicious
subgraphs to nodes [Dai et al., 2023], edge endpoints [Zheng
et al., 2023], or specific positions in the graph [Zhang et al.,
2021; Xi et al., 2021], causing nodes, edges, or graphs to be
misclassified. Graph structure perturbation involves injecting
special node connections into the training set adversarially,
allowing backdoor attacks to be executed by merely modify-
ing the graph’s topology during the attack [Yang et al., 2022].
Node attribute manipulation involves carefully designing spe-
cial node features and adding them to the target class nodes
in the training set, followed by adaptive optimization of the
graph structure to train a GNN model with backdoors [Xing et
al., 2023; Chen et al., 2023b]. Although these methods are vi-
able in centralized GNN scenarios, they all rely on full access
to the training set, which is nearly impossible in VFGNN.

The aforementioned backdoor techniques, whether tailored
for GNN or VFL, are not applicable to VFGNN due to unique
threat models. Existing methods such as CBA, DBA, and
Bkd-FedGNN focus on HFGNN and do not address the needs
of VEGNN [Xu et al., 2022; Liu et al., 2023]. VFL backdoor
attack methods lack consideration for the data structure of
graph data, while GNN backdoor attacks face difficulties in
handling vertically partitioned data. To address these issues,
this paper proposes the BVG algorithm for VFGNN, lever-
aging multi-hop triggers and a backdoor retention strategy to
achieve efficient backdoor attacks.

3 Proposed Approach

In this section, we formalize the backdoor attack problem
in VFGNN and provide a detailed threat model. Next, we
present our attack method, with a sketch of the entire ap-
proach shown in Figure 2.

3.1 Problem Formulation

Graph data is represented as G = (V, E, X), where V =
{vi,...,v,} is aset of Nnodes, E C V x V is a set of
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Figure 2: A sketch of our proposed backdoor attack for VFGNN.

edges, and X = {x1,...,zn} is a set of node attributes,
with z; being the attribute of node v;. The adjacency matrix
of graph G is denoted as A € RN *N where A;; = 1if nodes
v; and v; are connected; otherwise, A;; = 0.

We focus on the node classification problem, which is com-
mon in real-world applications like social networks. In induc-
tive node classification tasks, only a subset of nodes V7, in the
training graph have labels Y, = {y1,...,yn,}. The test
nodes Vr are disjoint from the training nodes.

In VFGNN, K (K >= 2) participants collaboratively train
a model using their private data. Each participant k has
its own local graph G* = (V, E*, X*), which comprises
the entire node set V, a subset of edges E*, and a sub-
set of feature data X* [Chen et al., 2020]. From a global
perspective, all participants collectively own a global graph
G9' = (V, B9, X9'), where £9' = E' U ... U E¥, and for
any node attribute in X, wf = z}||...||zX, where || is the
concatenation operator. One of the K participants is an active
party that knows the corresponding labels of the labeled node
set V, € V, and all other participants are negative parties
that have no access to the label information.

Each participant employs a local GNN model f; parame-
terized by 6}, to compute the local output HF = fi(GF; 0;),
where G¥ denotes the computation graph of node v;. In addi-
tion to training its own local model, the active party also trains
a top model G parameterized by 6;,,, which aggregates the
outputs from all local models to minimize the loss function
L. Therefore, the VFGNN model training can be formulated

as
. 1 K
argmin Y L(G(H}, Hf).y) ¢))
v EVL
where © = {61, -- ,0k;0:0p} represents the parameters of
the overall VFGNN model.

As an adversary in a backdoor attack, the main objectives
are threefold: first, to ensure that the federated learning task
can be completed successfully; second, to establish a map-
ping between the trigger and the backdoor target class; and
third, to ensure that the backdoor injection remains unde-
tected by the active party. These three objectives must be
achieved simultaneously during the VFGNN training process.
Specifically, the attacker needs to inject the backdoor clev-
erly, ensuring that the training process is not disrupted and
that no suspicious behavior is exposed. After the VFGNN
model is deployed, the attacker can introduce a local trig-

ger to deliberately misclassify the corresponding sample as
the target class, thereby completing the backdoor attack. The
backdoor attack objective in VFGNN is

mln Z L(F(G;0 Z L(F

v €VL v; €V

a(Gi,0); ©),7)

Main Task Backdoor Task

+ > |H; = Hil?

v, €V

Undetected Task (2)
where F' refers to the VFGNN model, which encompasses
both the top model and the bottom models of all participat-
ing parties. d represents the backdoor trigger, a(-) denotes the
operation of trigger attachment, and 7 is the backdoor target
class. H denotes the output of the bottom GNN model af-
ter the trigger injection, while H refers to the output without
trigger injection.

3.2 Threat Model

We assume the adversary is a passive party, not the active
party, because the active party can modify labels and thus
easily perform backdoor attacks. All other participants are
considered trustworthy.

Adversary’s Capacity. The adversary adheres to the VFL
protocol, transmitting local features and receiving gradients
without manipulating other participants’ information.

Adversary’s Objective. In VFGNN multi-classification
tasks, the adversary’s objective is to inject a backdoor into
the model during the training phase without being detected.
When the poisoned model is deployed for applications, it will
misclassify any local data with the backdoor trigger as the
designated target class but maintains classification capacity
for all other clean data.

Adversary’s Knowledge. In backdoor attacks, the adver-
sary requires only a very few training samples labeled target
class. Although this requirement deviates from the original
VFGNN setting, it is feasible in practical VFGNN applica-
tions because it is possible for an adversary to acquire a small
number of target class samples through various means, such
as direct purchasing [Fu et al., 2022; Gu and Bai, 2023]. Our
experiment results indicate that acquiring only one to four tar-
get class nodes is sufficient for a successful backdoor attack.
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Apart from these limited target samples, the adversary has no
information about the models and data of other parties.

3.3 Multi-hop Trigger Generation

Due to the special nature of the VFGNN architecture, all
participants are aware of all nodes in the dataset, but pos-
sess different attributes of the nodes. Therefore, the adver-
sary cannot generate a subgraph structure as a trigger like
common GNN backdoor attacks [Dai et al., 2023; Wang
et al., 2024]. Here, the trigger is added to the node at-
tributes. To prepare a trigger, we propose a multi-hop trig-
ger generation method without introducing new nodes. The
trigger generation and training are conducted synchronously
with the VFGNN model. Additionally, to enhance optimiza-
tion efficiency, we introduce a hyperparameter € as a trig-
ger threshold. By appropriately setting this threshold, we
ensure the stealthiness of the trigger while simplifying the
optimization task from a triple optimization to a dual op-
timization. We use the PGD method [Madry et al., 2018;
Huang er al., 2021] to generate the trigger. The optimization
formula for the trigger is as follows:

Opr1 = e (0 — - sgn (Vs L (F (a(Gp, 6); ©%) , 7)) ,3)

(
where ¢ is the step index, G, represents the computation
graph of the node v, to inject the trigger, where v, € V).
VsL (F (a(Gp,0:); ©%),7) denotes the gradient of the loss
function for the backdoor target class with respect to the trig-
ger, « is the step size, Il. keeps § within an e-ball at each
step, F(©*) refers to the pre-trained VFGNN model. sgn(-)
denotes the sign function.

The multi-hop trigger ¢ affects the target node and its
neighbors, § = {60, 6%,--- 6™}, Here, 0™ is the trigger
added to the attributes of the m-hop neighbors of the target
node v,. Therefore, the operation of adding triggers to G,
can be expressed as

a(gpa(s) = 7XM—hop+6M)a (4’)

where x,, is the attribute of node v,, X,,_pop are the at-
tributes of the m-hop neighbors, and 4°, 6 are the triggers
added to these attributes, respectively.

According to (3), the generation of the trigger relies on
the gradients of the target class nodes 7. The generation of
the trigger and the training of the VFGNN model are accom-
plished together, which can be expressed through the follow-
ing bi-level optimization:

mln Z L(F(a(G;,0);0%),7)

v;EVp
> L(F(G;0),u) 5)

v, EVL—Vp

+ ) L

v; EVp

(Xp+6oa Xl—hop"'_(sla

st. © = argmin
a(G;,6);0),7),

where the trigger ¢ is trained according to all known target
class nodes Vp available to the adversary, Vp € V1. Essen-
tially, this trigger serves as a universal trigger for the target
class 7 [Shafahi et al., 2020; Zeng ef al., 2022].

Algorithm 1 Multi-hop Trigger Generation

Require: Training dataset G; number of MTG epochs T'; tar-
get class nodes Vp with target label 7
Ensure: trigger §, model parameters ©
1: Initialize: § < O.
2: while not reached 7" do
3 for v; in Vy, parallel do
4 Adversary A: updates {GA = a(G#,0) }v,evp-
5: Passive party:
6: for each party k = 1,2, ..., K parallel do
7 k computes embedded features HF using its bot-
tom model fj.

8: end for

9: Active party:
10: computes Eq. (1), then updates 07, using dé%
11: sends to all parties.

12: Adversary A:
13: computes V5L with {3‘9}? 8@% Yoieve
14: updates 6 with Eq. (3)
15: Passive party:
16: for each party k = 1,2, ..., K parallel do
17: k computes Vg, £ = 25 om;

: putes Vi, 5H. 90

18: k updates model parameters 6y,.
19: end for
20:  end for

21: end while

Algorithm 1 outlines the procedure of the proposed attack.
In each iteration of VFGNN model training, the adversary
A injects the trigger  into the local computation graph of
known target class samples Vp according to (4) (line 4). Sub-
sequently, each participant £ computes the node embeddings
through the bottom model f;. (lines 5-8), where HF repre-
sents the embedded features of the i-th data from the k-th
participant. Upon receiving these embedded features, the ac-
tive party computes the gradients of the loss function with
respect to the top model and the embedded features of each
participant according to (1). The top model is then updated,
and the gradients of the loss with respect to the embedded
features [,% are transmitted to each participant (lines 9-11),
where H; denotes the aggregation of the embedded features
from all participants for the i-th data. After receiving the gra-
dients, the adversary computes V£ and updates the trigger
using (3). The current model parameters serve as the pre-
trained model F'(©*) (lines 12-14). Finally, each participant
updates its bottom model based on the gradients sent by the
active party (lines 15-19).

3.4 Backdoor Retention

When injecting backdoors, using only a small number of sam-
ples may lead to unstable effects. For instance, a backdoor
may perform well in one epoch but degrade suddenly in the
next. To ensure the stability of backdoors, we propose a
method called Backdoor Retention (BR).

The BM method consists of two key steps. First, the at-
tacker evaluates the impact of the backdoor. Since the at-
tacker cannot directly access the output of the VFGNN model
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during training, they rely on an assumption: if the backdoor
is successfully injected, the outputs H of nodes triggered by
the injection should exhibit high similarity. Based on this as-
sumption, the backdoor effectiveness E is approximated us-
ing the following formula:

6
nZ 5 T ||H|| ||H IS ©

=1 j=1

where n is the number of nodes involved in the trigger injec-
tion, and H; represents the output of node v; in the attacker’s
bottom model.

After estimating F, the attacker performs the following ac-
tions in each epoch: if E exceeds a predefined threshold, the
attacker updates the bottom model and trigger; otherwise, the
model and trigger from the previous epoch are retained. This
approach ensures the stability and effectiveness of the back-
door throughout the training process.

4 Experiments

4.1 Experiments Settings

Local GNN Models

To demonstrate the effectiveness of BVG in VFGNN settings
with different local GNN structures, we use three common
GNN models as local participants:

Graph Convolutional Network (GCN) [Kipf and
Welling, 2016]: GCN captures local features by propagating
and aggregating information between nodes and their neigh-
bors. Each local GNN model in VFGNN uses a two-layer
GCN.

Graph Attention Network (GAT) [Velickovié et al.,
2017]: GAT uses an attention mechanism to assign adaptive
weights to neighbor nodes, enhancing the model’s ability to
focus on important nodes.

Simple Graph Convolution (SGC) [Wu er al, 2019]:
SGC simplifies GCN by removing nonlinear activations and
reducing layers, making it more efficient while retaining es-
sential graph structural information.

To ensure a fair comparison with previous studies [Chen
et al., 2022], we use a two-layer GNN model for each par-
ticipant’s local GNN to extract local node embeddings, with
the dimension set to 16. The number of hidden units is fixed
at 32. For GCN and GAT, the activation function is ReL.U.
VFGNN is trained using Adam, with a learning rate of 0.01.

Datasets

This paper uses three widely adopted public datasets to eval-
uate the performance of BVG, including Cora [McCallum et
al., 2000], Cora_ml [McCallum et al., 2000], and Pubmed
[Sen et al., 2008]. The basic dataset statistics are summarized
in Table 1.

Each participant in the VFGNN framework has access to
all the nodes in the datasets, but the node features are equally
split among the participants. We randomly split the edges of
the graphs into equal parts, one for each participant, without
overlapped edges between any two participants. We assume
the adversary knows only four target class nodes (i.e., |V,| =
4), which are randomly selected from the training set.

Datasets Nodes Edges Features Classes
Cora 2708 5429 1433 7
Cora_ml 2810 7981 2879 7
Pubmed 19717 44325 500 3

Table 1: Basic information of the three datasets

Performance Metrics

To evaluate the performance of the BVG method, we use
three common metrics: Attack Success Rate (ASR), Main
Task Accuracy (MTA) [Li et al., 2022b], and Mean Squared
Error (MSE). Among them, ASR and MTA are the most
commonly used evaluation metrics for backdoor attack tasks.
ASR measures the proportion of samples in the backdoor
test set that are predicted as the target class by the poisoned
model. On the other hand, MTA assesses the accuracy of the
clean test set on the poisoned model. MSE is used to measure
the difference in the output of the bottom GNN model before
and after trigger injection. A smaller MSE indicates that the
injected trigger is less detectable by the active party, implying
better stealth.

Comparison Benchmarks

Due to the lack of research on backdoor attacks in VFGNN,
we selected three attack methods from other scenarios for
comparison, adapting them to fit VFGNN’s tasks and struc-
ture. Additionally, we incorporated common GNN backdoor
trigger schemes for further comparison. The methods are
summarized below:

GF [Chen et al., 2022] Originally designed for adversarial
tasks in VFGNN, this method was adapted to minimize the
loss of the backdoor class. It involves querying participant
embeddings, training a proxy model, and generating an ad-
versarial graph on the proxy model.

TECB [Chen et al., 2023a] A VFL backdoor attack method
for image data, adapted here for graph tasks by aligning tar-
get node attributes with trigger embeddings. It operates in
two stages: training triggers with limited labels and aligning
target gradients using the trigger.

VILLAIN [Bai et al., 2023] Designed for VFL backdoor at-
tacks, this method injects triggers into the bottom model’s
output H, supporting clean-label attacks. It combines label
inference using limited labeled samples and data poisoning
with trigger masking and randomness for enhanced robust-
ness.

Edge Triggering (ET) This method connects attack nodes to
target class nodes via edges, creating a trigger relationship
that exploits the graph’s topology to influence target node
classification.

Node Feature Triggering (NFT) Backdoor attacks are
achieved by injecting trigger patterns into nodes with known
labels, altering their features to misclassify attack nodes as
the target class under specific triggers.

Node Feature Replacement (NFR) Attackers replace the
features of attack nodes with those of target class nodes, mak-
ing their features similar to the target class and inducing mis-
classification.
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Bottom MTA
Datasets
Model GF* TECB VILLAIN ET NFT NFR BVG
Cora 48.60+2.87 62.72+4.67 65.38+2.99 65.28+2.37 66.12 +2.13 50.34+16.06 65.26+1.50
GCN Coraml  64.20+£7.63 77.06 +0.91  73.60+3.49 75.504+2.78 75.46+2.25 56.90+21.80 76.5042.63
Pubmed  44.00+10.20 64.90+4.15 69.264+2.86 59.80+15.40 68.44+2.58 32.36+13.57 71.34+ 3.54
Cora 46.60+3.93 40.06+4.10 63.44+2.01 61.70+6.37 64.30 £ 3.04 41.02+16.66 63.72+2.20
GAT Coraml  61.00£3.29 57.78+4.86 73.14+1.75 76.1242.45 76.50 £ 2.12 59.94+23.23 75.584+2.77
Pubmed  70.80+3.54 44.98+17.92 72.40+0.89 63.66+11.79 72.88+1.49 35.64+14.71 73.28 £1.73
Cora 49.00+3.03 36.68+29.97 62.56+2.12 55.04+16.96 62.08+2.63 50.12+15.24  65.30 £+ 2.08
SGC Coraml  67.40+4.03 74.7642.62 74.08+2.47 75.34 +1.62 75.08+3.59 56.80+21.77 74.944-2.39
Pubmed 41.82+12.33  54.04427.02 68.90+4.07 61.46+14.75 69.80+1.94 39.02+11.83  70.64 £ 2.95
Bottom Datasets ASR
Model GF TECB VILLAIN ET NFT NFR BVG
Cora 51.40+5.61 16.40+10.91 99.004+0.64 48.80+13.62 91.544+4.13 36.48+22.01 99.86 £ 0.28
GCN Cora_ml  26.80+£5.15 34.60+7.74 97.34+3.94 49.92+7.82 74.78+22.86  38.12+31.24  99.98 £ 0.04
Pubmed  24.00+8.00 81.40+13.83 94.96+4.44 78.96+8.91 88.02+6.41 81.86+20.90 100.00 + 0.00
Cora 15.804+6.31 56.80+35.54 94.5245.64 52.00+14.36 66.14+28.01  43.34+30.03 99.12+1.10
GAT Cora_ml  23.40+2.73 45.14+31.03 90.48+6.33 44.80+17.86 95.28+4.82 34.62+32.96 99.92 +0.16
Pubmed  30.2042.04 89.60+20.80  86.98+10.71 78.4249.90 98.64+2.23 80.62+20.43 100.00 + 0.00
Cora 51.004+4.20 12.24+13.28 99.344-0.65 54.40+22.44 87.60+13.96 32.46+19.15 99.76 4+ 0.39
SGC Coraml  27.80+3.97 15.1849.14 98.724+1.42 60.22+12.20 88.66+7.56 37.784+31.25 99.98 £+ 0.04
Pubmed 32.73+10.91  59.78+48.81 99.104+0.94 82.56+£5.47 91.3046.20 71.84+15.77  99.90 £ 0.20

Table 2: Performance comparison with other methods on three datasets and three bottom models (Standard deviation included, best results
highlighted in bold. GF* is an adversarial attack method, where a lower MTA is desirable.)
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Figure 3: Performance of BVG under multi-party settings (Standard
deviation included.)

4.2 Experiment Results Analysis

Backdoor Task Evaluation

We conducted experiments in a VFGNN framework with two
participants, as shown in Table 2. BVG and NFT perform best
on the main task, with slight variations across datasets and
models. For the backdoor task, BVG consistently achieves
the highest attack success rate across all tested models and
datasets, demonstrating its effectiveness with minimal impact
on main task performance.

We also evaluated the proposed attack method’s perfor-
mance in multi-party VFGNN scenarios where multiple par-
ticipants are involved. Unlike the two-party setting, multi-
party scenarios become more complex due to the increased
number of participants and their interactions. Our evaluation
focuses on how the presence of multiple participants affects
the ASR and the MTA of BVG.

We conducted experiments with two, three, and four partic-
ipants to evaluate the scalability and effectiveness of the pro-
posed backdoor attack method in multi-party VFGNN sce-
narios. Each participant was assigned a subset of the graph’s
edges and node features, with one active party holding the
labels for the labeled node set V. The passive participants,
including the adversary, only had partial information about
the graph. The experimental results are shown in Figure 3.

The results indicate that the main task accuracy slightly de-
creases as the number of participants increases. This trend
could be attributed to the increased complexity and noise
introduced by multiple participants. The backdoor attack
success rate remains high across all multi-party settings but
slightly decreases as the number of participants increases.
The obtained results verify that our attack method is effec-
tive even in more complex multi-party environments. The
slight decrease in success rate may be due to the dilution of
the adversary’s influence with more participants.

Backdoor Stealthiness Evaluation
In evaluating the stealthiness of backdoors in VFGNN, we
measure the difference in the intermediate layer features of
the same node before and after the backdoor injection. If the
intermediate layer features show little change after the back-
door injection, we consider the backdoor difficult for the at-
tacker to detect. For comparison, we selected several meth-
ods from Table 2 that perform relatively well on the backdoor
task, with a particular focus on the performance of the BVG
method under multi-hop triggers. Figure 4 shows the back-
door task performance and the average difference in interme-
diate layer features for five methods across three datasets.
From Figure 4, it is evident that the increase in MSE cor-
relates positively with the increase in ASR. However, despite
BVG achieving a significantly higher ASR than VILLAIN,
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Figure 4: Comparison of backdoor task performance and intermedi-
ate layer feature differences across methods

its MSE is much lower than VILLAIN, indicating that BVG
exhibits better stealthiness. For the other methods, BVG has
slightly worse stealthiness but significantly better ASR per-
formance. More importantly, the ASR performance of ET,
NFT, and NFR has almost plateaued.

Attack Efficacy under Defense

To evaluate the robustness of the BVG method, we explored
potential backdoor defense strategies within the VFGNN
framework. We considered two main types of defense:
the first type is GNN backdoor defense methods, such as
Prune and Prune+LD [Dai et al., 2023]. These methods de-
fend against backdoor attacks by pruning the edges between
nodes with low similarity. Pruning these edges can disrupt
the attacker’s trigger structure and connections. However,
VFEFGNN’s architecture prevents defenders from pruning the
adversary’s data, making these methods unsuitable.

The second type of defense methods is specific to the VFL
framework and can be divided into two categories: label
inference defense and backdoor attack defense. Label in-
ference defense operates on the assumption that backdoor
attacks often require access to a large amount of label in-
formation. To prevent label leakage, defense methods per-
turb or compress gradients to minimize information leak-
age. Two representative methods are DP-SGD and gradi-
ent compression (GC). DP-SGD provides differential privacy
protection by adding noise to gradients [Fu er al., 2022],
where the larger the noise amplitude, the smaller the privacy
leakage, and vice versa. The GC method [Fu et al., 2022;
Kairouz et al., 2021] sends only a subset of gradients with the
largest absolute values to participants, thereby reducing pri-
vacy leakage. For backdoor attack defense, there are mainly
two approaches: one is model reconstruction, which aims
to purify the top model of the active party to remove the
backdoor, with methods such as model pruning [Liu er al.,
2018] and adversarial neuron pruning (ANP) [Wu and Wang,
2021]. The other approach is to introduce interference into
intermediate-layer features [Li er al., 2021], such as embed-
ding Gaussian noise into the intermediate features provided
to the passive party to disrupt potential backdoor triggers.

In the VFGNN framework, we implemented several VFL
backdoor defense methods, each with five parameter settings,
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Figure 8: The performance of BVG under ISO defense

as shown in the figures. We present the experimental results
when the base model is GCN, and similar conclusions are
observed for GAT and SGC models.For label inference de-
fense, as shown in Figures 5 and 6, our method is minimally
affected, as the BVG method itself does not rely on label in-
ference. For backdoor attack defense, the results of the ANP
method are shown in Figure 7. The ANP method primar-
ily affects model accuracy without effectively suppressing
the backdoor. For the defense method involving interference
with intermediate-layer features, the experimental results are
shown in Figure 8. As model accuracy decreases, the suc-
cess rate of backdoor attacks also drops, making it difficult
for defenders to reduce ASR while maintaining a high MTA.

5 Conclusion

In this paper, we proposed the BVG method for backdoor at-
tacks to Vertical Federated Graph Neural Network (VFGNN).
Utilizing a multi-hop trigger generation approach, the BVG
method can perform efficient backdoor attacks with very lim-
ited knowledge of target class nodes. Extensive experiments
on three datasets with three GNN models demonstrate that
BVG achieves a high attack success rate while having a mini-
mal impact on the main task accuracy and is unlikely to be
detected by the active party. The evaluation of BVG effi-
cacy under various defense methods highlights the robustness
and efficiency of the proposed attack method, underscoring
the necessity for advanced defense mechanisms in practical
federated learning applications to counter such sophisticated
backdoor attacks.
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