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Abstract
Multimodal perception, which integrates vision
and touch, is increasingly demonstrating its sig-
nificance in domains such as embodied intelli-
gence and human-computer interaction. However,
in open-world scenarios, multimodal data streams
face significant challenges, including catastrophic
forgetting and overfitting, during few-shot class in-
cremental learning (FSCIL), leading to a severe
degradation in model performance. In this work,
we propose a novel approach named Few-Shot In-
cremental Multi-modal Learning via Touch Guid-
ance and Imaginary Vision Synthesis (TIFS). Our
method leverages vision imagination synthesis to
enhance the semantic understanding and integrates
touch and vision fusion to improve the problem
of modal imbalance. Specifically, we introduce a
framework that employs touch-guided vision infor-
mation for cross-modal contrastive learning to ad-
dress the challenges of few-shot learning. Addi-
tionally, we incorporate multiple learning mech-
anisms, including regularization, memory mecha-
nisms, and attention mechanisms, to mitigate catas-
trophic forgetting during multi-incremental step
learning. Experimental results on the Touch and
Go and VisGel datasets demonstrate that the TIFS
framework exhibits robust continuous learning ca-
pabilities and strong generalization performance in
touch-vision few-shot incremental learning tasks.
Our code is available at https://github.com/Vision-
Multimodal-Lab-HZCU/TIFS.

1 Introduction
In recent years, multi-modal learning has achieved signifi-
cant advancements in various practical applications. How-
ever, in open-world scenarios where multi-modal data arrives

* is the corresponding author.

as a continuous stream, there is an urgent need for machine
learning paradigms that can incrementally acquire knowledge
of new categories without forgetting previously learned infor-
mation, specifically multi-modal class-incremental learning
(CIL) [Yu et al., 2024a]. CIL faces two primary challenges.
First, ”catastrophic forgetting” occurs when models lose pre-
viously acquired knowledge while learning new information,
leading to performance degradation on old tasks. Second, en-
suring high-quality data and efficient fusion of multi-modal
data is challenging. For example, due to dataset limitations or
the requirement for multiple incremental training steps, mod-
els may encounter insufficient samples for new categories, re-
sulting in fewer available samples at each step, known as few-
shot class-incremental learning (FSCIL) [Tian et al., 2024].
FSCIL faces the dual challenges of learning from limited la-
beled samples and mitigating catastrophic forgetting, making
it particularly difficult. In addition to these challenges, the
significant disparity in the number of samples between old
and new categories can cause the model to bias towards the
larger set of old-class training samples during both training
and prediction. This imbalance between base and novel class
samples further complicates the model’s ability to effectively
learn new categories.

To address these challenges, mainstream FSCIL frame-
works leverage a variety of techniques, including transfer
learning, meta-learning, data augmentation [Mumuni and
Mumuni, 2022], metric learning, prototypical networks, rela-
tion networks, generative adversarial networks (GANs), self-
supervised learning [Krishnan et al., 2022], and memory
mechanisms. Among these, data augmentation enhances the
generalization ability of few-shot training models by generat-
ing additional training samples to expand the original dataset.
Therefore, designing an effective CIL method has become
crucial. In particular, methods that utilize data augmenta-
tion and can mitigate catastrophic forgetting have garnered
significant attention from researchers. Some effective meth-
ods for addressing the few-shot problem involve using prede-
fined transformations to generate additional samples, such as
adding noise, blurring, cropping, scaling, and rotating [Song
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Figure 1: Touch provides supplemental information for the vision.

et al., 2023]. However, these methods face challenges in
forming one-to-one corresponding sample pairs after data
augmentation, particularly in touch and vision FSCIL scenar-
ios.

Furthermore, research indicates that integrating multi-
modal data enables models to learn richer semantic informa-
tion, thereby alleviating the limitations imposed by few-shot
scenarios and enhancing both learning effectiveness and gen-
eralization capabilities. Multi-modal data combines informa-
tion from various sensory channels, such as vision, touch, and
auditory inputs, allowing models to capture complex features
and relationships that are difficult to achieve with a single
modality. Specifically, in real-world object recognition and
classification tasks, vision information provides color, shape,
and other appearance features, When other modalities are
unavailable, touch input offers detailed physical properties
such as hardness and texture, aiding models in distinguish-
ing objects that are challenging to differentiate based on vi-
sion cues alone, as shown in Figure 1. Consequently, touch
and vision perception are essential components of physi-
cal reasoning and play significant roles in embodied intelli-
gence, multi-modal learning, and other fields involving inter-
action with the environment. With the continuous increase
of touch and vision data streams in open-world settings, this
cross-modal information fusion enables models to compre-
hensively understand the essential features of objects, main-
taining high recognition accuracy and generalization capabil-
ities even with limited samples.

However, as the model learns new concepts, catastrophic
forgetting remains a significant issue. This phenomenon
is particularly pronounced in scenarios with limited high-
quality data and during vision-touch fusion. This motivates
us to explore whether it is possible to jointly rectify the model
by enhancing the efficient fusion of vision and touch data to
mitigate catastrophic forgetting. Based on this, we propose a
novel FSCIL framework, Few-Shot Incremental Multi-modal
Learning via Touch Guidance and Imaginary Vision Syn-
thesis (TIFS), which integrates touch and vision information
along with imaginative vision synthesis to provide richer se-
mantic information. Additionally, we incorporate regulariza-
tion, memory mechanisms, attention mechanisms, and other
incremental learning techniques to address the challenges of
FSCIL. Experiments on the Touch and Go dataset [Yang et
al., 2022] demonstrate that our TIFS framework achieves
significant performance improvements in touch-vision few-
shot class incremental learning tasks, outperforming existing
methods in terms of average accuracy. Experiments on the
VisGel dataset demonstrate that our TIFS framework exhibits
excellent generalization capability for new datasets in touch-
vision few-shot class incremental learning tasks, exceeding
the average accuracy of current methods. Furthermore, we

designed a new evaluation metric to assess the generaliza-
tion ability of class incremental learning models for new cat-
egories. Our contributions can be summarized as follows:

• We propose an innovative continuous contrastive learn-
ing framework that integrates touch guidance and
imagination-based vision synthesis (IVS), specifically
designed to address the catastrophic forgetting problem
and modality imbalance issue in few-shot category in-
cremental learning (FSCIL).

• The proposed method combines attention retention
mechanisms and memory augmentation with touch-
vision cross-modal contrastive learning. This ensures
semantic alignment between touch and vision features
during incremental steps, thereby helping the model re-
tain its previously acquired attention capabilities and re-
ducing the risk of forgetting learned touch-vision rela-
tionships in future tasks or categories.

• Experimental results on the Touch and Go and VisGel
datasets demonstrate that our approach significantly out-
performs state-of-the-art multi-model FSCIL methods.

2 Related Work
2.1 Few-shot Class Incremental Learning
Class-Incremental Learning (CIL) is a technique aimed at
solving the problem of ”catastrophic forgetting” that models
may encounter when learning new categories. In CIL, reg-
ularization parameters, knowledge distillation, and dynamic
architectures play crucial roles. Regularization parameter
methods [Liu et al., 2022] effectively update model param-
eters by assigning appropriate weights based on their im-
portance during the incremental learning process. Knowl-
edge distillation techniques [Pan et al., 2024; Zheng et al.,
2024] ensure consistency by extracting information from pre-
vious learning phases and minimizing discrepancies between
representations produced by the model or output probabil-
ity distributions. Exemplar/memory replay methods [Kong
et al., 2024; Zhang et al., 2024b] preserve past learn-
ing by storing samples of old tasks or classes in memory.
Furthermore, dynamic architecture approaches enhance the
model’s capability to manage new categories by incorpo-
rating incremental modules, thereby reducing the computa-
tional burden associated with continually adding new com-
ponents. Currently, incremental learning has been widely ap-
plied in various domains, including image classification [Qazi
et al., 2024], action recognition [Wei et al., 2024; Nawal
et al., 2023], semantic segmentation [Cermelli et al., 2023;
Zhu et al., 2023], object detection [Zhang et al., 2024a;
Deng et al., 2024], and language or joint vision-language
tasks [Yu et al., 2024b; Shi et al., 2024]. Furthermore, it has
found applications in self-supervised representation learning
and pre-training [Magistri et al., 2024].

Due to limitations in the dataset or training requirements,
incremental models may encounter challenges such as hav-
ing a limited number of samples for new categories or sig-
nificant data heterogeneity among samples from old cate-
gories. This scenario is referred to as few-shot class incre-
mental learning (FSCIL) [Tao et al., 2020; Ganea et al., 2021;
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Figure 2: Overview of our proposed TIFS, which consists of four main components: Imaginary Vision Synthesis (IVS), Touch-Vision Cross-
Modal Contrastive Learning (TVCC), Touch-Vision Attention Maintenance (TVAM).

Perez-Rua et al., 2020; Seo et al., 2023]. To solve these prob-
lems, Weight imprinting [Qi et al., 2018] allows the model
to have good classification performance on new categories by
directly setting the final layer weights of the ConvNet classi-
fier for new low-sample categories. Dynamic few-shot learn-
ing [Gidaris and Komodakis, 2018] relies on the use of an
attention-based generator for generating weights for few-shot
classification, allowing the model to recognize new categories
and basic categories in a unified manner. Similarly, attention
attractor network [Ren et al., 2019] uses a regulator based on
the attention attractor network to ensure the model’s learn-
ing ability for few samples. Based on the pre-trained model,
task-adaptive representation [Yoon et al., 2020] uses three ba-
sic modules of meta-training to extract new features that the
pre-trained backbone network cannot capture, and then com-
bines these new features with the basic features captured by
the backbone network. By expanding it into an end-to-end
counterpart, synthesizing few-shot classifiers [Ye et al., 2021]
can simultaneously learn and compare few-shot and multi-
shot classifiers, and observe the confidence calibration that
benefits both types of classifiers. Furthermore, meta mod-
ule generation [Xie et al., 2019] uses meta-learning to learn
a set of meta-modules in order to quickly adapt to new tasks.
Although FSCIL holds significant potential in practical ap-
plications and has garnered considerable attention from re-
searchers, the challenge of scarce high-quality data remains a
formidable obstacle.

2.2 Touch-Vision based Multi-model CIL
In the field of multi-modal continuous learning (MMCL),
the main methods include regularization, architecture, re-
play, and prompt methods. Regularization methods such as

ZSCL [Zheng et al., 2023] and Mod-X [Ni et al., 2023]
reduce catastrophic forgetting through explicit and implicit
constraints, which have the advantage of being simple and
easy to implement, but may face performance bottlenecks and
computational overhead. Architecture methods such as MoE-
Adapters [Yu et al., 2024b] and CLAP [Wu et al., 2023] dy-
namically adjust the model structure to adapt to new tasks,
which is flexible and task-specific, but complex and resource-
consuming. Replay methods such as IncCLIP [Yan et al.,
2022] use historical data replay to mitigate forgetting, which
is effective and flexible, but has high storage requirements
and may have privacy concerns. Prompt methods such as
CPE-CLIP [D’Alessandro et al., 2023] improve model adapt-
ability by designing prompts, which have the advantages of
high efficiency and maintaining pre-training knowledge, but
prompt design is complex and the effect depends on specific
tasks.

Touch-Vision Fusion is an important research direction in
multi-modal learning, aiming to effectively combine touch
and vision information to improve the recognition and clas-
sification of objects in models [Varadarajan et al., 2022;
Smarandache et al., 2023]. Research has shown that touch in-
formation can significantly complement vision information,
especially when processing objects that are difficult to dis-
tinguish by sight alone. As two different modes of percep-
tion, touch and vision each have unique advantages: vision
information provides features such as the shape, color, and
position of an object, while touch information provides infor-
mation such as the texture, temperature, and hardness of an
object. When these two kinds of information are merged,
the model is able to understand the object features more
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fully. Through cross-modal information fusion, the model
can not only maintain a high recognition accuracy in the case
of sparse samples, but also improve its generalization ability,
which means that the model can still effectively recognize and
classify new objects even when the training samples are insuf-
ficient. This feature is particularly important in real-world ap-
plications where data acquisition is expensive or where data
is scarce. In recent years, the application of touch-vision fu-
sion in incremental class learning has gradually attracted at-
tention, which aims to make models keep good memory of
old classes while constantly receiving new ones. Relevant
studies have shown that the method of integrating touch and
vision can significantly improve the learning effect and stabil-
ity of the model, reduce the forgetting phenomenon caused by
the introduction of new categories, and accelerate the model’s
adaptability to new categories.

3 Method
3.1 Problem Formulation
In the CIL process, we need to divide all categories equally
into several preset incremental steps. In the incremental step
t, the data that the model needs to learn includes nt pairs
of touch sample xtou and vision sample xvis, which can be
denoted as Dtra

t = {(xtou
t,i , x

vis
t,i , ct,i)}

nt
i=1, where ct,i is the

category of the ith sample pair. Our objective is to train a
model FObjectt on the partitioned incremental training set,
which is parameterized by Objt. In the incremental step t,
the training process can be described as follows:

Objt = argmin
Objt−1

[Loss(FObjt−1(x
tou, xvis), c)], (1)

where Loss represents the loss function that compares the
output of the model with the actual categories.

To alleviate the catastrophic forgetting problem in CIL, we
introduce a memory mechanism. We set up a fixed-size mem-
ory buffer Dmem

t that can store data from previous incremen-
tal steps. In this way, the model can also review old categories
while learning new ones, in order to consolidate the knowl-
edge that has been learned.

3.2 Imaginary Vision Synthesis
Figure 2 illustrates our proposed method. To address the issue
of insufficient learnable training samples in few-shot incre-
mental learning, we conducted Imaginary Vision Synthesis
(IVS) on the fewest several categories in the training set, en-
abling the augmented vision samples to continue to be com-
bined with touch ones to form sample pairs, aiming to en-
hance the model’s ability to learn rich semantic information
from limited data. Figure 3 shows an example of our Imagi-
nary Vision Synthesis for an instance object, which is gener-
ated through random color dithering, cropping, and rotation
of x∗vis. Since the touch information collected by the touch
sensor is independent of vision color or viewing angle, we
do not process the touch data, and the vision information of
Imaginary Vision Synthesis still corresponds to the original
touch information. In the incremental step t, the vision sam-
ples generated by IVS are combined with the touch samples
to form Dima

t , and the data used for training can finally be
updated as Dt = Dtra

t ∪ Dima
t ∪ Dmem

t .

Figure 3: An example of our Imaginary Vision Synthesis for an in-
stance object.

3.3 Touch Guided Features Fusion
In the Touch and Go and VisGel datasets, vision informa-
tion are videos of real objects captured by a camera, while
touch information are videos of thin film images collected
and converted by the GelSight sensor. The GelSight sensor
can convert subtle deformations of the contact surface into
high-resolution vision images, allowing touch data to be pro-
cessed and analyzed in the form of images. Based on this, we
use the self-supervised pre-training model VideoMae [Tong
et al., 2022] to extract the touch features f tou of touch sam-
ples xtou and vision features f vis of vision samples xvis. Note
that, the extraction strategy of VideoMAE involves using 16
frames uniformly distributed throughout a video as the repre-
sentation for that video.

Then we use an attention interaction mechanism to make
the model adaptively learn the similarities between touch and
vision features. For each pair of touch and vision video
frames, calculate their spatial attention maps:

Mapspa
i = Softmax(W tou

i ⊙W vis
i ), (2)

where W tou
i and W vis

i are the mappings of the touch fea-
ture f tou

i and vision feature fvis
i of the ith frame processed

by the nonlinear activation unit, respectively. And ⊙ is the
Hadamard product. Next weighted sum the time attention
maps:

WSi =
∑

(Mapspa
i ⊙weighti), (3)

where weighti is is the feature weight of the ith frame.
Based on this, calculate the spatial attention maps:

Maptem
i = Softmax(WS1, . . . ,WSi). (4)

Next, combine the calculated time and spatial attention maps:

fu =

16∑
i=1

Maptem
i ⊙

∑
(fvis

i ⊙Mapspa
i ). (5)

Finally, we calculate the fusion features:

U = Tanh(f touMaptou) +Tanh(fuMapvis). (6)
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methods Acc1 Acc2 Acc3 Acc4 Acc5 Acc6 Acc7 Acc8 ave.Acc ADR
Fine tuning-touch 72.59 58.47 47.61 43.14 40.13 36.49 32.92 29.85 45.15 11.80
Fine tuning-vision 87.63 69.76 54.55 50.15 43.98 39.45 36.59 31.02 51.64 13.62
LwF-touch 79.65 63.47 58.75 46.72 42.31 39.13 38.12 36.49 50.58 10.29
LwF-vision 89.03 76.83 62.31 57.25 50.96 46.34 41.12 34.49 57.29 12.59
iCaRL-touch 81.26 66.15 52.21 48.63 41.46 39.13 38.31 36.18 50.42 10.65
iCaRL-vision 91.24 78.42 65.01 56.74 51.98 45.48 40.11 36.55 58.19 12.21
SSIL-touch 83.84 64.15 52.21 49.21 45.46 42.68 40.74 38.97 52.16 10.07
SSIL-vision 94.73 82.75 69.02 57.96 49.14 46.47 43.42 40.86 60.54 11.20
AFC-touch 80.95 68.81 61.13 52.79 46.96 43.49 40.78 37.71 54.08 10.28
AFC-vision 94.06 81.39 66.09 58.73 52.32 47.48 44.22 41.12 60.76 11.06
ours 93.45 81.39 68.83 64.67 57.17 53.37 50.93 46.92 64.59 9.30

Table 1: Accuracy (%) and Average Drop Rate (%) for different methods across incremental steps. Compared to the baseline, our method
achieved the highest average accuracy of 64.59 and the lowest average Drop Rate of 9.31.

3.4 Touch-Vision Cross-Modal Contrastive
Learning

In the incremental step t, the model needs to learn several new
data of different categories. In order to make the model better
generalize to new categories, we introduce the Touch-Vision
Cross-Modal Contrastive Learning (TVCC). Our strategy is
to maximize the similarity between features of different cate-
gories to facilitate category separation:

I(i, j) =
{
1, if ci = cj
0, if ci ̸= cj

,

DClass
t,i =Dt

log ∑N
j=1 e

ftou
t,i fvis

t,j
T
/τ · I(i, j)(∑N

j=1 e
ftou

t,i fvis
t,j

T/τ
)(∑N

j=1 I(i, j)
)
 ,

LossClass = −E(xtou
i ,xvis

i ,yi)∼DClass
t,i

,

(7)

where τ is a temperature hyperparameter. In FSCIL, due to
the limited number of training samples in the same category,
the model may have difficulty fully capturing the differences
between different samples in this category. Therefore, we
also make the model conduct contrastive learning on differ-
ent samples within the same category, in order to enhance the
model’s understanding of the diversity of features in that cat-
egory:

DSample
t,i =Dt

[
log

ef
tou
t,i fu

t,i
T/τ∑N

j=1 e
ftac

t,i fu
t,i

T/τ

]
,

LossSample = −E(xtou
i ,xvis

i )∼DSample
t,i

.

(8)

Finally, the total loss of this part can be expressed as:

LossCCL = λClassLossClass + λSampleLossSample, (9)

where λClass and λSample are the hyperparameters.

3.5 Touch-Vision Attention Maintenance
In the process of incremental learning, the model not only for-
gets the knowledge of old categories it has already learned,
but also may forget the cross-modal attention capabilities it

has already established, leading to a reduction in the learning
effect of fusion features. To alleviate this problem, we intro-
duce the Touch-Vision Attention Maintenance (TVAM), en-
abling the model to continuously and efficiently learn the fu-
sion features. We use the Kullback-Leibler (KL) divergence
function to establish the temporal and spatial correlation be-
tween two adjacent incremental steps:

Lossspa = E(xtou,xvis)∼Dmem
t

[
KL(Mapspa

t ||Mapspa
t−1)

]
,

Losstem = E(xtou,xvis)∼Dmem
t

[
KL(Maptem

t ||Maptem
t−1)

]
,

(10)

when t > 1. Finally, the total loss of this part can be ex-
pressed as:

LossAAM = λAAMLossspa+(1−λAAM )Losstem, (11)

where λAAM is a hyperparameter.

3.6 Regularized Final Loss Function
When the model learns new categories, we use the Softmax
Cross-Entropy (SS-CE) loss function to optimize it, to im-
prove its generalization ability for new categories while re-
ducing the penalty for prediction errors for old categories.
Following the method in [Ahn et al., 2020], we use U t

and U t−1 to calculate LossSS−CE . At the same time, to
avoid the model from overfitting when learning old cate-
gories, which may lead to a weakening of its generalization
ability for new categories, we introduce the L2 regularization.
Following the method in [Cortes et al., 2009], we calculate
LossL2.

Finally, combining all parts together, our final loss function
can be expressed as:

Loss = LossCCL + LossAAM + LossSS−CE + LossL2.
(12)

4 Experiments
4.1 Datasets
We compared our approach with state-of-the-art incremen-
tal learning frameworks using the Touch and Go and VisGel
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IVS TVCC TVAM L2 Acc1 Acc2 Acc3 Acc4 Acc5 Acc6 Acc7 Acc8 ave.Acc ADR
× × × × 93.45 58.14 49.31 44.52 39.61 37.54 35.22 34.41 49.03 12.49
✓ × × × 93.45 61.59 54.84 48.99 46.28 41.69 38.73 35.72 52.66 12.29
✓ ✓ × × 93.45 82.83 72.93 60.45 51.96 43.01 40.26 36.11 60.13 12.63
✓ ✓ ✓ × 93.45 82.41 71.65 63.63 55.49 49.52 46.53 44.29 63.37 10.07
✓ ✓ ✓ ✓ 93.45 81.39 68.83 64.67 57.17 53.37 50.93 46.92 64.59 9.31

Table 2: Comparison of accuracy (%) and Average Drop Rate (%) in the ablation experiment.

(a) Comparison of our method with the base-
line of the vision modality.

(b) Comparison of our method with the base-
line of the touch modality.

(c) Ablation Study.

Figure 4: Visualization chart of experimental results. (a) shows a visual comparison of our method and the baseline of the vision modality.
(b) shows a visual comparison of our method and the baseline of the touch modality. (c) shows a visual comparison of the performance of
activating different modules in our method. These results demonstrate that our approach significantly outperforms state-of-the-art methods.

datasets. The Touch and Go dataset comprises 20 distinct cat-
egories of touch and vision data, from which we selected 18
categories with significant instances, totaling 3,378 instances.
These instances exhibit a long-tail distribution: the first six
categories have an average of 310 instances per category, the
middle six categories have an average of 168 instances per
category, and the final six categories have an average of only
85 instances per category. In particular, the category with
the fewest instances contains just five samples, which aligns
well with the characteristics of FSCIL. In contrast, the Vis-
Gel dataset consists solely of unlabeled data. To simulate
FSCIL conditions, we manually annotated six new categories
not present in the Touch and Go dataset, each containing 10
instances. This manual annotation ensured that these cate-
gories represented novel classes for incremental learning pur-
poses. Overall, our experimental dataset encompasses 24 dis-
tinct categories of touch and vision data pairs, totaling 3,438
instances, and we randomly divide the instance objects of
each category into training sets, validation sets, and test sets
in a ratio of 7:1.5:1.5.

4.2 Implementation Details
We compared our proposed method with the most rep-
resentative and advanced incremental learning frameworks
iCaRL [Rebuffi et al., 2016], LwF [Li and Hoiem,
2016],SSIL [Ahn et al., 2020], and AFC [Kang et al., 2022].
Given the current lack of methods that simultaneously utilize
touch and vision information for CIL tasks, we conducted ex-
periments on the benchmark methods of touch and vison in-
formation separately. We also included the results of the fine-

tuning. We divided 24 different categories into 8 incremental
steps in ascending order, with each incremental step contain-
ing 3 categories. We trained our model on one RTX A6000
GPU and the hyperparameters τ , λSample, λClass, λAAM are
set to 0.05, 1.0, 0.5, 0.5, respectively. Simultaneously, the
size of the memory buffer was set to 200.

We conducted accuracy tests on the knowledge that we
have already learned at each incremental step. We also used
the average accuracy metric to evaluate the overall perfor-
mance of the model:

ave.Acc = (Acc1 + ...+Acc8)/8, (13)

where Acc1 denotes testing accuracy of all seen classes af-
ter completing the training on the first incremental step. To
evaluate the ability of the average model to generalize to new
models, we propose a new evaluation metric, the Average
Drop Rate (ADR):

ADR =
1

7

7∑
i=1

Acci −Acci+1

Acci
. (14)

The smaller the value of ADR, the slower the decline in the
test accuracy of the model as the incremental steps proceed,
and the better its generalization ability to new categories.

4.3 Experimental Results
In this section, we compare TIFS with other state-of-the-art
(SOTA) methods across two datasets and backbone weights.
The main experimental results are presented in Table 1 and
Figures 4(a)(b). From the quantitative results, as shown
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in Figure 4(a), which compares our method with the vi-
sion modality baseline, the accuracy of our method decreases
more slowly as incremental steps increase and remains con-
sistently higher than all other baseline methods. This demon-
strates the effectiveness of the TIFS method. Similarly, as
shown in Figure 4(b), when compared with the touch modal-
ity baseline, TIFS also exhibits superior performance, signif-
icantly improving accuracy in incremental learning.

Table 1 provides the Accuracy and Average Drop Rate for
each algorithm at each incremental step. In the initial few in-
cremental steps, our method did not achieve the best perfor-
mance. For example, SSIL-vision outperformed our method
in the first three steps, and AFC-vision had higher accuracy
in the first two steps. However, as the incremental steps pro-
gressed, starting from the fourth step, our method’s accuracy
surpassed that of all baseline methods in every subsequent
step. Particularly in the last incremental step, while the high-
est accuracy among the baseline methods was 41.12 for AFC,
our method maintained an accuracy of 46.92. This indicates
that our method has excellent generalization ability for new
category data and effectively mitigates the catastrophic for-
getting problem that occurs in incremental learning as the
steps increase.

λSample 1.0 0.5 1.0 0.5 1.0
λClass 1.0 1.0 0.5 0.5 0.5
λAAM 1.0 1.0 1.0 1.0 0.5

ave.Acc 62.36 61.65 63.15 62.23 64.59

Table 3: Comparison of average accuracy (%) for different hyperpa-
rameter combinations.

4.4 Ablation Study
In this section, we conduct an ablation study by incrementally
adding each component to evaluate their effectiveness within
TIFS. Table 2 and Figure 4 (c) show the experimental results,
from which the following conclusions can be drawn: Imag-
inary Vision Synthesis (IVS) demonstrated a significant im-
provement in accuracy when dealing with incremental steps
with a small number of samples, for example, in the fifth in-
cremental step, the model’s accuracy improved by about 6.5
percentage points after activating IVS. Meanwhile, Touch-
Vision Cross-Modal Contrastive Learning (TVCC) signifi-
cantly improved accuracy in each incremental step, increas-
ing average accuracy by about 11 percentage points compared
to when only IVS is activated. On this basis, when Touch-
Vision Attention Maintenance (TVAM) is activated, the de-
cline in model accuracy is significantly mitigated as the incre-
mental learning process progresses. Finally, the introduction
of L2 regularization results in a slight decrease in the accu-
racy of the model in the initial few incremental steps. This
is because it corrects the overfitting phenomenon, but this ad-
justment enhances the model’s generalization ability for new
categories, ultimately achieving the maximum average accu-
racy of 64.59 and the minimum ADR of 9.31. We conducted
comparative experiments with different combinations of hy-
perparameters and determined a set of optimal hyperparame-
ter combinations. Due to the synergy between λSample and

λClass, we first fixed λAAM to determine the optimal combi-
nation of λSample and λClass, and then further determine the
optimal value of λAAM . However, due to space constraints,
we present only the most representative combinations of the
five most influential hyperparameters in Table 3, all initial-
ized with a value of 1.0.

5 Conclusion
This paper introduces an innovative multi-modal few-shot
class incremental learning framework, which named Few-
Shot Incremental Multi-modal Learning via Touch Guidance
and Imaginary Vision Synthesis (TIFS). By leveraging Imag-
inary Vision Synthesis (IVS) and touch guidance to integrate
cross-modal features, the framework enhances the seman-
tic understanding and addresses the challenge of insufficient
new learnable samples in few-shot class incremental learn-
ing. Through Touch-Vision Cross-Modal Contrastive Learn-
ing (TVCC) and L2 regularization, it improves the general-
ization capability for new categories of the model. Addi-
tionally, by combining Touch-Vision Attention Maintenance
(TVAM) with a memory mechanism, we introduce a separa-
tion cross-entropy loss to mitigate the catastrophic forgetting
problem in few-shot incremental learning. Experimental re-
sults on the Touch and Go and VisGel datasets demonstrate
that the TIFS framework significantly outperforms existing
multi-model FSCIL methods. The effectiveness of each mod-
ule has been validated, providing a robust new approach to
addressing the challenges of few-shot incremental learning.
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