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Abstract

The vertex bisection minimization problem
(VBMP) is a fundamental graph partitioning prob-
lem with numerous real-world applications. In this
study, we propose a (k, l, S)-cluster guided local
search algorithm to address this challenge. First,
we propose a novel (k, l, S)-cluster enumeration
procedure, which is based on two key concepts:
the (k, l, S)-cluster and the local cluster core. The
(k, l, S)-cluster limits both the connectivity and
distinct boundaries of a given vertex set, and the
local cluster core represents the most cohesive
substructure within a (k, l, S)-cluster. Building up
on the above (k, l, S)-cluster enumeration proce-
dure, we present a novel (k, l, S)-cluster guided
perturbation mechanism designed to escape from
local optima. Next, we propose a two-manner local
search procedure that employs two distinct search
models to explore the neighboring search space
efficiently. Experimental results demonstrate that
the proposed algorithm performs best on nearly all
instances.

1 Introduction
The vertex bisection minimization problem (VBMP) is a fun-
damental graph partitioning problem. It aims to partition the
vertex set of a connected graph G into two nearly equal, dis-
joint subsets, B and B′, while minimizing the vertex width
(VW). The VW is defined as the number of vertices in B
that have at least one adjacent vertex in B′. The VBMP
has wide-ranging applications across various fields, includ-
ing route planning [Delling et al., 2011], very-large-scale in-
tegration circuit design [Bhatt and Leighton, 1984], natural
language processing [Kornai and Tuza, 1992], image pro-
cessing [Shi and Malik, 2000], and distributed computing
[Malewicz et al., 2010]. Furthermore, the VBMP on gen-
eral graphs is known to be NP-hard [Brandes and Fleischer,
2009]. Given its theoretical importance and practical appli-
cations, the VBMP has attracted significant attention, leading
to numerous algorithms to address this problem.

∗Corresponding author

The VBMP algorithms can generally be classified into
two main categories: exact algorithms and heuristic algo-
rithms. Exact methods aim to obtain an optimal solution for
the VBMP. Fraire et al. [2014] proposed integer linear pro-
gramming (ILP) models and branch-and-bound algorithms,
demonstrating strong performance on small-scale instances.
Jain et al. [2016b] later enhanced the efficiency of this work
[Fraire et al., 2014] by introducing improved ILP and the
models of quadratically constrained quadratic programming.
Further work refined branch-and-bound algorithms by incor-
porating greedy heuristics, significantly reducing execution
times, and delivering competitive results in small-scale in-
stances [Jain et al., 2016a]. Furthermore, Castillo-Garcı́a et
al. [2019] developed two new ILP models, expanding both
the theoretical framework and the practical efficiency for the
VBMP. Soto et al. [2022] proposed two branch-and-bound
algorithms for the VBMP. Despite these advancements, the
state-of-the-art exact algorithms for the VBMP remain inad-
equate for solving hard or large-scale instances within a rea-
sonable time frame.

There are several VBMP heuristics and metaheuristics that
are commonly used to deliver high-quality solutions with
acceptable computational costs. Huacuja et al. [2016]
proposed a genetic algorithm to solve the VBMP. Jain et
al. [2016c] introduced a memetic algorithm for the VBMP,
which integrates four construction heuristics, a specialized
crossover operator, and a local improvement operator. Her-
ran et al. [2019] proposed a local search algorithm called
BVNS, which outperformed previous methods significantly.
The algorithm employs three initialization methods and uti-
lizes two distinct search models, systematically dividing the
process into solution construction and improvement phases.
Furthermore, cellular processing heuristic methods [Terán-
Villanueva et al., 2019] and greedy randomized adaptive
search-based constructive algorithms [Castillo-Garcı́a and
Hernández-Hernández, 2020] have been proposed to achieve
an effective balance between solution quality and compu-
tational efficiency. Jin et al. [2021] were the first to in-
troduce learning techniques into heuristic algorithms for the
VBMP, proposing a clustering-driven iterated hybrid search
algorithm CLUHS. Subsequently, Tian et al. [2022] enhanced
the effectiveness of BVNS by incorporating the bucket sort-
ing technique, resulting in two new algorithms including
BVNSbucket and BVNSbucket2. Among these heuristic al-
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gorithms, CLUHS, BVNSbucket, and BVNSbucket2 achieve
the state-of-the-art performance.

In this work, we propose a novel (k, l, S)-cluster guided
local search algorithm CELS 1 for the VBMP. It comprises
three core components. Experimental results show that the
proposed algorithm performs best on almost all instances.

We first introduce two novel concepts: the (k, l, S)-cluster
and the local cluster core. Based on these, we propose a new
(k, l, S)-cluster enumeration algorithm. The (k, l, S)-cluster
integrates two key parameters, k and l, to balance vertex con-
nectivity and boundary distinctiveness within a cluster. Each
(k, l, S)-cluster is associated with a local cluster core, which
represents the most cohesive substructure within that cluster.
By enumerating both the (k, l, S)-clusters and their corre-
sponding local cluster cores, we can identify cohesive sub-
structures in the graph. These substructures then guide sub-
sequent perturbation and local search procedures.

Second, to address the challenge of escaping from local op-
tima, we introduce a novel (k, l, S)-cluster guided perturba-
tion mechanism. This mechanism incorporates the concept of
strong correlation relationships between a local cluster core
and a (k, l, S)-cluster. Building on this definition and the enu-
merated (k, l, S)-clusters, the perturbation algorithm groups
clusters with similar local structures on the same side (i.e.,
either B or B′). This approach allows the perturbation proce-
dure to guide exploration based on structural patterns, facili-
tating a more informed and effective search.

Finally, we propose a novel two-manner local search algo-
rithm. The algorithm locks the enumerated local cluster cores
to enable deeper exploration within specific search areas. To
balance the trade-off between search effectiveness and com-
putational cost, it alternates between coarse-grained and fine-
grained search modes, depending on the quality of the cur-
rent solution. By dynamically adjusting its search strategy
and thoroughly exploring targeted regions, the algorithm en-
sures flexibility and adaptability in handling different graph
structures.

Section 2 introduces some necessary background knowl-
edge for VBMP. In Section 3, we present the top-level frame-
work of CELS. Section 4 introduces the maximal (k, l, S)-
cluster enumeration procedure, followed by the (k, l, S)-
cluster-guided perturbation procedure in Section 5. The two-
manner local search algorithm is described in Section 6. Ex-
perimental results are presented in Section 7, and conclusions
are introduced in Section 8.

2 Preliminaries
Given an undirected graph G = (V,E), V = {v1, . . . , vn} is
the set of n vertices and E ⊆ V ×V is the set of edges where
each edge is represented as a 2-element subset of V . The
neighborhood of a vertex v is N(v) = {u ∈ V | (u, v) ∈ E},
and its degree is |N(v)|. We use dmax to denote the maxi-
mum degree value of all vertices. The closed neighborhoods
of v is defined as N [v] = N(v) ∪ {v}, and N2(v) is the
union of the neighborhoods of all vertices in N(v), exclud-
ing v, i.e., N2(v) =

⋃
u∈N(v) N(u) \ {v}. Given a vertex

1Source code and supplementary materials are available at
https://github.com/yiyuanwang1988/CELS.

set S ⊆ V , the induced subgraph G[S] = (VS , ES) is a sub-
graph of G where VS = S and the edge set ES includes all
the edges in E that have both endpoints in S. Given two dis-
tinct vertices v1, v2 ∈ V , the similarity between v1 and v2 is
defined as the number of vertices in the intersection of their
closed neighborhoods, i.e., Simi(v1, v2) = |N [v1] ∩ N [v2]|.
Similarly, the difference between v1 and v2 is defined as the
number of vertices in the union of their closed neighborhoods
that are not included in their intersection, i.e., Diff(v1, v2) =
|(N [v1]∪N [v2]) \ (N [v1]∩N [v2])|. The variables simi avg
and diff avg represent the average similarity and difference
values of all distinct vertex pairs in V , respectively.

Given an undirected graph G = (V,E), the VBMP prob-
lem focuses on partitioning the vertex set V into two disjoint
subsets B and B′, such that B ∪ B′ = V and B ∩ B′ = ∅.
The valid partition D = (B,B′) must satisfy the following
conditions: if |V | is even, then |B| = |B′| = |V |

2 ; if |V |
is odd, the sizes of B and B′ differ by at most 1, meaning
|B| =

⌊
|V |
2

⌋
and |B′| =

⌈
|V |
2

⌉
. The objective of the VBMP

is to find a valid partition D = (B,B′) that minimizes the
size of the subset VW (D) ⊆ B, where VW (D) includes all
vertices in B that are adjacent to at least one vertex in B′, i.e.,
VW (D) = {v ∈ B | ∃u ∈ B′, (u, v) ∈ E}.

In the local search process, we maintain a valid partition
D = (B,B′) as the current candidate solution. Local search
algorithms for VBMP usually modify the candidate solution
D through three basic operators, including Drop, Add, Swap
[Herrán et al., 2019; Tian et al., 2022]. To evaluate the ef-
fect of these operations, scoring functions are used to com-
pute the change in the objective value VW (D) resulting from
each operator. These operators and their corresponding scor-
ing functions are as follows:

• Drop: The Drop operator moves a vertex v from B
to B′. Formally, the new solution is D1 = (B \
{v}, B′ ∪ {v}), and we denote this operation as D1 :=
drop(v,D).

• Add: The Add operator moves a vertex v from B′ to
B. Formally, the resulting solution is D1 = (B ∪
{u}, B′ \ {u}), and this operation is represented as
D1 := add(u,D).

• Swap: The Swap operator exchanges a vertex v from
B with another vertex u from B′. This results in a new
partition D1 = (B \{v}∪{u}, B′ \{u}∪{v}), denoted
as D1 := swap(v, u,D).

The scoring functions of the aforementioned operations are
used to evaluate the change in the VW value, denoted as
∆drop(D, v), ∆add(D,u), and ∆swap(D, v, u) where v ∈ B
and u ∈ B′, respectively.

3 The Top-Level Framework of the CELS
In this section, we present the top-level framework of CELS
in Algorithm 1. The algorithm uses D, Dlb, and Dbest to
represent the candidate solution, the local best solution, and
the global best solution, respectively. Initially, the algorithm
employs the greedy constructive method C1 from BVNS to
initialize D and Dbest (Line 1), with further details available
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Algorithm 1: CELS
Input: A graph G = (V,E), the cutoff time cutoff
Output: The obtained best solution Dbest

1 D := Dbest := C1(G);
2 while elapsed time < cutoff do
3 ⟨SetS′, SetS′′⟩ := CluEnum(G,D) ;
4 ⟨Dper, Vlock⟩ := CluPer(G,SetS′, SetS′′, D);
5 ⟨D,Dlb⟩ := TwoManner(G,Dper, Dbest, Vlock);
6 if |VM(Dlb)| < |VM(Dbest)| then Dbest := Dlb ;

7 return Dbest;

in [Herrán et al., 2019]. The algorithm then enters a loop
that continues until the predefined time limit cutoff is reached
(Line 2). In each iteration, the cluster enumeration algorithm
is executed to generate the set of (k, l, S)-clusters SetS′, and
the corresponding set of local cluster cores SetS′′ (Line 3),
which are presented in Section 4. By using SetS′ and SetS′′,
the algorithm performs the cluster guided perturbation proce-
dure to generate a perturbed solution Dper and obtain the set
of locked vertices Vlock (Line 4), which is presented in Sec-
tion 5. Based on them, the two-manner local search procedure
is applied (Line 5), as detailed in Section 6. If the local best
solution, Dlb, obtained from the two-manner search is better
than the current global best solution, Dbest, it updates Dbest

to Dlb (Line 6). Finally, the algorithm returns Dbest (Line 7).

4 The Maximal (k, l, S)-Cluster Enumeration
Procedure

Recently, Jin et al. [2021] utilizes an unsupervised ma-
chine learning technique based on similarity criteria to di-
vide vertices into clusters and develop a cluster-driven lo-
cal search algorithm. However, the generated clusters aren’t
changed throughout the entire local search process. More-
over, the structure of the clusters doesn’t account for the dif-
ferences between vertices or the core structures within clus-
ters. Based on this consideration, we propose the maximal
(k, l, S)-cluster enumeration procedure. In this section, we
first introduce some key definitions of the (k, l, S)-cluster,
and then present the (k, l, S)-cluster generation and enumer-
ation procedures.

4.1 Key Definitions of (k, l, S)-Cluster
Definition 1 ((k, l, S)-Cluster). Given a graph G = (V,E),
a vertex set S ⊆ V , and two integer parameters k and l, a
(k, l, S)-cluster is defined as a subset S′ ⊆ S such that for
every pair of distinct vertices v1, v2 ∈ S′, Simi(v1, v2) ≥ k
and Diff(v1, v2) ≤ l.

A maximal (k, l, S)-cluster is a subset S′ ⊆ S such that for
every pair of distinct vertices v1, v2 ∈ S′, Simi(v1, v2) ≥ k
and Diff(v1, v2) ≤ l, and no vertex can be added to S′ without
violating these conditions.

The (k, l, S)-cluster is designed to identify a subset of S
that balances overlap and exclusivity within the neighbor-
hoods of the vertices in S. Specifically, the parameter k en-
sures that pairs of vertices within the cluster share a suffi-
ciently large intersection in their closed neighborhoods, pro-
moting strong local connectivity and cohesion. Meanwhile,

Figure 1: An example for (k, l, S)-cluster and local cluster core.

the parameter l limits the number of non-shared neighbors,
preventing the inclusion of vertices that deviate significantly
from the cluster’s structure. Together, these conditions en-
able the (k, l, S)-cluster to maintain both cohesion and clear
boundaries.

Given a (k, l, S)-cluster S′ and a vertex vf ∈ V ,
we utilize simi thre(vf , S′) to denote the maximum sim-
ilarity value between vf and vertices in S′ \ {vf}, i.e.,
simi thre(vf , S′) := maxv′∈S′\{vf} Simi(vf , v′). Besides,
we utilize diff thre(vf , S′) to denote the minimum differ-
ence value between vf and vertices in S′ \ {vf}, i.e.,
diff thre(vf , S′) := minv′∈S′\{vf} Diff(vf , v′). Building on
these two definitions, we define two types of local cluster core
within a specified local (k, l, S)-cluster.
Definition 2 (Local Similarity Core). Given a graph G =
(V,E), a (k, l, S)-cluster S′ and a vertex vf ∈ S′, a local
similarity core of vf is a subset S′′ ⊆ S′ such that vf ∈ S′′,
and for every distinct vertex pair v1, v2 ∈ S′′, Simi(v1, v2) ≥
simi thre(vf , S′).
Definition 3 (Local Difference Core). Given a graph G =
(V,E), a (k, l, S)-cluster S′ and a vertex vf ∈ S′, a local
difference core of vf is a subset S′′ ⊆ S′ such that vf ∈ S′′,
and for every distinct vertex pair v1, v2 ∈ S′′, Diff(v1, v2) ≤
diff thre(vf , S′).

Given a (k, l, S)-cluster S′, the two definitions above im-
pose strong constraints on a specified vertex vf . Specifi-
cally, the local similarity core is designed to extract the most
cohesive subset containing vf within S′, focusing on maxi-
mizing connectivity. On the other hand, the local difference
core identifies the subset of S′ containing vf that minimizes
structural divergence, ensuring internal consistency within
the cluster.

We present an example for the maximal (k, l, S)-
cluster and local cluster core in Figure 1. Let S =
{v1, v2, v3, v4, v5, v6, v7, v8, v9}. A (2, 4, S)-cluster in Fig-
ure 1 is {v3, v4, v5, v6, v8, v9} (denoted as C1), as the simi-
larity between every pair of vertices in this set is at least 2,
and the difference between every pair is at most 4. Since
no vertices can be added without violating the similarity and
difference constraints, C1 is also a maximal (2, 4, S)-cluster.
Given C1 and a vertex v6 ∈ C1, the set {v5, v6} is both a
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local similarity core and a local difference core. This is be-
cause {v5, v6} ⊆ C1, Simi(v5, v6) = simi thre(v6, C1), and
Diff(v5, v6) = diff thre(v6, C1).

4.2 (k, l, S)-Cluster Generation Algorithm
The (k, l, S)-cluster generation algorithm is detailed in Algo-
rithm 2. To begin with, several necessary variables are in-
troduced: S′ represents the currently generated cluster, and
S′′ refers to either the local similarity core or the local dif-
ference core of S′. The input parameters k, l, and S define
the constraints for generating the (k, l, S)-cluster S′, while vf
denotes the first vertex to be added to S′. Additionally, Cand
is the set of candidate vertices, where adding any vertex from
Cand to S′ ensures that S′ remains a valid (k, l, S)-cluster.
The variables simi and diff correspond to the maximum sim-
ilarity and the minimum difference between vf and Cand,
respectively. Lastly, enum pre has two possible values: ‘1’,
meaning that the algorithm selects the vertex with the highest
Simi value, and ‘0’, indicating a preference for selecting the
vertex with the lowest Diff value.

The algorithm begins by initializing various variables or
sets as needed (Lines 1–4). It then enters a loop where it
iteratively selects a vertex v to add to S′ (Lines 6–13) until
Cand becomes empty (Line 5).

If the algorithm enters the similarity phase (i.e.,
enum pre = 1), for each vertex v ∈ Cand, the algorithm
records the lowest similarity value between v and all vertices
in S′. Then, the algorithm selects the vertex v with the high-
est recorded similarity value (Line 7). If this similarity value
between v and all vertices in S′ is not lower than simi, the
algorithm adds the selected vertex v to S′′ (Line 8). Other-
wise, if enum pre = 0, the algorithm goes into the differ-
ence phase. For each vertex v ∈ Cand, the algorithm records
the biggest difference value between v and all vertices in S′

again, and selects the vertex v with the smallest recorded dif-
ference value (Lines 9–10). If this difference value between v
and all vertices in S′ is not greater than diff, v is added to S′′

(Line 11). After each iteration, the algorithm updates both S′

and Cand (Lines 12–13). Finally, when the loop completes,
S′ and S′′ are returned (Line 14).

The generation algorithm CluGen is designed to generate
a maximal (k, l, S)-cluster S′. To achieve this, it introduces
two vertex selection preferences that result in two types of
clusters. The “Similarity” preference focuses on selecting
vertices with the highest similarity within S′, ensuring that
the cluster remains tightly connected. In contrast, the “Differ-
ence” preference emphasizes selecting vertices with the min-
imal difference within S′, which helps to enhance the distinct
boundary of the cluster.

4.3 (k, l, S)-Cluster Enumeration Algorithm
Based on the cluster generation algorithm, we develop the
(k, l, S)-cluster enumeration algorithm in Algorithm 3.

In this algorithm, SetS′ and SetS′′ are two sets that store
the (k, l, S)-clusters and their corresponding local cluster
cores generated by the CluGen procedure. Furthermore, we
incorporate the concept of assortativity to assist in cluster
enumeration. Assortativity measures the tendency of vertices

Algorithm 2: CluGen
Input: Graph G = (V,E), a vertex subset S ⊆ V , a

candidate vertex vf ∈ S, enumeration preference
enum pre and cluster parameters k and l

Output: A maximal (k, l, S)-cluster S′ ⊆ S, a core
structure S′′ ⊆ S′

1 S′ := {vf}, S′′ := ∅;
2 Cand := {v ∈ S | Simi(vf , v) ≥ k,Diff(vf , v) ≤ l};
3 simi := maxv′∈Cand Simi(vf , v′);
4 diff := minv′∈Cand Diff(vf , v′);
5 while Cand ̸= ∅ do
6 if enum pre = 1 then

// Enter into Similarity Phase
7 select a vertex v ∈ Cand with the biggest

Simi(v, v′) value, breaking ties randomly, where
v′ = argminv′∈S′ Simi(v, v′);

8 if ∀v′′ ∈ S′, Simi(v′′, v) ≥ simi then
S′′ := S′′ ∪ {v} ;

9 else
// Enter into Difference Phase

10 select a vertex v ∈ Cand with the smallest
Diff(v, v′) value, breaking ties randomly, where
v′ = argmaxv′∈S′ Diff(v, v′);

11 if ∀v′′ ∈ S′,Diff(v′′, v) ≤ diff then
S′′ := S′′ ∪ {v} ;

12 S′ := S′ ∪ {v};
13 update the Cand accordingly;

14 return ⟨S′, S′′⟩;

in a network to connect with others that have similar or dis-
similar degrees [Newman, 2002]. A positive assortativity co-
efficient indicates that high-degree vertices are likely to con-
nect with other high-degree vertices, while a negative coeffi-
cient suggests that high-degree vertices tend to connect with
low-degree vertices. When the coefficient is 0, the connec-
tions are random, with no preference based on degree.

At the beginning, several variables are initialized (Lines 1–
2). Subsequently, the algorithm iteratively calls the CluGen
NE times, where NE is a parameter (Lines 3–17). In each
iteration, with 50% probability, the algorithm chooses a ran-
dom vertex vf as the first vertex. Otherwise, the algorithm se-
lects the first vertex vf with the smallest score, further prefer-
ring the one with the lowest freq (Lines 4–7). In this context,
score(v) is defined as ∆drop(D, v) if v ∈ B, and ∆add(D, v)
if v ∈ B′. Additionally, freq represents the number of times
a vertex has been selected as the first vertex during the clus-
ter enumeration process. If the assortativity value of G is not
smaller than 0, it indicates that high-degree vertices are likely
to connect to other high-degree vertices, and low-degree ver-
tices tend to connect with other low-degree vertices. In such
case, high-degree vertices tend to naturally form dense com-
munities. By focusing on similarity, the generated (k, l, S)-
cluster takes advantage of this tendency to group highly con-
nected vertices together. Thus, enum pre is set to 1, and the
algorithm imposes strong constraints on k and looser con-
straints on l (Lines 9–11). In detail, k is set to the larger value
between simi avg × β and 2, where β is a parameter (Line
10), whereas l is set to maxv∈N2(vf ) Diff(vf , v)−1 (Line 11).
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Algorithm 3: CluEnum
Input: Graph G = (V,E), a candidate solution

D = (B,B′)
Output: The cluster collections SetS′ and SetS′′

1 SetS′ := SetS′′ := ∅;
2 S := V , enum pre := −1;
3 for i = 1 to NE do
4 if with 50% probability then
5 select a random vertex vf ∈ S;

6 else
7 select a vertex vf ∈ S with the smallest score

value, further preferring the one with the lowest
freq;

8 if Assortativity(G) ≥ 0 then
9 enum pre := 1;

10 k := max(simi avg × β, 2);
11 l := maxv∈N2(vf ) Diff(v, vf )− 1;

12 else
13 enum pre := 0;
14 k := 1, l := diff avg × β;

15 ⟨S′, S′′⟩ := CluGen(G,S, vf , enum pre, k, l);
16 S := S \ S′;
17 SetS′ := SetS′ ∪ {S′}, SetS′′ := SetS′′ ∪ {S′′};

18 return ⟨SetS′, SetS′′⟩;

That is, the algorithm only forbids the vertices in N2(vf ) that
has the maximum difference value with vf .

Conversely, if the assortativity value of G is less than 0,
it indicates that high-degree vertices tend to connect to low-
degree vertices. In this scenario, the graph does not form
well-defined, tightly connected communities. Instead, there
are greater structural differences between vertices. In this
case, it becomes more meaningful to focus on the differences
between the vertices, so the algorithm takes the difference
between vertices as the primary consideration factor. There-
fore, enum pre is set to 0. The algorithm imposes strong
constraints on l and looser constraints on k. In detail, k is set
to 1, and l is set to diff avg × β (Line 14).

Subsequently, the algorithm calls the CluGen and then
gets the ⟨S′, S′′⟩ (Line 15). Then, S is updated by remov-
ing S′, i.e., S \ S′ (Line 16), ensuring that the vertex cannot
exist in different clusters. SetS′ and SetS′′ are updated ac-
cordingly (Line 17). Finally, ⟨S′, S′′⟩ is returned (Line 18).

5 The (k, l, S)-Cluster Guided Perturbation
Procedure

In this section, we introduce the (k, l, S)-cluster guided per-
turbation algorithm. First, we introduce the definition of the
strong correlation relationship between a local cluster core
and another (k, l, S)-cluster as follows:
Definition 4 (Strong Correlation Relationship). Given a
graph G = (V,E), two different (k, l, S)-clusters S′ and S′

1
such that S′∩S′

1 = ∅, and a vertex vf ∈ S′. We consider two
situations.

• If Assortativity(G) ≥ 0, we utilize S′′ to de-
note a local similarity core of vf and S′. Then, if

simi thre(vf , S′
1) ≥ simi thre(vf , S′′), then S′′ has a

strong correlation relationship with S′
1.

• If Assortativity(G) < 0, we utilize S′′ to denote
the local difference core of vf and S′. Then, if
diff thre(vf , S′

1) ≤ diff thre(vf , S′′), then S′′ has a
strong correlation relationship with S′

1.

When one of the above conditions is satisfied, the
vertex vf and its corresponding local cluster core S′′

show a strong correlation with S′
1, which is denoted as

Strong(vf , S
′′, S′

1)=1. If the condition is not met, the corre-
lation is considered absent, and thus Strong(vf , S′′, S′

1)=0.

If a local cluster core has a strong correlation relationship
with another (k, l, S)-cluster, it indicates that they share sim-
ilar structures. Based on this consideration, we developed the
(k, l, S)-cluster guided perturbation algorithm.

Recently, numerous local search algorithms have adopted
the lock-unlock mechanism to explore specific search ar-
eas more deeply [Jin et al., 2021; Chen et al., 2023], and
employed perturbation strategies to escape from local op-
tima [Wang et al., 2020; Sun et al., 2024]. This study
also integrates these strategies to strengthen the search pro-
cess through deep exploration of the search space and robust
mechanisms for escaping local optima. Specifically, in the
perturbation and local search procedures, vertices can be in
one of two states: locked or unlocked, with only unlocked
vertices being movable. During the local search process,
when the algorithm becomes trapped in local optima, it uses
heuristic methods to move the vertices.

The locked vertices are those within the enumerated local
cluster cores, each of which is locked in either B or B′. The
vertices moved during the perturbation procedure are those
located within the enumerated (k, l, S)-clusters. This is be-
cause the local cluster cores represent the most cohesive com-
ponents within the given (k, l, S)-cluster, so we lock them in
the entire local search procedure. As for the perturbation, it
aims to explore the search space more broadly and escape lo-
cal optima. To achieve this, the algorithm modifies the current
solution by moving the entire (k, l, S)-cluster.

During the perturbation procedure, we use Vlock to denote
the set of locked vertices. The local cluster cores locked in B
and B′ are represented by CoreB and CoreB′, respectively.
We use the flag variable to determine whether a local cluster
core is locked in B or B′. Specifically, flag = 0 means that
the core is locked in B, while flag = 1 indicates it is locked
in B′.

The algorithm is outlined in Algorithm 4. Initially, Vlock,
CoreB and CoreB′ are set to ∅ (Line 1). Then, the algo-
rithm iteratively transverse the enumerated (k, l, S)-clusters
and their corresponding local cluster cores NE times (Lines
2–28). In the i-th iteration, the i-th enumerated cluster and
local cluster core are extracted as S′

i and S′′
i , respectively

(Lines 3–4). If the |S′′
i | is not larger than 1, the algorithm

skips the current iteration (Line 5). The vertex vf , which was
first added to S′′

i , is then extracted (Line 6). Next, the algo-
rithm determines whether S′′

i is locked in B or B′. Specif-
ically, if there exists a local cluster core S′′

core in B that has
a strong relationship with S′′

i , but no local cluster core in B′

exhibits a strong relationship with S′′
i , we set flag to 0. Con-
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Algorithm 4: CluPert
Input: Graph G = (V,E), the set of (k, l, S)-clusters

SetS′, the set of local cluster cores SetS′′,
candidate solution D

Output: The perturbed solution D
1 Vlock := CoreB := CoreB′ = ∅;
2 for i = 1 to NE do
3 S′

i :=select the ith element in SetS′;
4 S′′

i :=select the ith element in SetS′′;
5 if |S′′

i | ≤ 1 then continue;
6 extract the vertex vf that was first added to S′′

i ;
7 CanB := {S′′

c ∈ CoreB | Strong(vf , S′′
i , S

′′
c ) = 1};

8 CanB′:={S′′
c ∈ CoreB′ | Strong(vf , S′′

i , S
′′
c ) = 1};

9 if CanB ̸= ∅ and CanB′ = ∅ then
10 flag := 0;

11 else if CanB = ∅ and CanB′ ̸= ∅ then
12 flag := 1;

13 else
14 flag := select a random value from {0, 1};

15 if flag = 0 then
16 move count := |S′

i \B|;
17 B := B ∪ S′

i;
18 for i = 1 to move count do
19 v∗ := argminv∈B\Vlock

∆drop (D, v);
20 D := drop(v∗, D) ;

21 Vlock := Vlock ∪ S′′
i , CoreB := CoreB ∪ {S′′

i };

22 else
23 move count := |S′

i \B′|;
24 B′ := B′ ∪ S′

i;
25 for i = 1 to move count do
26 v∗ := argminv∈B′\Vlock

∆add (D, v);
27 D := add(v∗, D) ;

28 Vlock := Vlock ∪ S′′
i , CoreB′ := CoreB′ ∪ {S′′

i };

29 return ⟨D,Vlock⟩;

versely, if there exists a local cluster core S′′
core in B′ with a

strong relationship to S′′
i , but no such local cluster core exits

in B, we set flag to 1. Otherwise, flag is set to a random
value from 0 and 1. Note that each local cluster core stored in
CoreB or CoreB′ is also considered as a (k, l, S)−cluster.
In this mechanism, if a local cluster core exhibits a strong
correlation with another local cluster core, they are consid-
ered to have similar substructures and are more likely to be
positioned on the same side (i.e., B or B′).

Subsequently, if flag equals 0, all vertices in S′
i \ B are

moved to B (Line 17). Then, an equal number of vertices are
removed from B \ Vlock to B′, specifically by removing the
vertex v with the highest ∆drop(D, v) from the unlocked ver-
tices (Lines 18–20). After this, Vlock and CoreB are updated
accordingly (Line 21). If flag is 1, all vertices in S′

i \B′ are
moved to B′ (Line 24). Then, an equal number of vertices
are removed from B′ \Vlock to B, again by removing the ver-
tex v with the highest ∆add(D, v) from the unlocked vertices
(Lines 25–27). Vlock and CoreB′ are updated accordingly
(Line 28). Finally, the perturbed solution D and the locked
set Vlock are returned (Line 29).

6 Two-Manner Local Search Algorithm
In this section, we present the two-manner local search al-
gorithm, including coarse-grained search and fine-grained
search manners. First, we review previous search manners for
the VBMP and analyze their time complexity. Then, we intro-
duce the swap vertices selection rule utilized in the algorithm.
Finally, we present the two-manner local search algorithm.

6.1 Previous Search Manners for the VBMP
Previous local search algorithms typically employ two types
of local search manners: the drop&add operations [Herrán et
al., 2019; Tian et al., 2022; Jin et al., 2021] and the swap op-
eration [Herrán et al., 2019; Tian et al., 2022]. These manners
differ in how to select vertices. In the drop&add operation, a
vertex v ∈ B with the lowest ∆drop(D, v) is first dropped
to B′, and then a vertex u ∈ B′ with the lowest ∆add(D,u)
is selected to be added to B. The swap operation simulta-
neously selects a vertex v ∈ B and a vertex u ∈ B′ with
the lowest ∆swap(D, v, u), and then swaps them. Although
the swap operation consistently yields equal or better solution
quality compared to the drop&add method [Jin et al., 2021],
it has significantly higher time complexity. We analysis their
time complexity as follows:

In the local search procedure, ∆swap of each vertex pair
can not be maintained in the local search because it requires
significant time complexity. But the two local search manners
both maintain the ∆drop values of vertices in B and the ∆add

values of vertices in B′ in the whole local search procedure.
When a vertex v ∈ B and a vertex u ∈ B′ are swapped, both
of the two local search manners need to have a complexity of
d2max to update ∆drop and ∆add.

The time complexity of their vertex selection procedures
differs. Note that the ∆drop values of vertices in B and
∆add values of vertices in B′ are maintained during the lo-
cal search. By utilizing bucket sorting technique [Tian et al.,
2022; Jin et al., 2021], the vertex selection of the drop&add
method has a time complexity of O(1). As for the swap op-
eration, the swapped vertex pair are selected by calculating
the ∆swap(D, v, u) of each distinct vertex pair v ∈ B and
u ∈ B′, and choosing the best pair among them. According to
the study [Tian et al., 2022], for v ∈ B and u ∈ B′, calculat-
ing the ∆swap(D, v, u) has a time complexity of O(dmax). As
a result, the vertex selection for the swap operation has a time
complexity of O(|B| × |B′| × |dmax|) = O(|V |2 × |dmax|).
This introduces a trade-off between search effect and time
consumption. However, previous studies typically execute
the swap operation periodically, without exploring a more
heuristic approach to deal with the trade-off.

6.2 Swap Vertices Selection Rule
Due to the significant time consumption of the swap opera-
tion, we only conduct swap operation for high-quality vertex
pairs and select the best pair among them. We then propose
the swap vertex selection rule as follows.

Swap Rule. We store the vertices with the highest
∆drop(D, v) from B \Vlock in SB , and those with the highest
∆add(D, v) from B′\Vlock in SB′ . If either set contains more
than K vertices, we randomly reserve K vertices in the corre-
sponding set, where K is a parameter. Then, we choose a pair
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Algorithm 5: TwoManner
Input: Graph G = (V,E), candidate solution D, the global

best solution Dbest, the set of locked vertices Vlock.
Output: Local best solution Dlb

1 unimprove := 0, Dlb := D, step := 0;
2 fb[vi] := 0, for each vertex vi ∈ V ;
3 len := min(|B \ Vlock|, |B′ \ Vlock|);
4 while unimprove ≤ |V | − |Vlock| do
5 if |VM(D)| ≤ VM(Dbest) then
6 select two vertex v, u according to Swap Rule;
7 D := swap(v, u,D);
8 obtain a random integer inter from ( len

2
, len);

9 fb[v] := step+ inter;

10 else
11 select a vertex v ∈ B \ Vlock with the smallest

∆drop(D, v) and fb[v] < step, breaking ties
randomly;

12 D := drop(v,D);
13 obtain a random integer inter from (1, len);
14 fb[v] := step+ inter;
15 select a vertex u ∈ B′ \ Vlock with the smallest

∆add(D,u) and fb[u] < step, breaking ties
randomly;

16 D := add(u,D);

17 unimprove := unimprove + 1, step := step + 1 ;
18 if |VW (D)| < |VW (Dlb)| then
19 Dlb := D, unimprove := 0;

20 return ⟨D,Dlb⟩;

of vertices (v, u) := argminv∈SB ,u∈SB′ ∆swap(D, v, u),
breaking ties randomly.

In this vertices selection rule, we regard vertices in SB and
SB′ as high-quality vertices, and only calculate the score for
combinations of these vertices. The time complexity of this
vertex selection rule is O(|dmax|). In our algorithm, we set
the K as 4, which indicates its time complexity is significancy
smaller than previous vertices swap vertices selection rule
in most cases. According to our experiments, the in 91.2%
cases, the proposed swap rule can swap a better vertex pair
than the drop&add operation.

6.3 Details of Two-Manner Local Search
We present the two-manner local search in Algorithm 5,
where in each iteration, the algorithm performs either a
coarse-grained search (using the drop&add operation) or a
fine-grained search (using the swap operation), depending on
the quality of the current solution.

The variables step and unimprove track the number of
steps taken in the current search and the number of steps in
which Dlb has not been improved, respectively. Addition-
ally, len denotes the minimum value between |B \ Vlock| and
|B′ \ Vlock|, which incorporates a tabu mechanism [Luo et
al., 2022] to prevent cycling issues. Specifically, each vertex
is assigned a forbidden variable fb, which increases within a
specific range based on the current step after a drop operation.
A candidate vertex can only be added back once its forbidden
value exceeds the current step.

Initially, the variables unimprove, Dlb, step, and fb are

initialized (Lines 1–2). The variable len is set to min(|B \
Vlock|, |B′ \ Vlock|), which is tied to the forbidden sta-
tus of vertices (Line 3). Then, the algorithm uses either
the drop&add or swap operation to explore the neighboring
search space of D. If |VM(D)| ≤ VM(Dbest), the fine-
grained search is conducted by selecting a pair of vertices
based on the swap rule and performing the swap operation
(Lines 5–7). The algorithm then forbids the dropped vertex v
more strongly (Lines 8–9) to account for its greedy selection.

Otherwise, the coarse-grained search is employed to ex-
plore the neighboring search space efficiently. An unlocked
and unforbidden vertex v is selected greedily from B and
moved to B′ (Lines 11–12), after which v is forbidden with a
weaker strength (Lines 13–14). Then, an unlocked and unfor-
bidden vertex u is selected from B′ and moved to B (Lines
15–16). The values of unimprove and step are updated ac-
cordingly (Line 17). At the end of each loop, if D is better
than Dlb, Dlb is updated to D, and unimprove is reset to 0
(Lines 18–19). Finally, if unimprove reaches |V | − |Vlock|,
D and Dlb are returned (Line 20).

7 Experiments
In this section, we conduct experiments to evaluate the effec-
tiveness of the proposed algorithm and its key components.

Based on the literature, we compare all the state-of-the-
art algorithms for the VBMP, including BVNS [Herrán et
al., 2019], BVNSbucket [Tian et al., 2022], BVNSbucket2
[Tian et al., 2022], and CLUHS [Jin et al., 2021]. Among
these, CLUHS is the best-performing heuristic algorithm for
the VBMP. We compare CELS with these four heuristic al-
gorithms, as well as with the best results reported in previous
studies. The source codes for all algorithms are provided by
the respective authors.

Following the experiment settings of the previous work [Jin
et al., 2021], the time limit is set to 100 seconds. The random
seeds are set from 1 to 10. All the algorithms are implemented
in C++ and compiled by g++ with ‘-O3’ option. For all com-
petitors, we use the parameters specified in the corresponding
literature, while also optimizing these parameters for newly
introduced instances. All experiments are conducted on In-
tel(R) Xeon(R) Platinum 6238 CPU @2.10GHz with 256GB
RAM under Ubuntu 22.04.4 LTS.

We select all instances previously adopted by the state-of-
the-art heuristic algorithms. Specifically, [Jin et al., 2021]
uses 137 instances, while [Tian et al., 2022] uses 142 in-
stances, many of which overlap with the 137 instances used
by CLUHS. After removing the duplicate instances, we col-
lect a total of 243 unique instances. Additionally, 71 large
instances are selected from the datasets for the max-cut prob-
lem, which is another fundamental graph partitioning prob-
lem. We divide the 314 instances into three benchmarks.
First, the 71 large graphs are designated as the max-cut-large
benchmark [Wu et al., 2015]. Among the remaining 243 in-
stances, 178 with fewer than 500 vertices are classified as the
classic medium benchmark, while the remaining 65 instances
with more than 500 vertices are categorized as classic large
benchmark. According to our preliminary experiments, we
set the parameters as NE = 3, β = 0.4,K = 4.
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Benchmark #ins CELS BVNSBucket BVNSBucket2 CLHUS BVNS
#min(#avg) #min(#avg) #min(#avg) #min(#avg) #min(#avg)

max-cut-large 71 62(61) 18(12) 19(16) 25(23) 10(8)
classic medium 178 177(169) 170(163) 170(166) 161(148) 169(157)
classic large 65 64(51) 50(34) 53(36) 47(32) 48(26)
#total 314 303(281) 238(209) 242(218) 233(203) 227(191)

Table 1: Summary results of all algorithms. #min and #avg represent the number of instances where the CELS finds the best minimal and
average solutions among all algorithms, respectively.

Benchmark #inst. vs. CELS1 vs. CELS2 vs. CELS3 vs. CELS4 vs. CELS5 vs. CELS6 vs. CELS7
#bet(#wor) #bet(#wor) #bet(#wor) #bet(#wor) #bet(#wor) #bet(#wor) #bet(#wor)

classic medium 178 2(0) 1(0) 7(3) 0(0) 2(1) 15(0) 3(0)
classic large 65 12(0) 13(0) 4(1) 6(3) 7(2) 19(0) 14(1)
max-cut-large 71 7(1) 19(0) 6(0) 31(5) 21(3) 42(2) 44(0)

Table 2: Comparing CELS with 7 modified versions. #bet and #wor represent respectively the number of instances where CELS achieves
better and worse minimal solutions.

7.1 Experimental Results on All Benchmarks
The summarized results are presented in Table 1. Detailed re-
sults are provided in the supplementary material. In detail,
CELS outperforms CLUHS, BVNSbucket, BVNSbucket2,
and BVNS in terms of the best solution for 76, 76, 72, and
87 instances, respectively. It is surpassed by CLUHS, BVNS-
bucket, BVNSbucket2, and BVNS in only 3, 6, 7, and 2 in-
stances, respectively. Moreover, we regard the best results
from the results of comparative algorithms and previous re-
sults as the best-recorded results. When comparing with the
best-recorded results, CELS achieves 50 record-breaking so-
lutions, while it is defeated by those the best-recorded for
11 instances. Regarding average solutions, CELS achieves
the best average in 281 out of 314 instances, while BVNS,
BVNSbucket, BVNSbucket2, and CLUHS achieve 203, 209,
218, and 191 best average solutions out of 314 instances, re-
spectively. These results clearly highlight the state-of-the-art
performance of CELS.

Moreover, we evaluate the runtime performance of the
CELS algorithm against three competing methods, focusing
on instances where all algorithms achieve identical best and
average solution values. To ensure meaningful comparisons,
instances with runtimes under 0.1 seconds for both CELS and
its competitors are excluded. As illustrated in Figure 2, CELS
consistently outperforms its rivals in terms of runtime across
the majority of instances.

7.2 Further Results with Exact Algorithms
According to the literature [Castillo-Garcı́a and Hernández,
2019; Soto et al., 2022], the state-of-the-art exact algorithms
for the VBMP include ILPVBP and MILP [Castillo-Garcı́a
and Hernández, 2019], as well as BBVBP-IVM and BBVBP-
S [Soto et al., 2022].

First, we compare CELS with ILPVBP and MILP
[Castillo-Garcı́a and Hernández, 2019] on all the instances
tested in this study, using CPLEX 22.10 as the ILP solver.
CELS is tested under a 100s limit and seed 1, while the ILP
algorithms are tested under a 1000s limit. Results show CELS
outperforms ILPVBP on 74 instances and MILP on 80 in-
stances, while being surpassed by them on only 6 and 5 in-

stances, respectively. The results show that CELS clearly out-
performs the two algorithms.

As for the comparison with BBVBP-IVM and BBVBP-S,
their source code is not publicly available. Therefore, we
compare the results obtained by CELS under a 100-second
time limit and seed 1 with the results reported in the litera-
ture, where both BBVBP-IVM and BBVBP-S were run for
96 hours. Among the 27 instances used in [Soto et al., 2022],
CELS outperforms both BBVBP-IVM and BBVBP-S on 23
instances and is not outperformed on any instance. This com-
parison further highlights the superior performance of CELS.

7.3 Strategies Analysis of CELS
We generate the following alternative versions of CELS to
validate its key ideas: CELS1 and CELS2 discard the assor-
tativity of the graph, with eunm pre consistently set to 0 and
1, respectively. CELS3 does not account for the strong corre-
lation between local cluster cores and randomly displays the
(k, l, S)-cluster in B or B′. CELS4 does not lock the ver-
tices in the local cluster cores. CELS5 only moves the local
core clusters without altering the entire (k, l, S)-cluster dur-

Figure 2: Comparison of run time of CELS and its competitors.
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ing the perturbation process. CELS6 and CELS7 only uti-
lize the coarse-grained search or the fine-grained search in
the two-manner based local search, respectively. The results
in Table 2 show that all the proposed strategies play an im-
portant rule in CELS. Moreover, we conduct a more deeply
strategy analysis of the two-manner local search. We present
this part in the supplementary material.

8 Conclusion
In this paper, we propose a novel local search algorithm
named CELS to deal with the VBMP. We propose the defi-
nition of the (k, l, S)-cluster and develop the (k, l, S)-cluster
enumeration procedure. Based on this procedure, we pro-
pose a (k, l, S)-cluster guided perturbation mechanism and
the two-manner local search procedure. Experimental re-
sults clearly demonstrate that the proposed CELS algorithm
achieves the best performance on almost all instances.

In further work, we believe that CELS can be enhanced
by optimizing the transition condition between fine-grained
and coarse-grained searches. To achieve this, we plan to in-
troduce additional shift conditions and apply a multi-armed
bandit [Zheng et al., 2025] approach to dynamically select
the most suitable condition for each specific graph.
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