Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Knowledge Editing for Multi-Hop Question Answering Using Semantic Analysis

Dominic Simon, Rickard Ewetz

University of Florida

{dominic.simon, rewetz } @ufl.edu,

Abstract

Large Language Models (LLMs) require
lightweight avenues of updating stored infor-
mation that has fallen out of date. Knowledge
Editing (KE) approaches have been successful
in updating model knowledge for simple factual
queries but struggle with handling tasks that
require compositional reasoning such as multi-hop
question answering (MQA). We observe that
existing knowledge editors leverage decomposi-
tional techniques that result in illogical reasoning
processes. In this paper, we propose a knowledge
editor for MQA based on semantic analysis called
CHECK. Our framework is based on insights from
an analogy between compilers and reasoning using
LLMs. Similar to how source code is first compiled
before being executed, we propose to semantically
analyze reasoning chains before executing the
chains to answer questions. Reasoning chains with
semantic errors are revised to ensure consistency
through logic optimization and re-prompting the
LLM model at a higher temperature. We evaluate
the effectiveness of CHECK against five state-of-
the-art frameworks on four datasets and achieve an
average 22.8% improved MQA accuracy.

1 Introduction

Large Language Models (LLM) are trained on exten-
sive amounts of data, enabling them to grasp the statisti-
cal patterns of natural language and broad factual knowl-
edge [Brown et al.,, 2020]. The factual knowledge is uti-
lized when LLMs are integrated into applications such as
chatbots, translators, and question-answering systems [Zhu
et al., 2024]. Tt is unavoidable that the factual knowledge
stored within LLMs becomes outdated over time. Retrain-
ing the LLMs from scratch to learn new factual data is
both economically expensive [Li et al., 2023] and introduces
an undue burden on the environment [Faiz et al., 2024].
The concept of knowledge editing (KE) has emerged as a
promising solution to bypass the need for retraining LLMs
from scratch. Knowledge editing approaches commonly fall
into two categories: parameter-based approaches that inject
edits directly into model parameters [Meng et al., 2022;

Meng et al., 2023; Yu et al., 2023; Gupta et al., 2023;
Hase et al., 2023] and memory-based methods that introduce
additional parameters for edit injection [Mitchell ef al., 2022;
Madaan et al., 2022; Yu et al., 2024; Wang er al., 2024al.
Both of these solution strategies have demonstrated success
for basic questioning answering problems [Meng et al., 2023;
Mitchell er al., 2022]. However, the problem becomes im-
mensely more challenging when the questions involve com-
positional reasoning, such as multi-hop question answering
(MQA), where the intermediate knowledge between a hop
could have been edited. For example, What is the country
of citizenship of the author of Harry Potter, where an edit
could have changed the country of citizenship of JK Rowl-
ing from United Kingdom to United States. This emerg-
ing challenge has recently spurred further investigations into
knowledge editing for MQA problems [Chen et al., 2024;
Shi er al., 2024].

State-of-the-art knowledge editors for MQA rely on de-
composing the multi-hop problems into multiple single-hop
parts [Zhong er al., 2023; Gu et al., 2024; Wang et al.,
2024b]. The decomposition allows the knowledge editors to
compare the intermediate facts with edits stored in a mem-
ory bank. The decomposition is performed using an LLM
through long in-context examples. However, this approach
is prone to leveraging illogical reasoning processes and acci-
dentally utilizing non-relevant edited facts. An intuitive ap-
proach to improving existing solutions would be to leverage
explicit question decomposition. Nevertheless, explicitly de-
composing multi-hop questions into single-hop questions is
not straightforward because it may introduce errors from the
loss of context, nuances, and hallucinations.

In this paper, we propose a framework for knowledge edit-
ing based on semantic analysis called CHECK. The frame-
work is based on insights from an analogy between compil-
ers and reasoning using LLMs. Source code is first required
to pass semantic analysis tests such as type checking before
being compiled into a binary that can be executed. Inspired
by this approach, we propose to semantically type check the
reasoning chains generated by LLMs for solving MQA prob-
lems. The main contributions of this paper are summarized,
as follows:

* We propose the concept of semantically analyzing the
reasoning process of knowledge editors. Each hop in a
multi-hop question is assigned a type in the form of per-

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

son, place, or thing. Next, each of the input and output
types within each hop of a reasoning chain are checked
for consistency.

» Semantic inconsistencies are resolved by formulating
optimization problems to repair the reasoning chains by
rearranging the extracted relationships or re-prompting
the LLM for a new reasoning chain at a higher tempera-
ture.

e Experimental evaluation on the MQUAKE dataset
demonstrates that CHECK achieves an average 22.8%
greater accuracy than other similar approaches across
three open-source LLMs.

The remainder of the paper is broken into the following
sections: preliminary knowledge is discussed in Section 2,
the motivation behind using type checking is given in Sec-
tion 3, the methodology of the CHECK framework is ex-
plained in Section 4, experimental results across 4 datasets
and 3 LLMs are provided in Section 5, and the conclusion is
in Section 6.

2 Preliminaries

The problem formulation of knowledge editing is provided in
Section 2.1. Related works are discussed in Section 2.2.

2.1 Problem Formulation

This paper addresses the problem of Multi-hop Question An-
swering (MQA) under Knowledge Editing. A single factual
association can be viewed as a subject s, relation r, object o
triple t = (s, r, 0), where Akira Toriyama was born in Japan
can be converted to (Akira Toriyama, born in, Japan).
Editing a factual relation is updating o to become a new en-
tity o’ so that the edited triple becomes t' = (s,r,0'). A
factual association can be expressed in the form of a question
g = (s,7) — o, where o is unknown until the question is
answered. Multi-hop questions Q contain a chain of relations
Q = (rg,71,...,7y) that can be viewed as a set of subques-
tions ((s,r9) — 01, (01,71) — 02, .o (On—1,Tn—-1) — 0On)
that must be iteratively solved to uncover the obscured enti-
ties until the final answer is found. For example, the multi-
hop question Where is the birthplace of the creator of Drag-
onball? contains the relations (creator, birthplace), which
translate into the subquestions ((Dragonball, creator) —
Toriyama, (Toriyama, birthplace) — Japan). Answer-
ing any of the subquestions ¢ of a multi-hop question Q with
edited information ¢' will cause the subsequent subquestion
answers o], to deviate from the original answer path, such
that @ = ((s,70) — 0o, (0}, 71) — 04)). Generating a cor-
rect subquestion path to traverse and determining whether a
subquestion requires an edited answer are the two main chal-
lenges of MQA under KE.

2.2 Related Works

In this section, we review studies on knowledge editing for
LLMs. Early investigation on KE using parameter-based ap-
proaches include [Meng et al., 2022; Mitchell et al., 2022;
Meng et al., 2023]. However, solution strategies that directly
modify model parameters face issues such as catastrophic for-
getting [Gupta er al., 2024], one-way associations [Meng et

Method Question Verification of

Decomposition Decomposition
GMeLLo v 0
MeLLo v 0
DeepEdit v 0
PokeMQA v 0
CHECK v v

Table 1: Knowledge Editing steps included by state-of-the-art

frameworks [Chen et al., 2024; Zhong et al., 2023; Wang et al.,
2024b; Gu et al., 2024].

al., 2022; Meng et al., 2023], and long training times [Yu et
al., 2024]. Other investigations have focused on augmenting
the LLM with external knowledge graphs [Cheng et al., 2024;
Shi et al., 2024; Chen et al., 2024]. However, such solutions
are constrained to applications where such graphs are avail-
able [Baldazzi er al., 2023]. Embedding-based editors store
edits in an embedding space for compact retrieval [Zhong et
al., 2023; Gu et al., 2024]. MeLLo [Zhong et al., 2023] uses
the dense retrieval model Contriever [Izacard et al., 2021] to
store factual edit sentences in an embedding space. Next,
an in-context learning prompt is used to break the initial
question into subquestions and check the subquestion answer
against the most similar embedded answer for factual con-
flicts. PokeMQA [Gu er al., 2024] uses a similar prompt-
ing scheme, but it removes the burden of determining conflict
from the LLM and trains a two-level conflict disambiguation
network to determine whether the subquestion answer and re-
trieved embedding contain conflicting information.

The knowledge editing steps included by state-of-the-art
frameworks are shown in Table 1. Neither the above knowl-
edge editors nor similar ones have any way to ensure that the
generated subquestions are being answered in an order re-
flecting the original multi-hop question. This results in misor-
dered chains of subquestions, leading to a question-answering
flow that will never arrive at the correct answer. The proposed
CHECK framework resolves this issue by type checking the
subquestion reasoning process using semantic analysis.

3 Semantic Analysis

Our proposed knowledge editing solution is based on in-
sights from an analogy between compilers and reasoning us-
ing LLMs. Source code is converted into a binary executable
through a compilation process consisting of preprocessing,
semantic parsing, assembly conversion, and linking. Next,
the binary can be executed to compute an output. Semantic
parsing involves type checking to ensure each function call
has arguments that match the function definitions. For exam-
ple, checking that a function expecting an argument of type
double is not passed an argument of type char. The compila-
tion process eliminates syntactic and semantic errors, which
reduces debugging of the executable to value errors. We pro-
pose to adapt this method of semantic analysis to knowledge
editing for MQA by type checking the reasoning chains and
knowledge edits. The type checking will ensure that the rea-
soning processes are logical and will assist in eliminating hal-

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

New subject entity from edit bank
-------- L...—_.\ Final hop

milarty > | | com
! Similarit ST completed

i Relationship i Coherent :
Multl-hop - Chan} g Cham | Chain_ Edit Retrieval E Final Answer
Question | Extraction Alignment ! !

; [} | 4 A | LLMHop [

! Incoherent chain, ; Similarity <=7 | Completion |[i Final hop

| increase model temperature } T ; completed

‘\\ L . New subject entity generated by LLM -

! Entity Linking Person .

1 —_— —_— >

E Entity Model Entity Type

i Not Person, P l(i‘:e
E pass Entty Large Language Thing

| Model

Max Similarity Relationship,

Relationship Cosine Relationship Input & E
Embedding Similarity Output !
\ Types !

Template :
Relationships 1

Figure 1: The flow of the proposed CHECK knowledge editor. CHECK processes the initial multi-hop question by decomposing it into
a chain of relationships. Misaligned chains are realigned through type checking and model temperature increases. Next, each entity and
relationship pair is checked to see if an edit is necessary. If an edit is required, the object corresponding to the edit triple is provided as the

next entity. Otherwise, the LLM provides the next entity.

lucinations from LLM responses.

In this paper, we propose to categorize all entities as per-
sons, places, or things. Optionally, more fine-grained type
categories can be used. Consequently, relationships can be
viewed as functions that expect inputs and outputs of per-
sons, places, or things. In the sentence Akira Toriyama was
born in Japan, the relationship born in expects an entity of
type person (Toriyama) as input and place (Japan) as output.
We propose to decompose multi-hop questions into single-
hop questions and iteratively resolve each relationship. If the
question is decomposed correctly, the output types of one re-
lationship are expected to overlap the input types of the next
relationship. If there is no overlap between the input and out-
put of neighboring relationships, then the semantic analysis
has revealed an error that is required to be corrected before
the relationship chain is evaluated to answer the MQA.

4 Methodology

In this section, we present the methodology of the CHECK
framework. The input to the CHECK framework is a multi-
hop question and a set of factual edits. The output is an
answer to the questions. The CHECK framework consists
of a type extraction step, a multi-hop question decomposi-
tion step, and a subquestion resolution step. The flow of the
framework is illustrated in Figure 1. The type extraction step
involves developing functions and a library for extracting the
type of entities and relationships, respectively. The details of
the type extraction is provided in Section 4.1. The multi-hop
question decomposition step involves decomposing the multi-
hop question into a chain of relationships that represent each
hop and the initial multi-hop question entity. The relationship
chain is then checked for type alignment and realigned if nec-
essary. The details of question decomposition are explained
in Section 4.2. The final step is to iteratively traverse the

relationship chain until the answer entity is found in the sub-
question resolution step. Within each iteration, the entity and
relationship are compared against edits to determine whether
it is necessary to insert edited information. The details of the
relationship chain traversal are provided in Section 4.3.

4.1 Type Extraction

In this section, we describe how the types for both entities and
relationships are extracted. The entity types are extracted us-
ing a combination of entity linking models and LLMs during
MOQA. In contrast, we pre-characterize a library of input and
output types for the relationships. During MQA, the library
is queried to obtain the input and output type of each relation-
ship. The approach to generating types for entities and rela-
tionships is different because the number of different entities
is very large and cannot be enumerated ahead of time. On the
other hand, there is only a limited number of relationship that
connect persons, places, and things. Therefore, it is possible
to pre-characterize the different types of relationships into a
template library, for quick and reliable access at runtime.

Entity Type Extraction: The objective of entity type ex-
traction is to determine if an entity is of type person, place,
or thing. We first pass the entity to an entity linking model,
which can accurately decide whether the entity is a person or
not. CHECK uses the ReFinED [Ayoola et al., 2022] entity
linking model for its short inference times and accurate entity
linking. If the entity is not a person, then the entity is passed
to the language model F to determine whether the entity is
a place or thing. The prompt and in-context examples are
provided in Section 7 of the Appendix.

Relationship Type Extraction: The relationships from
given edits are extracted to build a relationship template li-
brary, where template relationships 7, are encoded using a
dense retrieval model and act as keys to access their input

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Question: What is the country of citizenship of the father of the creator of Linux?

1 thi i :
person C.()}lntry (?f place | thing _ S person __person father person Ahgnmer}t Penalty: 1
citizenship ” Permutation Penalty: 0
Rearrange Relationship Chain
thi 1 Ali t Penalty: O
ing creator person __person father person __person _| - country (?f place ignment Penalty
citizenship Permutation Penalty: 3
Extracted Permutation Matrix Aligned Permutation Matrix
1 0 0 | |country of citizenshi . . 010 country of citizenshi
v P - country of citizenship, Yy P creator, father,
010 creator - creator, father 001 creaton = count of’citizen,shi
00 1 father ’ 100 father v /

Figure 2: Example of relationship chain repair on a misaligned chain. Initially, there is an alignment penalty of 1. After two permutation

steps, the relationship chain is realigned.

and output types. During MQA, the template relationships r;
are compared against embedded multi-hop question relation-
ships 7 using cosine similarity. Question relationships r take
on the input and output types of the most similar r,. Edits
are expected to be provided as triples, so r; can be taken di-
rectly from the edits. Relationships can have multiple input
and output types, but LLMs struggle to correctly assign mul-
tiple types at once. To generate an accurate template library,
the relationship types are manually labeled, which is feasible
due to the limited number of relationships.

4.2 Question Decomposition

In this section, we explain how a relationship chain is ex-
tracted from a multi-hop question. CHECK receives the
multi-hop question and extracts a chain of hops that will be
traversed to find the answer to the multi-hop question. Then,
the input and output entity types of each relationship in the
chain are checked to ensure the types are aligned. If the chain
is misaligned, it is reconstructed to create a new relationship
chain that is aligned.

Chain Extraction: The multi-hop question Q is passed to
the LLM F along with an in-context learning prompt found,
in Section 7 of the Appendix, in order to extract the relation-
ship chain R. Relationship chain extraction is outlined as
follows:

R = (ro,m1,...,n) = F(Q), (1)

where R is a chain of relationships (g, 71, ..., 7,). The initial
entity o,, from Q is extracted using an entity linking model.
The relationship chain R can be iteratively traversed back-
wards to generate triples (0, Ty, 0,—1) until 0,1 is the final
answer og to Q. The traversal process can be viewed as a se-
ries of function calls where 7,, is a function that takes o,, as
input and outputs o,,_1 such that og = 71 (r2(r,(0,))). Rela-
tionship chain traversal is described in-depth in Section 4.3.
Chain Alignment: The extracted relationship chains R
have been observed to contain misaligned relationships r.
Misalignment occurs when the ordering of r within ‘R does
not match the ordering of relationships within the original
multi-hop question. To check the alignment of the extracted
chain, all r in R are given input 7;, and output 7T, types,

as described in Section 4.1. The relationships types are com-
bined to form a chain C of types corresponding to R, such
that:

C= [(mvmt)a(ﬂ;aﬂlut)a“w(ﬁga 0777;26)]' (2)

The alignment penalty .4 for a type chain C is determined
by the number of input and output type pairs n that are mis-
aligned. The alignment of C is described as follows:

n
A= E mi,
i=1

{0
s.t. m; = 1

where a misalignment 7,°%% # ffl carries a penalty of 1,

while an alignment 77! == T, carries no penalty. The
penalty values m; are summed to get A. If A == 0, C is
properly aligned and is passed to the subquestion resolution
step. If A > 0, CHECK attempts to find an aligned C.

Relationship Chain Repair: When a relationship chain
‘R is not aligned, we have observed that R often contains the
correct relationships, only in an incorrect order. Therefore,
there exists an opportunity to correct the misaligned chains
by permuting the relationships to find an aligned chain. The
relationship chain repair step starts by generating all permu-
tations of the relationship type chain C. The repair is success-
ful if one of the permutations ¢ has an alignment penalty of
zero A(c) = 0. However, there may be multiple permuted
chains that have an alignment penalty of zero. If multiple ¢
exist where A(c) = 0, we select ¢ that has the smallest per-
mutation cost A, the c that required the smallest number of
permutations to eliminate the alignment penalty.

To find A for each c, the permutation matrix P used to gen-
erate c is examined. Generating c using P can be described
as P - R = ¢, and expanded as:

1 0 0 Co Co

0 1 0 Cl _ C1 (4)

00 .. 1)\e) \a

3)

Tout ____Tin
i —— Ji+1

out mn
7; 7é i+1»

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Question: Who is the creator of Linux?)
'ompare embeddings

Question Decomposition against stored edits

Relationship Chain: (creator of, Linux)

Extract entity and relationship
. current embeddings
Current Hop: (Linux, creator of,)

Pass entity and relationship to [/
dense retrieval model
Dense Retrieval
Model

Edit Similarity Checking:
Linux creator of

Linux created by

Cosine Similarity: 0.9

Compared edits against

Edit Embeddings P
Ellie Kemper citizen of (embedding)
Linux created by (embedding)
El Campu capital of (embedding)

Final Answer: Robert Eggers

Similar edit embedding found, use
corresponding edit O as answer

(S, R, O) Edits
Ellie Kemper, citizen of, Croatia
Linux, created by, Robert Eggers
El Campu, capital of, U.S.A

Figure 3: Example of CHECK answering the question Who was the creator of Linux? The subject and relationship are extracted during
question decomposition and rearranged into a single triple with the object unknown. The entity and relationship are embedded using a dense
retrieval model and compared against the stored edit embeddings. A similar edit is found, so the object of the corresponding triple is used as

the next entity / final answer.

where C,, and c¢,, correspond to the input / output type pairs
within the the original type chain C and its permutations c.

The rows in P can be reordered to obtain a different per-
mutation ¢, as long as each row and column has exactly 1
non-zero value. CHECK attempts to find a ¢ where A(c) =0
and the permutation penalty A of P is minimal. The penalty
A of the permutation matrix P is computed as follows:

N
A=N-=) P, (5)
=1

where P, . denotes the element in row 7 and column c of P.
The summation computes the number of elements that are on
the diagonal, which corresponds to the number of elements
in their “unpermuted” position. Subtracting the sum from the
number of diagonal elements N provides the number of rows
that have been permuted, also known as the permutation cost
A for the current permutation c. The initial permutation ma-
trix P will have the value 1 on all diagonal matrix elements
Pii» so the A for C will be 0, while A for any permutation c
will be non-zero.

Equation 3 is applied to all generated c. If at least 1 per-
mutation ¢ where A(c) = 0 exists, the ¢ where A(c) = 0
with the lowest A is used as the new C and the corresponding
permutation of R is passed to the subquestion resolution step.

If an aligned c does not exist, then question decomposi-
tion is restarted and a higher LLM temperature is used during
chain extraction. We use a temperature scale of 0.0 to 1.0 on
increments of 0.1. After 1.0, the model responses tend to be-
come too varied to be useful. The 0.1 increment gives a good
trade-off between exploring many options and while still hav-
ing a reasonable run time. If no aligned c is found, the ¢ with
the least A is used during subquestion resolution.

4.3 Subquestion Resolution

The input to the subquestion resolution step is an entity o,,
and relationship . The goal is to generate the next entity
0p—1. Starting with the initial entity and relationship, the cur-
rent o,, and r are compared against stored edits. If an edit that
is sufficiently similar to one of the inputs exists, the next en-
tity 0,1 will be an edited object o’ from the corresponding
edit triple ¢’. Otherwise, the LLM is prompted to generate and
answer a question based on the current 0,, and 7 to find 0,,—1.

This process is repeated until the final multi-hop answer has
been obtained. Each entity and relationship is embedded us-
ing a dense retrieval model and is compared against all edit
embeddings using cosine similarity. An example of subques-
tion resolution is provided in Figure 3.

Edit Storage: Prior to MQA, CHECK receives edits as
triples and stores them as strings and embeddings. Edit triples
t’ are stored as comma-separated lists. The subject s of ¢’ is
passed to an entity linking model to get the true name s* of
the entity. The edit triple ¢’ is then updated with s* such that
t'=(s*1,0).

Edits ¢’ are also stored in an embedding space. The sub-
ject s and relationship 7 of ¢’ are combined into one string
and passed to an embedding model to get an edit embedding.
Following previous works, we use the Contriever [Izacard et
al., 2021] dense retrieval model. These embeddings are then
used during relationship chain traversal to aid in determining
whether an edit needs to be made.

Edit Retrieval: The initial entity o,, is passed to an entity
linking model to generate its true name o,. The initial entity
true name o}, is compared against all true edit names s* pre-
viously inserted into CHECK. Next, the list of edit triples L
is searched for corresponding edits as follows:

: *

&Wm:{?’iﬁeﬁ’ (©)

, ifol & Ly,
where the set of semantic embeddings that will be checked
for necessary edits Egcqrcp is narrowed to the embeddings £«
where s* € L and 0], == s*. The entity linking model can
generate false positive and false negative outputs, so even if
no match is found, all edited semantic embeddings ¢, € &
are checked to ensure that an edit is not missed.

Once E;cqrcn has been found, the initial entity o,, and rela-
tionship r,, of Q are extracted from R and passed to a dense
retrieval model to generate semantic embeddings . for the
current hop. Then, e, € £ are compared against . using co-
sine similarity cos(). If the highest similarity embedding is
above a threshold 7, then the o’ from the corresponding edit
triple ¢’ becomes the new o,,_1. If the highest similarity is be-
low 7, then o,, and r,, move to the triple completion sub-step.
Semantic embedding matching can be described algorithmi-

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Dataset [Zhong et al., 2023] | MQUAKE-CF-3k | MQuAKE-2002 | MQuAKE-Hard | MQuAKE-T

Accuracy Type | Case | Question | Case | Question | Case | Question | Case | Question

Model | GPT-J [Wang and Komatsuzaki, 2021] Size: 6B
GMeLLo-QA [Chen et al., 2024] || 10.60 6.04 10.39 6.14 8.86 435 2195 10.67
MeLLo [Zhong et al., 2023] 14.97 6.89 17.18 8.13 6.76 2.64 3282 18.49
DeepEdit [Wang et al., 2024b] 19.03 13.44 27.17 19.55 6.53 396 55.84 41.86
PokeMQA [Gu et al., 2024] 15.70 6.97 19.98 8.72 11.66 5.59 59.37 31.00
CHECK 4227 2957 5659 40.86 3590 2385 78.69 55.82
Model I Vicuna [Chiang et al., 2023] Size: 7B
GMeLLo-QA [Chen et al., 2024] || 11.23 6.44 10.84 6.41 5.59 241 28.53 14.38
MeLLo [Zhong ef al., 2023] 9.93 5.08 9.84 5.13 1.86 0.85 68.52 50.18
DeepEdit [Wang er al., 2024b] 13.87 8.38 20.63 12.52 0.93 0.54 34.05 19.04
PokeMQA [Gu et al., 2024] 30.97 18.18 40.51 25.66 30.77 1570 68.68 48.11
CHECK 47.57 30.93 63.74 41.99 48.72 29.68 81.64 55.84
Model I Falcon [Almazrouei et al., 2023] Size: 7B
GMeLLo-QA [Chen et al., 2024] 7.77 4.27 6.50 3.63 5.36 334 16.38 7.57
MeLLo [Zhong et al., 2023] 4.01 7.30 10.14 5.56 1.63 0.85 5294 36.42
DeepEdit [Wang er al., 2024b] 13.37 8.23 19.53 12.02 2.80 1.24 59.85 45.38
PokeMQA [Gu et al., 2024] 15.77 7.64 19.93 9.14 13.05 7.46 63.97 37.76
CHECK 39.10 24.10 52.80 33.72 45.22 31.08 81.69 57.51

Table 2: Per-case and per-question accuracy across the MQUAKE subsets. The highest accuracy per column and per model is bolded. The

second highest accuracy is underlined.

cally as follows:

if cos(gc, €c) > T,
if cos(ec,e.) <=T.

Oe,
n—1 = 7
on-t {None, ™

If no new o,,_1 is found through semantic embedding simi-
larity, then the LLM F is prompted to generate the next o, 1.
First, F is prompted using in-context learning to generate a
question Qs based on o, and r,,. The question-generating
in-context learning prompt is provided in Section 7 of the
Appendix. The LLM-generated question Qs is then an-
swered by JF using another in-context learning prompt to en-
sure that only a single entity o,,_1 is provided as an answer.

Once o, is generated through one of the previous sub-
steps, it is paired with r,_; to complete the previous two
sub-steps to find 0,,—2. This process is iteratively completed
[(0n,Tny0n—1) = (On—1,Tn—1,0n—2) = ... = (01,71, 00)]
until all 7,, have been used and the final answer o is found.

5 Results

The code for CHECK is available at https://github.com/
dominic-simon/CHECK.

Baselines: We compare against other editors that do not
rely on outside sources of factual information. Specifi-
cally, we compare against MeLLo [Zhong er al., 2023],
PokeMQA [Gu et al., 2024], DeepEdit [Wang et al., 2024b],
and the question-answering portion of GMeLLo [Chen et al.,
2024]. We also provide comparisons against the parameter-
based knowledge editors ROME [Meng et al., 2022] and
MEMIT [Meng er al., 2023] as well as model finetuning.

Datasets: We use the MQuAKE [Zhong et al., 2023]
dataset to evaluate the editors. MQuAKE is composed of two
subsets. The counterfactual subset contains 3000 edit cases.
The subset contains questions with 2, 3, and 4 hops with 1000
cases of each. Each edit case contains betwen 1 and 4 individ-
ual edits. The temporal subset is composed of 1868 edit cases
containing 1421 2-hop questions, 445 3-hop questions, and 2
4-hop questions each with only 1 edit. Two additional sub-
sets have also been added to MQUAKE [Wang et al., 2024b].
The counterfactual subset contains conflicting edit cases, so
MQuAKE-2002 removes all cases with conflicting edits, re-
sulting in a counterfactual dataset containing only 2002 edit
cases. The other new subset contains 429 edit cases each with
4 hops and 4 edits.

Evaluation Metrics: Each edit case in MQuAKE contains
3 multi-hop questions conveying the same idea with the same
number of hops in slightly different words. An edit case is
considered correct if the editor correctly answers at least 1
question. We also track the number of questions each editor
has answered correctly. Per-case accuracy is determined as
correct cases - total cases and per-question accuracy is de-
termined as correct questions <+ total questions.

Models: We compare the baselines across 3 models: GPT-
J [Wang and Komatsuzaki, 2021], Vicuna-7B [Chiang et al.,
20231, and Falcon-7B [Almazrouei et al., 2023].

Implementation: MeLLo and PokeMQA were limited to
5 hops to keep the experiment time reasonable. Similarly,
DeepEdit was allowed 5 additional knowledge candidates.
Additionally, they were each allowed a maximum of 200 new
tokens to be generated for each LLM call. CHECK used a co-

https://github.com/dominic-simon/CHECK
https://github.com/dominic-simon/CHECK

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the

Dataset | MQuAKE-CF-3k | MQUAKE-T

Model || GPT-J Size: 6B
FT#* 7.70 3.10
ROME* 7.60 4.10
MEMIT* 8.10 10.60
CHECK 42.27 78.69

Model || Vicuna Size: 7B
FT* 4.80 23.10
ROME* 8.40 5.00
MEMIT* 7.60 1.70
CHECK 47.57 81.64

Model || Falcon Size: 7B
FT#* 5.60 17.20
ROME?* 1.70 7.30
MEMIT* 2.30 1.60
CHECK 39.10 81.69

Per-Case Accuracy (%)

100

80 1

60

404

20 1

[JCAI 2025 proceedings.

2

MQUAKE-3k 100 MQUAKE-2002
GPT- GPT-
B Vicuna B Vicuna

3 4
Number of Hops

80

60

40

20

Per-Case Accuracy (%)

2

3 4
Number of Hops

Table 3: Per-case accuracy of compared against parameter-based
knowledge editors. Approaches marked with (*) indicate results
from a previous work.

sine similarity threshold of 0.8 and was limited to a maximum
of 50 new tokens per model call.

Hardware Setup: All experiments were conducted on 1
NVIDIA A100 GPU and 8 CPU cores.

We present two core experiments in the following sections:
an evaluation of CHECK against other knowledge editors
across 4 datasets and 3 LLMs in Section 5.1, and an ablation
study on the performance of CHECK over varying numbers
of hops and edits in Section 5.2. Additional experiments are
provided in the Appendix.

5.1 Editing Accuracy

The evaluation of CHECK and other state-of-the-art multi-
hop knowledge editors is provided in Table 2. Across all
models, GMeLLo, MeLLo, DeepEdit, and PokeMQA con-
sistently struggle to achieve a 20% per-case accuracy on three
of the four subsets. The only subset they are able to find bet-
ter performance on is MQuUAKE-T, which contains the least
number of hops and edits per question. This is unsurprising
as they all rely on LLMs doing large amounts of reasoning at
once. DeepEdit is able to break the 20% per-case accuracy
mark in a few of the results and PokeMQA overpeforms on
Vicuna when compared to its performance on GPT-J and Fal-
con. CHECK does not share this struggle of breaking 20%
per-case accuracy, achieving a 31.57%, 28.51%, 24.79%,
and 16.77% increase in accuracy over the next highest on
the MQuAKE-CF-3k, MQuAKE-2002, MQuAKE-Hard, and
MQuAKE-T subsets respectively.

Parameter-based knowledge editors have proven unsuc-
cessful on mutli-hop questions. An evaluation of the accu-
racy of CHECK and other parameter-based knowledge edi-
tors on MQUAKE subsets is provided in Table 3. The accu-
racies are from [Shi er al., 2024]. CHECK outperforming the
parameter-based editors is in line with previous works, fur-

Figure 4: The accuracy of CHECK on the MQuAKE-3k and
MQuAKE-2002 datasets across different numbers of question hops.

MQUAKE-3k MQUAKE-2002

100 100
GPT-J GPT-J
g 801 Bl Vicuna g 80 m Vicuna
> >
g g
S 60 S 60
v v
1))
< <
@ 404 @ 40
© ©
N N
s s
9 20 g 20
0 0
1 2 3 4 1 2 3 4

Number of Edits Number of Edits

Figure 5: The accuracy of CHECK on the MQuAKE-3k and
MQuAKE-2002 datasets across different numbers of edits per multi-
hop question.

ther affirming that storage-based knowledge editors are better
able to handle the intermediate reasoning steps required for
MQA than parameter-based knowledge editors.

5.2 MQA Hop and Edit Ablation

We provide a breakdown of CHECK’s per-case accuracy on
MQuAKE-3k and MQuAKE-2002 over the number of hops
and edits in Figure 4 and Figure 5, respectively. As the the
number of hops increases, the accuracy of CHECK decreases.
This is an expected outcome since longer multi-hop ques-
tions require longer relationship chains, introducing more ar-
eas for both question decomposition and subquestion resolu-
tion to fail. Similarly, as the number of edits increases, the
accuracy also drops. Greater number of edits correspond to
longer questions, which are more difficult to correctly answer.
CHECK’s over-performance on questions with 2 edits can be
attributed to the in-context learning prompt used during ques-
tion decomposition.

6 Conclusion

We present the CHECK framework for multi-hop knowledge
editing. The main insight of CHECK is that the LLM sub-
question reasoning process can be checked for semantic con-
sistency. CHECK decomposes multi-hop questions into a
chain of relationships and ensures the semantic consistency of
that chain. The chain is then iteratively traversed, answering
each of the subquestions that make up the chain and insert-
ing edits where necessary until the answer to the multi-hop
question is reached.

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

Acknowledgements

This material is in part sponsored by UF startup funds and
DARPA under agreement number FA8750-23-2-0501. The
views and conclusions contained herein are those of the au-
thors and should not be interpreted as necessarily represent-
ing the official policies or endorsements, either expressed or
implied, of DARPA or the U.S. Government.

References

[Almazrouei et al., 2023] Ebtesam Almazrouei, Hamza
Alobeidli, Abdulaziz Alshamsi, Alessandro Cappelli,
Ruxandra Cojocaru, Mérouane Debbah, Etienne Goffinet,
Daniel Hesslow, Julien Launay, Quentin Malartic, Daniele
Mazzotta, Badreddine Noune, Baptiste Pannier, and
Guilherme Penedo. The falcon series of open language
models, 2023.

[Ayoola et al., 2022] Tom Ayoola, Shubhi Tyagi, Joseph
Fisher, Christos Christodoulopoulos, and Andrea Pier-
leoni. ReFinED: An efficient zero-shot-capable approach
to end-to-end entity linking. In NAACL, 2022.

[Baldazzi et al., 2023] Teodoro Baldazzi, Luigi Bellomarini,
Stefano Ceri, Andrea Colombo, Andrea Gentili, and
Emanuel Sallinger. Fine-tuning large enterprise language
models via ontological reasoning. In Anna Fensel, Ana
Ozaki, Dumitru Roman, and Ahmet Soylu, editors, Rules
and Reasoning, pages 86-94, Cham, 2023. Springer Na-
ture Switzerland.

[Brown et al., 2020] Tom B. Brown, Benjamin Mann, Nick
Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry,
Amanda Askell, Sandhini Agarwal, Ariel Herbert-Voss,
Gretchen Krueger, Tom Henighan, Rewon Child, Aditya
Ramesh, Daniel M. Ziegler, Jeffrey Wu, Clemens Win-
ter, Christopher Hesse, Mark Chen, Eric Sigler, Ma-
teusz Litwin, Scott Gray, Benjamin Chess, Jack Clark,
Christopher Berner, Sam McCandlish, Alec Radford, Ilya
Sutskever, and Dario Amodei. Language models are few-
shot learners. In Proceedings of the 34th International
Conference on Neural Information Processing Systems,
NIPS ’20, Red Hook, NY, USA, 2020. Curran Associates
Inc.

[Chen et al., 2024] Ruirui Chen, Weifeng Jiang, Chengwei
Qin, Ishaan Singh Rawal, Cheston Tan, Dongkyu Choi,
Bo Xiong, and Bo Ai. Llm-based multi-hop question an-
swering with knowledge graph integration in evolving en-
vironments, 2024.

[Cheng et al., 2024] Keyuan Cheng, Gang Lin, Haoyang Fei,
Yuxuan Zhai, Lu Yu, Muhammad Asif Ali, Lijie Hu, and
Di Wang. Multi-hop question answering under temporal
knowledge editing. In First Conference on Language Mod-
eling, 2024.

[Chiang et al., 2023] Wei-Lin Chiang, Zhuohan Li, Zi Lin,
Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez,

Ion Stoica, and Eric P. Xing. Vicuna: An open-source chat-
bot impressing gpt-4 with 90%* chatgpt quality, March
2023.

[Faiz et al., 2024] Ahmad Faiz, Sotaro Kaneda, Ruhan
Wang, Rita Chukwunyere Osi, Prateek Sharma, Fan Chen,
and Lei Jiang. LLMCarbon: Modeling the end-to-end car-
bon footprint of large language models. In The Twelfth
International Conference on Learning Representations,
2024.

[Gu er al., 2024] Hengrui Gu, Kaixiong Zhou, Xiaotian Han,
Ninghao Liu, Ruobing Wang, and Xin Wang. PokeMQA:
Programmable knowledge editing for multi-hop question
answering. In Lun-Wei Ku, Andre Martins, and Vivek
Srikumar, editors, Proceedings of the 62nd Annual Meet-
ing of the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 8069-8083, Bangkok, Thai-
land, August 2024. Association for Computational Lin-
guistics.

[Gupta er al., 2023] Anshita Gupta, Debanjan Mondal, Ak-
shay Krishna Sheshadri, Wenlong Zhao, Xiang Lorraine
Li, Sarah Wiegreffe, and Niket Tandon. Editing common
sense in transformers. In The 2023 Conference on Empir-
ical Methods in Natural Language Processing, 2023.

[Gupta et al., 2024] Akshat Gupta, Anurag Rao, and Gopala
Anumanchipalli. Model editing at scale leads to gradual
and catastrophic forgetting. In Lun-Wei Ku, Andre Mar-
tins, and Vivek Srikumar, editors, Findings of the Asso-
ciation for Computational Linguistics ACL 2024, pages
15202-15232, Bangkok, Thailand and virtual meeting,
August 2024. Association for Computational Linguistics.

[Hase et al., 2023] Peter Hase, Mona Diab, Asli Celikyil-
maz, Xian Li, Zornitsa Kozareva, Veselin Stoyanov, Mohit
Bansal, and Srinivasan Iyer. Methods for measuring, up-
dating, and visualizing factual beliefs in language models.
In Andreas Vlachos and Isabelle Augenstein, editors, Pro-
ceedings of the 17th Conference of the European Chapter
of the Association for Computational Linguistics, pages
2714-2731, Dubrovnik, Croatia, May 2023. Association
for Computational Linguistics.

[Izacard et al., 2021] Gautier Izacard, Mathilde Caron, Lu-
cas Hosseini, Sebastian Riedel, Piotr Bojanowski, Armand
Joulin, and Edouard Grave. Unsupervised dense informa-
tion retrieval with contrastive learning, 2021.

[Li ef al., 2023] Xiang Li, Yiqun Yao, Xin Jiang, Xuezhi
Fang, Xuying Meng, Siqi Fan, Peng Han, Jing Li, Li Du,
Bowen Qin, Zheng Zhang, Aixin Sun, and Yequan Wang.
FIm-101b: An open llm and how to train it with $100k
budget, 2023.

[Madaan et al., 2022] Aman Madaan, Niket Tandon, Peter
Clark, and Yiming Yang. Memory-assisted prompt edit-
ing to improve GPT-3 after deployment. In ACL 2022
Workshop on Commonsense Representation and Reason-
ing, 2022.

[Meng et al., 2022] Kevin Meng, David Bau, Alex Ando-
nian, and Yonatan Belinkov. Locating and editing factual

Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

associations in GPT. Advances in Neural Information Pro-
cessing Systems, 35, 2022.

[Meng et al., 2023] Kevin Meng, Arnab Sen Sharma, Alex J
Andonian, Yonatan Belinkov, and David Bau. Mass-
editing memory in a transformer. In The Eleventh Inter-
national Conference on Learning Representations, 2023.

[Mitchell et al., 2022] Eric Mitchell, Charles Lin, Antoine
Bosselut, Chelsea Finn, and Christopher D. Manning.
Memory-based model editing at scale. In International
Conference on Machine Learning, 2022.

[Shi et al., 2024] Yucheng Shi, Qiaoyu Tan, Xuansheng Wu,
Shaochen Zhong, Kaixiong Zhou, and Ninghao Liu.
Retrieval-enhanced knowledge editing in language models
for multi-hop question answering. In Proceedings of the
33rd ACM International Conference on Information and
Knowledge Management, CIKM ’24, page 2056-2066,
New York, NY, USA, 2024. Association for Computing
Machinery.

[Wang and Komatsuzaki, 2021] Ben Wang and Aran Ko-
matsuzaki. GPT-J-6B: A 6 Billion Parameter Autore-
gressive Language Model. https://github.com/kingoflolz/
mesh-transformer-jax, May 2021.

[Wang et al., 2024a] Peng Wang, Zexi Li, Ningyu Zhang, Zi-
wen Xu, Yunzhi Yao, Yong Jiang, Pengjun Xie, Fei Huang,
and Huajun Chen. WISE: Rethinking the knowledge mem-
ory for lifelong model editing of large language models. In
The Thirty-eighth Annual Conference on Neural Informa-
tion Processing Systems, 2024.

[Wang et al., 2024b] Yiwei Wang, Muhao Chen, Nanyun
Peng, and Kai-Wei Chang. Deepedit: Knowledge editing
as decoding with constraints, 2024.

[Yu er al., 2023] Charles Yu, Sullam Jeoung, Anish Kasi,
Pengfei Yu, and Heng Ji. Unlearning bias in language
models by partitioning gradients. In Proc. The 61st Annual
Meeting of the Association for Computational Linguistics

(ACL2023) Findings, 2023.

[Yu et al., 2024] Lang Yu, Qin Chen, Jie Zhou, and Liang
He. MELO: enhancing model editing with neuron-indexed
dynamic lora. In Michael J. Wooldridge, Jennifer G. Dy,
and Sriraam Natarajan, editors, Thirty-Eighth AAAI Con-
ference on Artificial Intelligence, AAAI 2024, Thirty-Sixth
Conference on Innovative Applications of Artificial Intelli-
gence, IAAI 2024, Fourteenth Symposium on Educational
Advances in Artificial Intelligence, EAAI 2014, February
20-27, 2024, Vancouver, Canada, pages 19449-19457.
AAAI Press, 2024.

[Zhong et al., 2023] Zexuan Zhong, Zhengxuan Wu,
Christopher D Manning, Christopher Potts, and Danqi
Chen. MQUAKE: Assessing knowledge editing in
language models via multi-hop questions. In The 2023
Conference on Empirical Methods in Natural Language
Processing, 2023.

[Zhu et al., 2024] Wenhao Zhu, Hongyi Liu, Qingxiu Dong,
Jingjing Xu, Shujian Huang, Lingpeng Kong, Jiajun Chen,
and Lei Li. Multilingual machine translation with large

language models: Empirical results and analysis. In Kevin
Duh, Helena Gomez, and Steven Bethard, editors, Find-
ings of the Association for Computational Linguistics:
NAACL 2024, pages 2765-2781, Mexico City, Mexico,
June 2024. Association for Computational Linguistics.

https://github.com/kingoflolz/mesh-transformer-jax
https://github.com/kingoflolz/mesh-transformer-jax

