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Abstract

Established sampling protocols for 3D point cloud
learning, such as Farthest Point Sampling (FPS)
and Fixed Sample Size (FSS), have long been relied
upon. However, real-world data often suffer from
corruptions, such as sensor noise, which violates
the benign data assumption in current protocols.
As a result, these protocols are highly vulnerable
to noise, posing significant safety risks in critical
applications like autonomous driving. To address
these issues, we propose an enhanced point cloud
sampling protocol, PointSP, designed to improve
robustness against point cloud corruptions. PointSP
incorporates key point reweighting to mitigate out-
lier sensitivity and ensure the selection of repre-
sentative points. It also introduces a local-global
balanced downsampling strategy, which allows for
scalable and adaptive sampling while maintaining
geometric consistency. Additionally, a lightweight
tangent plane interpolation method is used to pre-
serve local geometry while enhancing the den-
sity of the point cloud. Unlike learning-based
approaches that require additional model training,
PointSP is architecture-agnostic, requiring no extra
learning or modification to the network. This en-
ables seamless integration into existing pipelines.
Extensive experiments on synthetic and real-world
corrupted datasets show that PointSP significantly
improves the robustness and accuracy of point
cloud classification, outperforming state-of-the-art
methods across multiple benchmarks.

1 Introduction

In the rapidly evolving field of 3D data perception via deep
learning [Qi et al., 2017a; Qi et al., 2017b; Guo et al., 20201,
point cloud sampling serves as a critical component in the
standard learning and recognition pipeline [Hu et al., 2020;
Qian et al, 2022; Yu et al., 2022; Zhang et al., 2022b].
Following the legacy of pioneer works [Qi er al., 2017a;
Qi et al., 2017b], existing sampling protocols are primar-
ily designed and optimized for clean data, without taking
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Figure 1: The first row presents the original point clouds, while the
second row highlights the sampled key points, with those selected
by farthest point sampling (FPS) shown in red. The existing stan-
dard sampling protocol is not optimized for corrupted point cloud in
practice. As a result, a standard-trained PointNet classifies them as
, Vase, Table, Mantel, and Sofa. Towards this issue, we pro-
pose to enhance the protocol by revising FPS into new key points
selections and integrating full points resampling into process.

into account corruptions. However, due to the high com-
plexity of real-world, point cloud data are almost always
incomplete and with noise in practice [Ren et al., 2022],
posing threats to 3D deep learning applications. For exam-
ple, noisy background points or slight perturbations gener-
ated by inaccurate processing or sensor error can significantly
decrease the deep model performance [Ren et al., 2022;
Sun et al., 2022]. Such performance drops can lead to se-
rious safety consequences, especially in critical 3D applica-
tions like autonomous driving. Therefore, it is necessary to
rethink and redesign point cloud sampling protocols with a
focus on robustness against corruptions to ensure reliable 3D
deep learning in real-world conditions.

One crucial limitation of established sampling protocols
is that they are sub-optimal under the corrupted data dis-
tribution. For instance, the protocol samples a fixed num-
ber of points in data preparation, namely, Fixed Sample Size
(FSS) [Qi et al., 2017al. This convention overlooks the facts
that point clouds in the real world naturally vary in size and
density. These varied sizes are even obvious in particular cor-
ruptions such as occlusions and density-related noise [Sun
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et al., 2022; Ren et al., 2022]. The misclassfication results
on various corrupted data are illustrated in Figure 1. An-
other aspect is that the widely used Farthest Point Sampling
(FPS) [Eldar et al., 1997] for key points selection is especially
vulnerable to outliers due to its inherent basis of Euclidean
distance and sensitivity to sparse points [Yan et al., 2020].
Several works have considered updating a specific step to deal
with this issue, like PointASNL [Yan et al., 2020] and ADS
[Hong ef al., 2023]. The learning-based methods put extra ef-
fort into module training and may be potentially overfitting.
Overall, none of them propose a comprehensive and alterna-
tive solution to overcome the sampling protocol limitations.

To overcome these limitations, we propose an enhanced

point cloud sampling protocol, PointSP, by revising key
points selection and full points resampling.The implementa-
tion of the proposed protocol involves randomizing the sam-
pling during training and processing noisy point clouds dur-
ing inference. To achieve this, the key point sampling pro-
cess assisted by point reweighting is applied to ensure that
potential outliers are not captured. The point weight is named
as isolation rate evaluating the extent of local isolation for a
point. Moreover, the proposed full points resampling ran-
domizes the sample size during training; and restores in-
sufficient point clouds in the inference stage. We achieve
an local-global-balanced downsampling offering a continu-
ous spectrum between local and global sampling. Inspired
by shape-invariant perturbation [Huang et al., 2022], we re-
alize an lightweight upsampling via a tangent plane interpo-
lation technique that enhances the density of point cloud data
while preserving local geometry.Overall, the enhanced sam-
pling protocol is learning-free thus straightforward to imple-
ment and can be seamlessly integrated into the existing point
cloud analysis pipeline.

Our contributions are summarized as follows:

* We first comprehensively revisit the long-existing sam-
ple protocol for point cloud learning through the lens of
data corruption. Based on the analysis, we propose an
alternative protocol to enhance the robustness of point
cloud learning.

L]

We develop three learning-free techniques as the key of
protocol, point reweighting, local-global balanced sam-
pling, and local-geometry-preserved interpolation which
can deal with point cloud corruption in different aspects.
The whole proposed protocol is free of model archi-
tecture change and extra learning, thus it can be im-
plemented to replace the current protocol with minimal
pains and fits almost all 3D deep models.

Extensive experiments are conducted on synthesis and
real corrupted 3D point cloud datasets. The results have
demonstrated that the proposed protocol is able to im-
prove the robustness of 3D point cloud classification and
outperform the latest methods.

2 Related Work

Point Cloud Sampling. Point cloud sampling techniques
typically consist of: 1) downsampling, also known as “sim-
plification” [Dovrat et al., 2019], and 2) upsampling [Zhang
et al., 2022b]. These techniques are divided into non-learning

and learning-based methods [Zhang et al., 2022b]. Tradi-
tional non-learning-based downsampling techniques include
Farthest Point Sampling (FPS) [Eldar et al., 1997], Random
Sampling (RS) [Hu et al., 2020], Poisson Disk Sampling
(PDS) [Ying et al., 2013], and voxelization [Lv et al., 2021].
Conversely, learning-based downsampling methods account
for downstream tasks [Dovrat er al., 2019; Lang er al., 2020;
Qian et al., 2020; Qian et al., 2023]. Upsampling is catego-
rized into learning-based [Yu et al., 2018; Qiu et al., 2022;
He et al., 2023a; He et al., 2023b] and non-learning-based
approaches [Alexa et al., 2003; Huang et al., 2013; Wu e al.,
2015a). The non-learning-based sampling techniques are par-
ticularly susceptible to outliers due to their inherent structural
limitations; meanwhile, the learning-based methods are either
also sensitive to noise or dependent on downstream tasks and
prone to overfitting. This paper introduces simple yet effec-
tive point cloud sampling techniques to overcome these chal-
lenges.

Point Cloud Classification. PointNet [Qi et al., 2017al
has been a trailblazer in utilizing deep learning for point cloud
analysis, with notable extensions such as PointNet++ [Qi et
al., 2017b], GDANet [Xu et al., 2021], Point Transformer
(PCT) [Guo et al., 2021], and CurveNet [Xiang er al., 2021].
However, the performance of these models significantly de-
teriorates with corrupted real-world data [Uy er al., 2019;
Ren et al., 2022; Sun et al., 2022]. To tackle this issue,
existing literature offers three main types of solutions. The
first focuses on modifying the model by altering its struc-
ture or training strategies, such as pooling operations based
on sorting [Sun et al., 2020] and model aggregation [Dong et
al., 2020]. The second type includes certified methods, ex-
emplified by Pointguard, which theoretically enhances model
robustness through certified classification [Liu et al., 2021].
The third type is data-driven approaches that directly cleanse
corrupted data, with notable methods including IF-defense
[Wu et al., 2020] and DUP-Net [Zhou et al., 2019]. This pa-
per aims to advance robustness from a new perspective by re-
fining point cloud sampling protocol during data preparation,
while the non-trivial architecture modification is avoided.

Point Cloud Data Augmentation. Point cloud augmen-
tation is a widely recognized practice in the deep learning
community, employed to improve the generalization capabil-
ities of neural networks. Traditional augmentation methods,
including random scaling, rotation, and jitter, are somewhat
limited in their effectiveness for point cloud analysis [Zhu et
al., 2024]. Recent advancements have introduced sophisti-
cated techniques such as PointCutMix [Zhang er al., 2022al,
PointAugment [Li et al., 2020], PointMixup [Chen et al.,
2020], and PointWOLF [Kim er al., 2021]. However, they
suffer from various limitations. For instance, while Point-
Mixup [Chen et al., 2020] and PointWOLF [Kim et al., 2021]
largely rely on predefined transformations, PointAugment [Li
et al., 2020] emphasizes global transformations, often at the
expense of local geometric details. To our knowledge, the
sampling augmentation of point cloud for robust classifica-
tion has been largely unexplored. In this work, we aim to en-
hance sampling protocols specifically tailored for robust point
cloud classification, addressing this critical gap.
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3 Proposed Sampling Protocol

3.1 Existing Sampling Protocol

Mainstream 3D point cloud classification frameworks employ
a standardized protocol predicated on processing clean point
clouds of predetermined size, e.g., 1,024. Formally, the in-
put point cloud is defined as P = {p; }?Y;, where each point
p; € R3 and N represents a fixed size. A common tech-
nique of this protocol is the Farthest Point Sampling (FPS)
algorithm, which identifies key points that serve as anchors
for subsequent feature aggregation or pooling operations as in
[Qi et al., 2017b]. FPS iteratively constructs a subset S C P
by selecting points s; according to:

S; = arg max min ||p; — S 1
t gpiEP ces le ||27 ( )
where t = 1,-- -, |S| denotes the iteration index.

This conventional protocol, however, exhibits significant
limitations when confronted with real-world scenarios where
point clouds are invariably corrupted and of variable size. We
can characterize a corrupted point cloud P’ through the fol-
lowing formulation:

P'=P\P,UO, )
where P, represents points removed from the original clean
cloud P, while O comprises introduced noise points or out-
liers, typically arising from occlusion effects and sensor im-
perfections. This formulation exposes three critical vulnera-
bilities in the current protocol:

¢ FPS inherently selects outliers (O) as key points due to
its distance-based criterion.

* Missing points (Ps) lead to information loss without
compensatory mechanisms.

* The variable size of P5 and O violate the fixed-size input
constraint.

Recent empirical studies [Ren er al., 2022; Sun et al., 2022]
have confirmed these shortcomings, showing substantial per-
formance degradation under corruption scenarios. This ne-
cessitates a fundamental redesign of the sampling protocol to
enhance robustness in point cloud processing.

3.2 New Sampling Protocol

We propose the enhanced and learning-free sampling pro-
tocol towards key points selection and full points prepro-
cessing, respectively. The new point cloud sampling protocol
(PointSP) is visualized in Figure 2.

Key Points Sampling. We propose distinct sampling
strategies for training and inference stages to select key
points. During training, we employ a stochastic sampling
approach based on point-wise weights by s; ~ Cat(P;w),
where Cat(-;-) denotes the categorical distribution, and
w = {wi, -+ ,wn} represents the point weights. These
weights are derived from the isolation rate of each point
(detailed in Section 3.3), with more isolated points re-
ceiving lower weights to reduce their sampling probability.
During inference, we introduce Filtered FPS (FFPS), a deter-
ministic sampling method that modifies the conventional FPS
by incorporating binary weights:

St =argg}ggwimg Ipi —sl|2. 3)

where w; is a binary weight determined by thresholding point
weights at the w-th quantile (typically w = 0.95) of all
weights. This effectively filters out the most isolated points,
which are often outliers or noise. The binarization simplifies
implementation while maintaining effectiveness. Detailed
weighting calculation is presented in Section 3.3.

Full Points Resampling. Our resampling protocol differ-
entiates training and inference stages. During training, we de-
liberately introduce size variations to enhance model robust-
ness against real-world point clouds often with non-uniform
sizes. Given an input point cloud P with N points, we ran-
domly adjust its size to N + AN, where the random variable
AN can be either positive (upsampling) or negative (down-
sampling). The modified point cloud P is obtained through:

X {PUAP,

B if AN >0
P\ AP,

if AN <0 @
During inference, our protocol ensures consistent point cloud
size by applying conditional upsampling. Specifically, for
any input point cloud P with insufficient points (i.e., |P| <
N), we supplement it with additional points via upsampling
to reach the target size N, namely, P = PUAP. The specific
techniques for generating additional points (AP) in upsam-
pling and downsampling are detailed in Section 3.3.

3.3 Proposed Sampling Techniques

We introduce three key techniques of the new sampling pro-
tocol, namely, designed downsampling and upsampling tech-
inques for full points resampling, and the point reweighting
techinque for key point sampling.

Point Reweighting. The point-wise weight in key points
sampling can be defined by the concept of Isolation Rate.
At first, we calculate the radius of a sphere containing k
nearest neighbors of each point in P, which is given by
ri = maxg et [[Pi — g, , where NF C Pis the set of k
neighbors of ¢-th point p;. We further define Isolation Rate
for each point as w;, given by,

w} = Praep,(d > 7),D; = {|la; — pill2 : Va; € NF} (5)

where 7 = Median({r;},) is the median of all radius and
Pry (X) is the probability of X given condition Y. The iso-
lation rate of a point suggests the extent of a point being iso-
lated, i.e., far from others in a probability way. Although a
few associated concepts were proposed to calculate the exact
local radius of points [Sotoodeh, 2006] and identify outliers,
the isolation rate is naturally fit for point weighting due to the
probability representation. In our key points sampling, we
implement w; = 1 — w} and @; = 1(w} < w) for training
and inference, respectively, where 1 is the indicator function.

Downsampling: Local-global-balanced downsampling.
For AN < 0in (4), we remove points through a flexible
neighborhood-based approach. Specifically, we randomly se-

lect a center point p; and consider its k nearest nei ghbors V¥,

where k is randomly sampled from [|AN|, N]. The points to
be removed are selected according to:

AP ~{T':T C NF,|T| = —~AN} (6)
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Figure 2: PointSP: enhanced protocol of point cloud sampling for robust classification. The existing and conventional protocol used farthest
point sampling (FPS) and non-processed points for input. In our protocol, randomized key point sampling and full points resampling (random
up&downsampling) are used in training to conduct sampling-based data augmentation. During inference, filtered FPS (FFPS) is implemented
to bypass outliers, and an upsampling strategy is used to densify sparse input. We propose the concept of isolation rate, the upsampling by
tangent plane interpolation and the local-global balanced downsampling to obtain point weights and resampled points, respectively.

This strategy offers a continuous spectrum between local and
global downsampling: when & = |AN], it removes a con-
centrated local patch; when & = N, it performs global ran-
dom sampling; and intermediate values of k provide balanced
local-global downsampling. This flexibility helps simulate
various real-world point cloud corruptions.

Upsampling: Local-geometry-preserved Interpolation.
For AN > 0, we propose a interpolation method that gen-
erates new points. For each point, we perform interpolation
between it and a randomly selected neighbor on their shared
tangent plane, as detailed in Algorithm 1. This approach en-
sures the preservation of local geometric features, particularly
surface normals, while increasing point density. The upsam-
pled points are sampled from the interpolation set P by

AP ~{I:T CP,|l|=AN}. (7)

This interpolation-based strategy effectively balances point
cloud densification with geometric preservation, resulting in
more natural and structurally coherent augmented data.

Computational Cost. We design the sampling protocol in
the way that poses minimal computational effort beyond the
original protocol. Particularly, the implementation of FPS in
conventional protocol involves the calculation of point paired
distances with complexity of O(N?). The proposed point
reweighting and interpolation (for all points) techinques can
utilize the same paired distances and induce extra operations
with O(kN) complexity. Such extra computation effort is
minor since £ < N.

Algorithm 1 Local Geometry Preserved Interpolation

Require: Point cloud P, Point cloud normal {n;}¥, , A
query point p; € P, Integer k
Ensure: A new point p;
1: N¥ <« ENN(P, p;, k) > k nearest neighbors of p;
2: Omea < Median({||p; — q| : @ € N*}) > Compute the
median of local distances as interpolation norm.
3. q* ~ NF > Sample a random neighbor
4: vi < I—-nmn)) (q* - p;) > Compute the
interpolation direction on tangent plane.
5. P pi + 6medﬁ > Create interpolated point
6: return p;.

4 Experimental Studies

4.1 Experimental Setup

Dataset and Model. We utilize models trained on Mod-
elNet40 [Wu er al., 2015b] to conduct experiments on
three corrupted datasets: ModelNet40-C, PointCloud-C, and
OmniObject-C. The ModelNet40-C [Sun er al., 2022] and
PointCloud-C [Ren et al., 2022] are datasets applying 15 and
7 distinct corruptions to ModelNet40’s test set, totaling 2,468
objects. The OmniObject-C, based on OmniObject3D [Wu
et al., 2023], has real-scanned 362 objects corrupted by the
methods proposed in [Ren er al., 2022]. For 3D deep mod-
els, we employ PointNet [Qi et al., 2017al, PointNet++ [Qi
et al., 2017b], GDANet [Xu ef al., 2021], CurveNet [Xiang
et al., 2021], PCT [Guo et al., 2021], following the pipeline
in ModelNet40-C including batch size and training protocol.
We note that all experiments are run on NVIDIA GeForce
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RTX 3090 GPUs.

Parameters Setting. The number of nearest neighbors &
used in point weight computation is set to 20, which follows
the common setup. During the inference phase, the key points
sampling applies a threshold w of 0.95, exploring the learning
as depicted in Figure 4, meaning that FFPS filters out points
within the lowest 5% of point weights.

Evaluation Protocol. We report the error rates (ER)
and mean error rates (mER) across multiple corruptions on
the three corrupted datasets for performance evaluation. A
smaller ER indicates a superior performance.

4.2 Main Results

Overall Results. Mean error rates (mERs) for the three cor-
rupted datasets are presented in Table 1. To facilitate a com-
prehensive comparison, we include multiple baseline models.
The results clearly indicate that the proposed PointSP signif-
icantly enhances PCT and CurveNet; mERs decrease by ap-
proximately 10% across all datasets, with the most substantial
improvement observed in PointCloud-C.

Results on ModelNet40-C. Extensive evaluations of
PointSP on ModelNet40-C utilizing five 3D deep models re-
vealed its superiority. Compared to five enhancement tech-
niques (CutMix-R [Zhang ef al., 2022a], CutMix-K [Zhang
et al., 2022a], Mixup [Chen et al., 2020], Rsmix [Lee et al.,
20211, and PGD [Sun et al., 2021]), PointSP significantly im-
proved all models. Across multiple corruption types, PointSP
consistently achieved the lowest error rates: 24.1% for “Den-
sity”, 9.5% for “Noise”, and 11.1% for “Transform”, demon-
strating robustness. Notably, its unique randomized size sam-
pling in resampling and FFPS in downsampling effectively
tackled “Density” and “Noise” corruptions, enhancing re-
silience and eliminating outliers, respectively.

Results on PointCloud-C and OmniObject-C. Table 3
compares the performance of PointSP with data augmentation
methods on the PointCloud-C and OmniObject-C datasets.
On PointCloud-C, PointSP enhances classification accuracy
across various corruption scenarios, outperforming other
methods, with the FFPS technique achieving an error rate of
7.5% under additive corruption types due to its effective out-
lier filtering. However, PointSP does not perform optimally

Method ‘ MNC PCC OmniC
PointNet [Qi ef al., 2017a] 283 337 65.2
PointNet++ [Qi et al., 2017b] 30.6  27.7 73.9
DGCNN [Wang et al., 2019] 259 235 73.7
RSCNN [Liu et al., 2019] 26.2  26.1 72.4
CurveNet [Xiang et al., 2021] 23.1 244 67.9
SimpleView [Goyal et al., 2021] | 272 243 71.8
GDANet [Xu et al., 2021] 23.5 24.6 70.9
PCT [Guo et al., 2021] 25.5 25.8 69.8
PCT+PointSP 15.8 12.5 60.8
CurveNet+PointSP 15.8 13.7 57.9

Table 1: Mean error rate (mER) across all corruptions of popular 3D
deep models w/o our protocol on three datasets. The best mERs are
highlighted in bold. MNC, PCC and OmniC represent ModelNet40-
C, PointCloud-C and OmniObject-C, respectively.

Method | mER | Density  Noise  Transform
PointNet 28.3 28.3 32.7 24.0
+ CutMix-R 21.8 30.5 18.0 16.9
+ CutMix-K 21.6 26.8 21.8 16.3
+ Mixup 25.4 28.3 28.9 19.0
+ Rsmix 22.5 24.8 27.3 155
+ PGD 25.9 28.8 28.4 20.5
+ PointSP 21.6 26.0 18.6 20.2
PointNet++ 30.6 36.9 30.3 24.6
+ CutMix-R 19.8 26.8 14.0 18.6
+ CutMix-K 213 24.9 19.3 19.6
+ Mixup 18.6 29.7 12.6 135
+ Rsmix 27.0 28.9 23.8 28.3
+ PointSP 17.7 24.1 12.7 16.2
GDANet 23.5 332 23.7 13.7
+CutMix-R | 169 | 285 10.4 11.9
+ CutMix-K 17.8 28.8 12.6 11.9
+ Mixup 18.5 30.3 13.1 12.2
+ Rsmix 19.2 27.7 14.4 154
+ PGD 20.3 32.1 15.9 13.0
+ PointSP 16.8 283 10.0 12.1
CurveNet 23.1 314 26.5 114
+ CutMix-R 16.1 25.7 10.5 12.1
+ CutMix-K 17.1 24.8 13.6 12.9
+ Mixup 20.8 324 17.9 12.1
+ Rsmix 19.9 26.7 15.6 17.3
+ PGD 20.4 28.5 213 114
+ PointSP 15.8 25.6 10.2 11.7
PCT 25.5 34.8 28.1 13.5
+ CutMix-R 16.3 27.1 10.5 11.2
+CutMix-K | 165 25.8 12,6 111
+ Mixup 19.5 30.3 16.7 11.5
+ Rsmix 17.3 25.0 12.0 15.0
+PGD 184 | 293 14.7 111
+PointSP | 158 | 269 9.5 1.1

Table 2: Comparison of mean error rate (mER) on ModelNet40-
C between PointSP and state-of-the-art point cloud augmentation
methods across five 3D deep models. The best mERs for each 3D
deep model are underlined.

under the "Jitter" corruption, where the PGD strategy excels
due to its robust feature learning mechanism. For drop-type
corruptions, methods like CutMix and Rsmix demonstrate
superior robustness, likely due to their data-mixing strate-
gies. On OmniObject-C, PointSP excels in improving out-
of-distribution (OOD) robustness, achieving the lowest mER
for CurveNet (57.9%) and the best results for "Jitter" (61.4%
mER). It also outperforms other methods on PointNet++ for
"Drop-G" and "Add-G" corruptions, and is highly competi-
tive with CutMix-R on PCT. Overall, these results validate
PointSP’s effectiveness in enhancing both OOD robustness
and generalization.

4.3 Results for Part Segmentation

The proposed sampling protocol has been evaluated on a clas-
sification task. To demonstrate its broader applicability, we
also applied it to part segmentation tasks, which are critical
for robotic manipulation, using the ShapeNet-C dataset [Ren
et al., 2022]. The results, shown in Figure 3, clearly indi-
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Method | PointCloud-C

| OmniObject-C

|mER|Scale Jitter Drop-G Drop-L Add-G Add-L Rotate|mER|Scale Jitter Drop-G Drop-L Add-G Add-L Rotate
PointNet++ | 27.7| 94 503 262 396 159 202 325(739|649 80.7 779 785 71.6 71.1 724
+ CutMix-R| 17.5| 8.8 345 9.0 209 7.7 8.1 33.7|649(629 722 628 672 593 58.1 718
+ CutMix-K| 19.1| 9.2 450 128 160 8.1 9.5 334|648|609 76.1 656 646 577 60.1 68.8
+ Mixup 1771 85 252 164 272 95 11.7 254 (628|593 67.1 64.1 69.2 578 572 65.3
+ Rsmix 213199 543 120 143 79 89 419 ]66.7|/63.8 78.1 66.2 68.1 594 60.6 70.6
+PointSP | 17.3| 92 333 109 160 80 103 33.1 |62.4(599 720 58.6 64.1 56.8 578 67.7
CurveNet [244| 89 229 173 223 521 287 189 (679|594 67.7 63.0 68.7 804 704 659
+ CutMix-R|13.8| 9.1 182 11.1 155 81 11.0 224 |63.2|61.0 682 598 654 586 61.7 68.0
+ CutMix-K| 15.8| 8.7 30.6 129 103 85 155 239 |60.3|57.3 69.1 59.7 560 532 634 634
+ Mixup 193] 8.6 179 21.6 19.8 257 20.1 214 |625|57.7 6277 60.9 657 64.1 61.7 64.6
+ Rsmix 169 9.1 350 11.0 102 92 13.1 309 (622|592 735 574 595 565 619 678
+PGD 2271168 11.2 129 260 489 253 183 |674|689 628 59.2 69.1 755 672 693
+PointSP | 13.7(10.3 19.0 103 11.0 7.6 155 22.0(579|58.1 614 550 56.0 54.1 56.6 64.0
PCT 25.819.0 27.1 150 241 403 429 222 |69.8|593 713 604 68.7 83.0 80.6 65.5
+ CutMix-R | 12.7|10.1 145 9.8 14.3 83 109 20.7 |60.8(59.5 629 588 608 57.7 612 64.7
+ CutMix-K| 14.1| 9.5 223 113 102 85 156 212 (614|573 658 628 588 563 651 635
+ Mixup 18.1|1 94 156 158 18.2 235 228 21.1 |62.7|57.6 62.0 589 63.6 657 675 635
+ Rsmix 152193 257 102 100 87 13.0 29.8 |633|59.2 70.5 60.6 59.8 586 659 68.5
+ PGD 20.0(14.6 105 169 248 295 227 212 |65.6|657 61.5 66.7 71.8 62.6 643 66.7
+WOLFMix| 12.7| 94 270 94 102 8.8 139 10.5|60.5]593 619 59.1 60.7 582 60.1 645
+PointSP | 12.5| 99 162 11.0 144 75 7.5 21.1|60.8/60.5 65.1 58.1 609 577 57.5 66.0

Table 3: Comparison of mER on PointCloud-C and OmniObject-C datasets between PointSP and state-of-the-art point cloud enhancement

methods across three 3D deep models.
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Figure 3: Instance mean IoU (left) and overall accuracy (right) on
ShapeNet-C.

cate that the proposed PointSP protocol provides a significant
improvement.

4.4 Ablation Studies

In the ablation studies, we use PCT [Guo et al., 2021] and
CurveNet [Xiang er al., 2021] as 3D deep models on two
datasets: ModelNet40-C [Sun et al., 2022] and PointCloud-C
(PCC) [Ren et al., 2022].

Sampling Protocols in Training. We compared various
sampling protocols during the training phase. As shown
in Table 4, the combination of random up&downsampling
(RUD) and stochastic weighted sampling (SWS) consistently
delivers the best performance. Removing RUD or substitut-
ing the proposed SWS method with FPS obviously degrades
the performance. FFPS also achieves the second-based per-
formance, highlighting the importance of point reweighting.

Random Upsampling and Downsampling. We investi-
gate the impact of various resampling techniques during train-

Full Points Key

PCT CurveNet

Resampling | Points Sampling
RUD |FPS FFPS SWS|MNC PCC|MNC PCC
v | 192 1481 227 20.1
v v 168 133 | 163 14.1
v v 17.0 133 | 16.0 13.8
v v | 158 125|158 13.7

Table 4: Ablation study based on mER with different sampling pro-
tocols in training. RUD: random upsampling & downsampling;
FFPS: filtered FPS; SWS: stochastic weighted sampling.

ing. As shown in Table 5, we explore different methods
for increasing and reducing sample sizes. The results indi-
cate that the proposed local-glocal-balanced method plays a
crucial role in enhancing performance. This suggests that
stochastically determining the localness of the point drop-
ping, i.e, neighbor size, can improve robustness against cor-
ruptions. Additionally, we compare our upsampling method
in Algorithm 1 with Shape-invariant perturbation (SI), which
conducts per-point perturbation on the tangent plane [Huang
et al., 2022]. The superiority of our method over SI shows
that perturbation direction based on neighbor points preserves
more local information than random directions.

Effect of Quantile-based Threshold w of FFPS. As illus-
trated in Figure 4, retain 95% of the points (i.e., filtering out
the 5% of points with the smallest weights) results in the best
performance. Moreover, when nearly half of the points are
removed, the mER peaks, likely due to the loss of critical in-
formation within the point cloud. As the number of removed
points decreases, the error rate also decreases, reaching its



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

AN >0 AN<O0 | PCT | CurveNet
SI LGP |RD KNN LGB|MNC PCC|MNC PCC
v v | 15.8 12.6| 17.2 14.7
v v 17.0 13.4| 16.7 14.8
v v 17.2 13.8| 174 15.9

v v | 158 12.5| 158 13.7

Table 5: Ablation study based on mER of full points resampling
using different techniques for upsampling (AN > 0) and remov-
ing points (AN < 0). SI: shape-invariant tangent plane upsam-
pling with random directions and distances; LGP: the proposed
local-geometry-preserved upsampling; RD: random global down-
sampling of points; KNN: local neighbours removal; LGB: the pro-
posed local-gobal balanced downsampling.

36. 36..
@ PCT @ pCT

305 —k— CurveNet 305 K —k— CurveNet
X245 X245
w w
€ €

18.5 18.5

125 = -
1257 06 07 0.8 09 10 05 06 07 08 09 10
Threshold w Threshold w

Figure 4: mERs of FFPS’s different threshold w on ModelNet40-C
(left) and PointCloud-C (right).

lowest when about 5% of the points are filtered out, before
rising again. It suggests that an optimal balance is achieved.

4.5 Visualization Results

Isolation Rate. In Figure 5, we visualize the distribution of
point-wise isolation rates for three example objects. The pro-
posed rate effectively identifies boundary points and outliers,
thereby enhancing subsequent point cloud sampling and im-
proving learning robustness against corruption.

Local-geometry-preserved Interpolation. Figure 6 vi-
sually compares the results of three upsampling techniques
on four example objects. It is evident that both Jitter and
SI [Huang et al., 2022] struggle with corrupted data, partic-
ularly when it is sparse and non-uniform. In contrast, the
proposed LGP method effectively combines completion and
uniformity in the upsampling process.

Neighborhood Size & in Local-global-balanced down-
sampling. Stochastically determining the sample size is a
critical aspect of the resampling protocol. As shown in Fig-
ure 7, a smaller k leads to local drops (second row), while a
larger k results in more global removals (last row). A stochas-
tic k would closely mimic real-world corruption, contributing
to the robust improvement of the proposed protocol.

5 Conclusion

This work highlights the limitations of current sampling pro-
tocols for corrupted 3D point clouds and proposes PointSP,
a robust solution that mitigates outliers and restores incom-
plete clouds without additional training. Experiments show
that PointSP outperforms state-of-the-art methods in 3D clas-
sification, paving the way for more reliable 3D deep learning
in critical applications like autonomous driving.

Jitter

high

low

@
T

Figure 5: Visualization of point-wise Isolation Rate. Column 1
presents the clean data, while Columns 2 to 5 depict data with the
corresponding corruption types indicated above each column.

Drop-G Jitter Ground Truth

2

Figure 6: Visual comparison of three sampling techniques: (1) Jitter,
(2) SI: tangent plane upsampling with random directions and dis-
tances and (3) LG: the proposed local-geometry-preserved upsam-
pling. The first column shows the corrupted data from PointCloud-
C, while the last column presents the corresponding clean data.

None

k = |AN|

|AN| + N
2

k=

Figure 7: Visualization of samples with different neighborhood size
k in local-global-balanced downsampling.
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