
Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t
Pre

prin
t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Pre
prin

t

Egocentric Object-Interaction Anticipation with
Retentive and Predictive Learning

Guo Chen1 , Yifei Huang2 , Yin-Dong Zheng1 , Yicheng Liu1 , Jiahao Wang3 , Tong Lu1

1Nanjing University
2The University of Tokyo
3Kuaishou Technology

chenguo1177@gmail.com, hyf@iis.u-tokyo.ac.jp, ydzheng0331@gmail.com,
lyccnb@gmail.com, wangjiahao08@kuaishou.com, lutong@nju.edu.cn

Abstract
Egocentric object-interaction anticipation is crit-
ical for applications like augmented reality and
robotics, but existing methods struggle with mis-
aligned egocentric encoding, insufficient supervi-
sion, and underutilized historical context. These
limitations stem from a lack of focus on retention,
i.e., retaining long-term object-centric interactions,
and prediction, i.e., future-centric encoding and fu-
ture uncertainty modeling. We introduce EgoAn-
ticipator, a novel Retentive and Predictive Learning
framework that addresses these challenges. Our ap-
proach combines retentive pre-training for domain-
specific encoding, predictive pre-training for fu-
ture uncertainty modeling, and mirror distillation to
transfer future-informed knowledge. Additionally,
we propose long-term memory prompting to inte-
grate historical interaction cues. We evaluate the
effectiveness of our framework using the Ego4D
short-term object interaction anticipation bench-
mark, covering both STAv1 and STAv2. Extensive
experiments demonstrate that our framework out-
performs existing methods, while ablation studies
highlight the effectiveness of each design inside our
retentive and predictive learning framework.

1 Introduction
Recent advances in wearable camera technologies fa-
cilitate the collection of large-scale egocentric video
datasets [Damen et al., 2018; Huang et al., 2024; Grau-
man et al., 2022], thereby significantly boosting the re-
search in egocentric video analysis. While the main focus
of research is on recognition tasks such as action recogni-
tion [Wang et al., 2021; Patrick et al., 2021; Núñez-Marcos
et al., 2022] and hand grasp analysis [Cai et al., 2016], the
anticipation of future human-object interaction is receiving
increasing attention [Grauman et al., 2022; Thakur et al.,
2024]. This increased focus is largely driven by its poten-
tial applications, particularly in VR/AR [Wang et al., 2023;
Huang et al., 2018], where, for example, AR assistants
can proactively suggest upcoming actions, predict upcoming
movements in telesurgery to prepare robotic systems.

The task of anticipating egocentric object interaction aims
to predict the future state of human-object interaction with-
out directly observing future videos. This includes forecast-
ing the object’s position and category, the form of interac-
tion, and the timing of the interaction. A straightforward
solution is to extend the current spatio-temporal localization
problem [Köpüklü et al., 2019; Murray et al., 2012] to fit
this anticipation task. These methods [Grauman et al., 2022;
Ragusa et al., 2023] focus on analyzing the current input
to enhance future interaction anticipations. However, these
methods often underperform due to three key limitations.

Firstly, there is a misalignment in egocentric encoding. Ex-
isting methods rely on pre-training on general video datasets
with mixed viewpoints, such as Kinetics [Kay et al., 2017].
This results in encoders that lack domain-specific alignment
for egocentric perspectives. In addition, these encoders are
typically trained with descriptive labels that emphasize ”what
is happening”, which restricts their ability to encode the pre-
dictive context in the video representations.

Secondly, supervision signals are insufficient. In real-
world scenarios, future events are probabilistic rather than de-
terministic. However, datasets often employ one-hot hard la-
bels, assuming a single outcome with absolute certainty. This
undermines the effectiveness of supervision and introduces
bias, limiting the models’ predictive ability in capturing the
inherent uncertainty and variability of future events.

Thirdly, there is insufficient utilization of historic informa-
tion. Existing methods [Ragusa et al., 2023; Mur-Labadia et
al., 2024] typically focus solely on short video clips without
leveraging the retention of long-term historical data. This
oversight can lead to the omission of crucial context that
could significantly enhance anticipation accuracy.

To address these limitations, in this work, we propose
a Retentive and Predictive Learning framework, named
EgoAnticipator, specifically designed for egocentric object-
interaction anticipation. Our framework aims to mitigate the
above three issues.. To formulate pertinent memory encoding
that is effective in the anticipation context, we first conduct
a retentive and predictive pre-training. This step encourages
the model to retain important cues of human-object interac-
tion and transfer the cues into a format conducive to anticipa-
tion. Following this, we implement a mirror distillation strat-
egy, which utilizes a teacher model with superior future in-
sight, to assist in both the formulation of memory and the ex-
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ecution of the anticipation task. This teacher model is trained
on future frames that are mirror-flipped relative to the current
timestamp, aiding in memory formulation. Moreover, it in-
troduces a level of predictive uncertainty, which is critical for
modeling anticipation tasks. Thirdly, to effectively retrieve
pertinent object interaction information from the memory, we
craft a long-term memory prompting method. We formulate a
prompting feature from long-term history using the object at-
tributes generated by the student or teacher model. Since ob-
ject attributes are critical in the object interaction anticipation
task, long-term memory prompting can effectively enhance
the model’s anticipatory capability.

We evaluate the performance of our method on the Ego4D-
STA benchmark [Grauman et al., 2022]. EgoAnticipator ef-
fectively addresses the challenges of domain-specific encod-
ing, probabilistic supervision, and long-term information uti-
lization, resulting in significantly enhanced prediction accu-
racy. Through comprehensive evaluations, our framework
consistently outperforms existing state-of-the-art methods,
demonstrating its effectiveness and robustness in anticipating
human-object interactions from egocentric perspectives.

2 Related Work
2.1 Action and Object-Interaction Anticipation
Prior works [Furnari and Farinella, 2020; Girdhar and Grau-
man, 2021; Xu et al., 2021; Sener et al., 2020] in action an-
ticipation mainly focus on classifying future actions within a
preset time frame. Approaches [Zhao and Krähenbühl, 2022;
Furnari and Farinella, 2020; Xu et al., 2021; Sener et al.,
2020] delve into temporal modeling strategies for forecast-
ing forthcoming events at predetermined timestamps. Diverg-
ing from the typical temporal action anticipation tasks with
fixed intervals, Ego4D introduces a novel short-term object-
interaction anticipation task, requiring predictions about in-
teractions with the next active objects [Pirsiavash and Ra-
manan, 2012; Furnari et al., 2017] and time to contact them.
This task has recently been further explored in studies such as
[Ragusa et al., 2023; Thakur et al., 2024; Chen et al., 2022;
Mur-Labadia et al., 2024]. In this work, we take a step for-
ward by broadening the scope of information utilized in ob-
ject interaction anticipation tasks. By incorporating our novel
retentive and predictive learning framework, we can effec-
tively establish historical memory and retrieve relevant object
interaction from this memory for more accurate and nuanced
anticipation about future interactions.

2.2 Knowledge Distillation (KD)
[Hinton et al., 2015] has been established as an effective ap-
proach to transfer knowledge from a complex, high-capacity
teacher model to a smaller, simpler student model. Its ap-
plications span diverse tasks, including image classification
[Huang et al., 2022], and dense prediction [Liu et al., 2019].
In the typical implementation of KD [Chen et al., 2017;
Hinton et al., 2015], the student model is trained to mimic
the soft targets generated by the teacher model. Other meth-
ods [Chen et al., 2017; Zhang and Ma, 2020] have focused
on minimizing discrepancies between intermediate layer rep-
resentations of the student and teacher models. KD’s versa-

tility extends into the various video domains [Li et al., 2021;
Zhao et al., 2020; Mullapudi et al., 2019] or action antici-
pation tasks [Tran et al., 2021; Fernando and Herath, 2021;
Furnari and Farinella, 2023] as well. Our key insight about
STA is that the most valuable clues reside in future events.
Our proposed mirror distillation utilizes the object frame as
a demarcation point to build future teachers and current stu-
dents. This approach significantly enhances the student’s ca-
pability of learning anticipation from memory by providing
better uncertainty estimates.

2.3 Long-term Memory Learning
The efficacy of context learning in language memory is
well-established, as demonstrated by the success of large
language models [Brown et al., 2020; Min et al., 2022;
Dong et al., 2023]. Similarly, video is also a form of sequen-
tial data that can benefit from extended contextual memory,
as shown in recent studies [Xu et al., 2021; Wu et al., 2022;
Gao and Wang, 2023]. For example, MeMViT [Wu et al.,
2022] enhances MViT [Fan et al., 2021] by incorporating
long-term multi-scale memory prompts. In our work, we
leverage the future teacher in our framework to retroactively
update interaction and contact timings of past objects, retain-
ing a refined object-interaction memory that provides more
reliable contextual cues for future anticipation.

3 Preliminaries
To illustrate our method clearly, we first define the STA prob-
lem and describe the baseline model.

3.1 Problem Definition
We define the STA task as proposed in [Grauman et al.,
2022]. Given an input video V and a timestamp t, the in-
put to the model is the video from its beginning up to time
t (denoted as V1:t). The model is required to anticipate
when and where, and what kind of object interaction will
happen. The predictions at time t can be represented as
Ψ = {φi = (b, n, v, δ, p)}Np

i=1, where b denotes the spatial
location of object box, n is the object’s category, while v, δ,
and p denote the anticipated action, the time to contact (TTC)
and the confidence score used to rank predictions for evalua-
tion, respectively.

3.2 Baseline
We use the two-stage baseline from Ego4D [Grauman et al.,
2022], which we build upon in the next section. The stages
are object detection and anticipation.

Stage1: Object Detection. In the first stage, an object
detector such as Faster R-CNN [Girshick, 2015] generates
multiple potential next-active objects per frame, resulting in
predictions represented as Ψ̃ = {φi = (b, ñ, p̃)}Np

i=1, where
b, ñ and p̃ are the location, noun category and score of object
predicted by object detector. These serve as inputs for the
second stage.

Stage2: Short-term Anticipation. In the second stage, a
video encoder processes low-resolution clips Vt−l:t as short-
term memory, covering l history frames and ending at times-
tamp t. The encoder extracts dynamic features, capturing
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Retentive and Predictive Learning Framework
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Figure 1: Retentive and Predictive Learning Framework. Our method curates relevant Ego4D data into DEgoIR and DEgoIP to train the
Retentive Encoder ϕr and Predictive Encoder ϕa. These encoders are used by the teacher ϕT and student ϕS in Retentive and Predictive
Pre-training. Subsequently, the student ϕS and teacher ϕT receive historical frames Vt−l:t and future frames Vt:t+l, respectively, for Mirror
Distillation. Meanwhile, ϕS infers long-term samples V1:t, generating long-term memory prompts to enhance information. Finally, the STA
Model, supported by multiple inputs, predicts object interactions including nouns n, verbs v, and time-to-contact δ (ttc).

𝑡

Predictive 
Pretraining

𝑡

Retentive 
Pretraining

video input
verb & noun label
supervision

Figure 2: Illustration of Retentive and Predictive Pretraining.

the evolving actions and interactions. The video features f3d
and predictions Ψ̃ are fed into an anticipation network, which
pools the spatial-temporal features to a 2D feature map f2d,
then uses RoIAlign to sample region features f b2d for each
bounding box b. These features fb aid in forecasting the verb
and time to contact. Finally, fb is passed to classifiers to pre-
dict the object category n, verb v, and time to contact δ. The
loss function combines cross-entropy loss LCE on n and v
with smooth L1 loss LL1 on δ, with λ1 = 10:

Lsta = Ln
CE + Lv

CE + λ1Lδ
L1. (1)

4 Retentive and Predictive Learning
We introduce EgoAnticipator, a novel retentive and predictive
learning framework for short-term object interaction anticipa-
tion in egocentric videos. As shown in Figure 1, it enhances
the two-stage baseline from Section 3 with three key com-
ponents: retentive and predictive pre-training, mirror distilla-
tion, and long-term memory prompting.

4.1 Retentive and Predictive Pre-training
A direct option to encode short-term memory with short video
input Vt−l:t is to use features extracted from a pre-trained
video model. However, such models often lack domain-
specific alignment for egocentric perspectives and are opti-
mized for descriptive tasks rather than predictive ones. Thus,
we craft Retentive and Predictive Pre-training (RPP), a
simple yet effective process to optimize the model’s ability to
retain and anticipate egocentric object interactions, as shown
in Figure 2.

Retentive Pretraining. The first part of RPP focuses on
training the video encoder ϕr to retain short-term egocentric
memory, emphasizing object-centric interactions. We utilize
the narration annotations from Ego4D as our training data.
Following EgoVLP [Lin et al., 2022], we extract verbs and
nouns from each timestamp narration and extend their con-
text boundaries. To ensure the relevance of our data to ego-
centric interactions, we selectively filter out entries marked
with ”#o” and ”#O”, as they relate to exocentric information.
The curated dataset, DEgoIR, encompasses 3.2M video clips
featuring 115 verbs, 554 nouns, and forms the core dataset
for training ϕr. Training ϕr on DEgoIR is approached as a
multi-task, multi-label classification task.

Predictive Pretraining. The second stage enhances the
encoder’s predictive capabilities by training ϕp on DEgoIP, a
dataset derived from DEgoIR, using a sliding window of Tw
seconds on each video. Clips are selected if a timestamped
annotation occurs within the next Tf seconds, resulting in
6.5M clips annotated with future events. In DEgoIP, for each
selected video window, future timestamp annotations are di-
vided into Nf grids, each covering a fraction of Tf

Nf
seconds

into the future. We employ Nf future queries and a trans-
former decoder block to decode future action sequences from
each video window. The classification heads used in this
stage are identical to those in retentive pre-training, ensuring
consistency.

4.2 Mirror Distillation
To enhance the final anticipation model, we propose Mirror
Distillation, which leverages a teacher model ϕT to provide
(1) a reliable estimate of uncertainty for training ϕS , and (2) a
true representation of short-term future features for enhancing
ϕS via knowledge distillation. An overview of this step is
illustrated in Figure 3.

Future Teacher. One primary limitation of the baseline
model (ϕS without our enhancements) is its reliance solely
on short-term memory Vt−l:t, limiting its ability to antici-
pate future interactions. To address this, we introduce a fu-
ture teacher model ϕT with direct access to future data for
guidance. The future teacher ϕT utilizes a mirror-flipping
technique applied to video frame sampling around timestamp
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Figure 3: Mirror distillation goes beyond direct imitation of the
teacher’s output, by leveraging a residual connection to endow the
student network ϕS with the capacity to assimilate the foresight of
the teacher ϕT encoded in its representations.

t, allowing it to access short-term future information Vt:t+l,
whereas the student model ϕS only accesses Vt−l:t. As il-
lustrated in Figure 3, the teacher employs a retentive encoder
ϕr, while the student uses a predictive encoder ϕp. We guide
the learning of ϕS in two ways: (1) task distillation to pro-
vide reliable uncertainty estimation and (2) residual feature
distillation to align phiS’s features more closely with future
features.

Task Distillation. Task distillation aligns ϕT and ϕS by
leveraging their shared context, i.e., the center frame at t. Al-
though they process different video segments, they both gen-
erate features fTb and fSb for the same objects in the center
frame. We minimize the KL divergence between their pre-
dicted verb logits yT

v and yS
v using the following loss:

Lv
TD =

1

Np

∑
t

τ2LKL(σ(y
S
v /τ), σ(y

T
v /τ)). (2)

where Np is the number of objects, τ controls the softening,
and σ is the Softmax function. Similarly, we define Ln

TD for
nouns. We also distill knowledge related to time-to-contact
(δ) prediction. Given δT and δS predicted by the teacher ϕT
and the student ϕS , we minimize the smooth L1 loss Lδ

TD be-
tween them by employ a separate MLP in ϕS for the distilled
δ prediction. The teacher ϕT often generates higher-quality
confidence scores p for each object, so we also distill knowl-
edge from this score. We add an MLP to enable ϕS to learn
the confidence score as fused by ϕT . The overall distillation
loss for the 4 tasks can be represented as:

LTD = Lv
TD + Ln

TD + λ2Lδ
TD + Lp

TD, (3)

where λ2 keeps consistent with λ1.
Feature Residual Distillation. The task distillation trans-

fers knowledge of individual objects from future to past
frames, enhancing the student model’s instance-level antic-
ipation. To improve anticipation at a holistic level, we intro-
duce a feature-level distillation.

Since ϕS and ϕT differ in their input data, directly enforc-
ing the student’s representation to be similar to the teacher’s
can result in the student model overly focusing on the future.
This can cause the student model to overlook critical cues
present in the current frames. To circumvent this issue, Fea-
ture Residual Distillation employs the residual connection for

fusing predicted future features with current ones. Given the
2D feature map fS2d and fT2d at timestamp t, generated by ϕS

and ϕT respectively, we utilize a lightweight feature decoder
ψ within ϕS to predict future feature f

′

2d = ψ(fS2d). We then
minimize the smooth L1 loss between f

′

2d and fT2d, denoted as

LFD = LL1(f
′

2d, f
T
2d). (4)

Subsequently, we update fS2d by fusing both features: fS2d =

f
′

2d + fS2d. The newly updated features are then utilized in
RoIAlign for the subsequent network.

4.3 Long-term Memory Prompting
While mirror distillation enhances near-term context encod-
ing, it neglects long-term historical information. To this end,
we propose Long-term Memory Prompting (depicted in
Figure 4), to retrieve a broader range of object interaction
information extended further back in time.

Long-term Object Interaction Representation. In the
observed video V1:t, we extract key object attributes for in-
teraction anticipation: spatial location b, noun n, verb v,
and contact time δ. The detected object-interaction memo-
ries are represented as Ψm

1:t = {φm
i = (b, n, v, p, d)}Np

i=1,
where b is obtained by an object detector, and n, v, p are
inferred by the memory encoder ϕM . Here, d denotes the
temporal distance from the latest timestamp t. Each memory
φm
i = (b, n, v, δ, d) is described as “At time t − d: after δ

seconds, action v occurs on n at position b.” We use sepa-
rate MLPs to embed b, δ, and d, and learnable embeddings
for n and v. These embeddings are concatenated for each
object φm

i to form the representation fmi , which is then in-
put to the encoder of ϕS . There are two options for ϕM to
create the long-term memory representation under different
perspectives: 1) ϕM = ϕS : Use ϕS to represent the informa-
tion before the historical target frame; 2) ϕM = ϕT : Use ϕT
to represent the information after the historical target frame,
as shown in Figure 5. The study of both options is further
explained later in the next sections.

Long-term Memory Prompting. We incorporate a spe-
cialized lightweight network, denoted as ϕm and illustrated
in Figure 4, to integrate the history of object interactions.
The lightweight network consists of a single attention layer
followed by an MLP, which encodes historical tuples into
prompts for fusion with current-frame features. Its primary
function is to encode the historical object interaction em-
beddings fmi into a long-term memory prompt, denoted by
fmprompt = ϕm(fmi ). This prompt assists in the final antici-
pation by fusing fmprompt with each object RoI feature fb on
the current frame t (see Sec. 3) through channel-wise con-
catenation followed by a fully-connected layer. The resulting
fused object feature is then used to output the final anticipa-
tion result. Notably, during training with ϕM = ϕT , since ϕT
requires the use of the l-frame context after f−1 frame, we
only utilize objects that satisfy d > l as accessible memory
to prevent information leakage.

4.4 Multi-stage Training
The training schedule for EgoAnticipator consists of four
steps: 1) Pre-train the video encoder ϕ on DEgoIR to obtain
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interaction information embedded, the long-term prompt fmprompt is fused with the student network’s RoI features to promote anticipation.

𝒕

future𝜙!
𝒍

𝒅

𝜙"
𝒍

𝑓!"

𝜙!
𝒍

𝑓!𝟐

𝜙!
𝒍

𝑓!𝟑

𝝓𝑴 = 𝝓𝑻

𝝓𝑴 = 𝝓𝑺 future𝜙"
𝒍

𝜙"
𝒍

𝜙"
𝒍

𝜙"
𝒍

Figure 5: The illustration of training and inference of long-term
memory prompting process with two options for ϕM .

Model (mAP) b+n b+v b+n+t b+n+v b+n+v+t

One-stage training
StillFast 16.20 - 4.94 7.47 2.48
Transfusion 20.19 - 6.17 7.55 2.60
STAformer 21.71 - 7.24 10.75 3.53
StillFast + EgoVLP 16.48 6.41 5.32 7.81 3.10
StillFast + DEgoIR 22.20 9.34 7.92 11.13 4.51
StillFast + DEgoIP 23.01 9.68 8.53 11.66 4.84

Two-stage training
Slowfast 17.55 - 5.37 5.19 2.07
InternVideo 17.55 - 5.83 6.30 2.43
EgoAnticipator† 18.34 10.67 7.72 8.03 4.29
EgoAnticipator 19.12 11.06 8.31 8.09 4.43

Table 1: Results of our model and other baseline methods on STAv1.
† denotes ϕM = ϕS .

ϕr. 2) Pre-train ϕr on DEgoIP to acquire ϕp. 3) Use ϕp to train
the teacher model ϕT , which observes an l-frame future, on
DSTA. 4) Train the student model ϕS with long-term mem-
ory prompts and perform mirror distillation with the teacher
on DSTA. The final loss for the STA student model combines
three components:

Lstu = Lsta + LTD + LFD. (5)

Additional details on the model architecture and the training
of ϕr, ϕp, and ϕT are provided in the supplemental material.

4.5 Online Inference
The inference phase utilizes the trained student and teacher
models. As illustrated in Figure 5, the orange and green re-
gions represent the context ranges l fed into the model. We

Model (mAP) b+n b+v b+n+t b+n+v b+n+v+t

One-stage training
StillFast 20.26 - 7.16 10.37 3.96
STAformer 24.85 - 7.41 13.45 4.90
StillFast + DEgoIR 25.75 12.35 9.30 14.41 5.56
StillFast + DEgoIP 26.00 11.92 9.62 14.44 5.74

Two-stage training
Slowfast 21.00 - 7.04 7.45 2.98
EgoAnticipator† 22.54 10.89 9.67 10.28 5.41
EgoAnticipator 23.52 11.18 10.29 11.04 5.60

Table 2: Results of our model and other baseline methods on STAv2.
† denotes ϕM = ϕS .

employ the student model ϕS to encode the short-term vi-
sual memory (green region) online and to aggregate the long-
term interaction history queue (Q = {. . . , f−3, f−2, f−1})
extracted by ϕM . As the visual input stream accumulates,
the memory model ϕM continuously forms new interaction
memories from the past (orange region). During inference
with ϕM = ϕS , we directly append the already encoded
short-term memory to the queue without recalculating it.
However, when ϕM = ϕT , we must recalculate the new
historical memory representation before inserting it into the
queue. Additionally, we must ensure that the latest interac-
tion memory f−1 (which may leak future information) is not
involved in anticipating the current timestamp. To achieve
this, we ensure that the time distance d between f−1 and t is
greater than l by only appending f−1 toQ if d > l. This issue
does not arise when ϕM = ϕS .

5 Experiments
5.1 Datasets and Evaluation Metric
We evaluate our framework on the STAv1 and STAv2 bench-
marks from the Ego4D dataset. These benchmarks comprise
120 hours of annotated clips, including 27,801/98,276 train-
ing, 17,217/47,395 validation, and 19,780/19,780 test sam-
ples, spanning 87/128 noun and 74/81 verb classes. Eval-
uation employs Top-K AP/mAP, focusing on Top-5 metrics:
Noun (b+n), Noun + Verb (b+n+v), Noun + TTC (b+n+δ),
and Noun + Verb + TTC (b + n + v + δ). This measures
the model’s ability to predict next-active object interactions
at varying granularities.
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Data b+n b+v b+n+t b+n+v b+n+v+t

K400 16.94 7.61 6.37 4.81 2.34
DEgoIR 17.25 8.14 6.68 5.77 2.88
DEgoIR w/ Exo 16.57 7.91 6.37 5.62 2.65
DEgoIP 17.07 8.39 6.95 6.23 2.99

Table 3: Impact of data of retentive and predictive pre-training.

Cls TTC Feat Score b+n b+v b+n+t b+n+v b+n+v+t

✓ 18.50 9.36 7.45 6.80 3.20
✓ ✓ 18.27 9.01 7.75 6.81 3.34
✓ ✓ ✓ 18.26 9.22 7.66 6.86 3.35
✓ ✓ ✓ ✓ 18.67 9.28 7.87 6.92 3.45

Table 4: Impact of distillation supervision.

5.2 Implementation Details
For the first-stage object detection, we use Faster R-CNN pre-
trained on Ego4D. For the second stage, ViT-B serves as the
backbone for video feature extraction. During training, only
prediction boxes with IoU > 0.5 with the ground truth are
utilized. Loss coefficients are balanced as λ1 = λ2 = 10
and τ = 3. The teacher model employs the trained reten-
tive encoder, while the student model uses the predictive en-
coder. We sample 8 frames with a stride of 8, resulting in
l = 64. Implementation details of retentive and predictive
pre-training are provided in the supplementary materials.

5.3 Comparison with the State of the Art
We evaluate EgoAnticipator against previous state-of-the-art
models using mean Average Precision (mAP) metrics. In
the STAv1 benchmark (Table 1), EgoAnticipator outperforms
other two-stage methods [Chen et al., 2022; Grauman et al.,
2022]. Notably, with a ViT-B backbone, EgoAnticipator ex-
ceeds InternVideo [Chen et al., 2022], which utilizes a ViT-L
pretrained on Ego4D, by +2.0 mAP. For the STAv2 dataset
(Table 2), EgoAnticipator was evaluated by generating detec-
tion results in the first stage. Replicating the baseline with our
detections and applying EgoAnticipator led to a significant
mAP improvement of +2.7 over two-stage methods, nearing
the performance of one-stage approaches. Furthermore, in-
tegrating our retentive and predictive encoders with the one-
stage method StillFast [Tan et al., 2023] further enhances per-
formance. These results underscore the effectiveness of our
retentive and predictive pre-training strategy. We also com-
pare the performance of EgoAnticipator with ϕM = ϕS and
ϕM = ϕT . The findings indicate that the former achieves
strong performance, while the latter can achieve further im-
provements by increasing computation during testing.

5.4 Ablation Studies
A detailed analysis of the EgoAnticipator was conducted on
Ego4D-STAv1 using mAP as the main metric. A total of 4
ablation studies were conducted to assess the contributions of
various components. More detailed ablation studies can be
found in the supplementary material.

1) Retentive and predictive pre-training data. To evalu-
ate RPP’s effectiveness, we train multiple STA baseline mod-

Short Long-i Long-v b+n b+v b+n+t b+n+v b+n+v+t

✓ 17.37 8.39 7.01 5.83 2.99
✓ ✓ 18.80 10.23 7.97 7.80 3.91
✓ ✓ 18.18 9.69 7.38 6.97 3.58
✓ ✓ ✓ 17.89 9.51 7.73 7.41 3.83

Table 5: Impact of different memory.

RPP OE MR LMP b+n b+v b+n+t b+n+v b+n+v+t

✓ 17.35 8.39 6.93 5.92 2.99
✓ ✓ 17.17 8.75 7.13 6.52 3.48
✓ ✓ ✓ 18.18 10.23 7.38 7.80 3.91
✓ ✓ ✓ ✓ 19.12 11.06 8.31 8.09 4.43

Table 6: Impact of different proposed components.

els with video encoders pre-trained on different datasets, as
detailed in Table 3. The results show that encoders trained
on DEgoIR outperform those pre-trained on K400 by +23.1%.
Training on DEgoIP yields an additional +4.6% improvement.
Moreover, encoders trained on the complete Ego4D dataset,
which includes approximately 0.6M exocentric action narra-
tions, do not enhance the STA task, suggesting that exocentric
information may not be beneficial.

2) Distillation supervision. In Table 4, we carry out di-
verse experiments to determine the supervision of distilla-
tion. Beyond KL divergence supervision for the classification
of n and v, we explored time to contact δ, ranking score p,
and feature supervision. The results show that as supervision
increases, the student’s performance continuously improves
+7.0%, +4.7%, +0.3%, and +3.4%. These findings highlight
the importance of comprehensive distillation supervision in
bridging the gap between past and future representations. By
learning from the teacher model’s superior future insights, the
student model aligns its feature distribution more closely with
the teacher’s, effectively reducing the performance disparity.

3) Impact of long-term memory. Table 5 shows how dif-
ferent memory types affect model performance. ”short-term”
is the baseline without long-term memory, ”long-i” is our pro-
posed long-term memory prompting, and ”long-v” is the tem-
poral memory method from LSTR [Xu et al., 2021]. Tem-
poral memory (”long-v”) provides a modest improvement
of +19.7% by capturing vague visual information. In con-
trast, long-term memory prompting with interactive memory
embedding (”long-i”) captures object-centric interactions, in-
cluding verbs and contact times, resulting in a larger enhance-
ment of +30.8%.

4) Overall ablation. As delineated in Table 6, we offer
a comprehensive ablation study for each learning approach
proposed within our research. The data, organized from top
to bottom, reveals a sequential improvement in model per-
formance. The contribution of Object Embedding (OE) is
primarily in terms of mAP. Additionally, we observe that re-
tentive and predictive pre-training (RPP), mirror distillation
(MD), and long-term memory prompting (LMP) are instru-
mental in retaining memory and forecasting future events,
thus significantly bolstering the STA task in terms of mAP.
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Figure 6: Per-noun-category APb+n on STAv1: an improved baseline model with K400 pretrainning (15.52 mAPb+n) vs. its EgoAnticipator
counterpart (19.12 mAPb+n). Categories are sorted by the number of examples.
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Figure 7: Per-TTC-range APb+δ on STAv1: an improved baseline
model with K400 pretrainning (9.60 APb+δ) vs. its EgoAnticipa-
tor counterpart (15.56 APb+δ). We split the TTC into 16 bins, each
spanning 0.5 seconds. The segmentation is based on the TTC statis-
tics in the validation set.

5.5 Results Analysis

We present quantitative and qualitative results demonstrating
EgoAnticipator’s performance on STAv1.

Quantitative results. As shown in Figure 6, EgoAnticipa-
tor outperforms the baseline in 56 of 85 categories, notably
with small objects like ”bottle”, ”dumbbell”, and ”phone”.
TTC anticipation analysis (Figure 7) reveals significant im-
provements in short-term (0-0.5) and middle-term (1.5-2.5)
predictions.

Qualitative results. Figure 8 displays two successful pre-
dictions and two failures. The first failure likely stems from
sparse annotations, while the second indicates the model’s
difficulty distinguishing actions with similar motions but dif-
ferent semantics.

Efficiency analysis. Building on the Ego4D baseline, our
framework utilizes ViT as the video encoder, offering a sim-
pler and more efficient structure compared to SlowFast, espe-
cially with Flash Attention†. Table 7 presents relevant param-
eters and inference speeds on RTX 4090 GPU. Additionally,
our decoder is streamlined with MLPs and a single attention
layer, totaling only 13.5M parameters. When ϕM = ϕS , our
model can achieve the best efficiency (121 FPS) and lead-
ing performance (4.29 mAP on STAv1). When ϕM = ϕS ,
our model can achieve the best performance (4.43 mAP on
STAv1) yet relatively high FPS (59). Overall, EgoAnticipa-
tor is an efficient framework.

Figure 8: Visualization on Ego4D STAv1: Two success examples
(top) and two failure cases (bottom).

Model Param FPS

SlowFast 34M 59
ViT-B 85M 128(161†)

ViT-B + EgoAnticipator (ϕM = ϕS) 98M 121(153†)
ViT-B + EgoAnticipator (ϕM = ϕT ) 183M 59(74†)

Table 7: Efficiency comparison between EgoAnticipator and other
video encoders on parameter (M) and inference speed (FPS).

6 Conclusion
In this paper, we introduce EgoAnticipator, a novel Reten-
tive and Predictive Learning framework for egocentric object-
interaction anticipation. EgoAnticipator improves anticipa-
tion capabilities by addressing misalignment in egocentric en-
coding, insufficient supervision signals, and suboptimal use
of historical data. It incorporates long-term object-centric in-
teractions and leverages both current video data and extended
historical context for more accurate predictions. Experiments
show that the retentive and predictive encoding mechanism,
with mirror knowledge distillation, effectively shapes mem-
ory and introduces predictive uncertainty. Additionally, long-
term prompting efficiently integrates historical information
into the anticipatory process. EgoAnticipator unifies memory
and predictive learning, achieving significant performance
improvements for egocentric interaction anticipation.
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[Núñez-Marcos et al., 2022] Adrián Núñez-Marcos, Gorka
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