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Abstract
Low-Light Video Enhancement (LLVE) seeks to
restore dynamic or static scenes plagued by severe
invisibility and noise. In this paper, we present
an innovative video decomposition strategy that in-
corporates view-independent and view-dependent
components to enhance the performance of LLVE.
We leverage dynamic cross-frame correspondences
for the view-independent term (which primarily cap-
tures intrinsic appearance) and impose a scene-level
continuity constraint on the view-dependent term
(which mainly describes the shading condition) to
achieve consistent and satisfactory decomposition
results. To further ensure consistent decomposition,
we introduce a dual-structure enhancement network
featuring a cross-frame interaction mechanism. By
supervising different frames simultaneously, this net-
work encourages them to exhibit matching decompo-
sition features. This mechanism can seamlessly inte-
grate with encoder-decoder single-frame networks,
incurring minimal additional parameter costs. Ex-
tensive experiments are conducted on widely recog-
nized LLVE benchmarks, covering diverse scenarios.
Our framework consistently outperforms existing
methods, establishing a new SOTA performance.

1 Introduction
Low-light enhancement aims to enhance underexposed images
and videos captured in low-light conditions [Xu et al., 2022;
Wang et al., 2021], improving their visual quality while reduc-
ing noise. This technique can be applied in wide-ranging ap-
plications, such as portrait photography on mobile devices [Ig-
natov et al., 2017; Hasinoff et al., 2016], nighttime face recog-
nition [Ma et al., 2022; Wang et al., 2022] and vehicle detec-
tion [Fu et al., 2023a; Wu et al., 2022]. The key challenge
when enhancing videos is the need for consistent enhance-
ment results across corresponding locations in different frames,
∗Corresponding authors.
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Figure 1: Our proposed LLVE method consistently achieves SOTA
performance on different LLVE datasets involving various scenes
with the same network architecture.

which vary both spatially and temporally. Moreover, there is
a scarcity of real-world, high-quality, spatially aligned video
pairs for dynamic scenes, resulting in limited generalization
capabilities for unseen videos with varying conditions.

One solution is to incorporate parameterized enhancement
models with physical significance into the enhancement pro-
cess, reducing the reliance on training data. According to
the linear Lambertian model for intrinsic image decomposi-
tion [Yuille, 2012; Narihira et al., 2015], an observed image I
can be expressed as the element-wise product (⊗) of its albedo
component and shading component. The albedo part is nor-
mally view-independent, capturing the intrinsic appearance,
whereas the shading component is commonly view-dependent,
influenced by lighting conditions and the surface normal’s
direction. Inspired by the Lambertian model, we propose that
a frame in the LLVE task can similarly be decomposed as
I = L ⊗ R, where L represents the view-dependent term,
and R corresponds to the view-independent component.

In this paper, we introduce an innovative approach to attain
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our decomposition for normal-light video outputs, ensuring
consistency in both spatial and temporal dimensions. We
leverage cross-frame correspondences and real-world physical
continuity constraints to achieve this decomposition without
the need for explicit supervision. Furthermore, to enhance
the consistency of the decomposition, we’ve developed an
efficient dual-structure enhancement network featuring a novel
cross-frame interaction mechanism.

Our approach aims to predict both the R and L of normal-
light images from the provided low-light inputs. It is important
to note that the decomposition of view-independent and view-
dependent terms is not unique, and our goal is to implement
a suitable decomposition that enhances the performance of
LLVE. In this paper, we aim to design appropriate priors di-
rectly from the video data to implement the decomposition.
We recognize that R should represent the physical proper-
ties of objects, which should remain consistent across various
observation perspectives. To achieve this, we first calculate
corresponding locations in videos and utilize these computed
spatial-temporal correspondences, along with uncertainty val-
ues, to link the predictions of R across different frames. Con-
versely, the terms of L are subject to a spatial smoothness
loss to model real-world physical constraints (since the light-
ing field is continuous in practice). This approach allows us
to establish a temporal-spatial consistency constraint in the
enhanced videos, without requiring additional supervision.
Note that we cannot guarantee the decomposition results are
strictly view-independent or view-dependent, as this is not a
3D method. Our goal is to apply appropriate constraints to
approximate desired decomposition properties, while focusing
on optimizing the final LLVE performance with our approach.

Additionally, we introduce a dual-network structure to en-
force the consistency of feature representations across frames,
facilitating the consistent synthesis of decomposition in turn.
Two frames are used as inputs, and their features are propa-
gated within the designed Cross-Frame Interaction Module
(CFIM). CFIM differs from other similar architectures in the
restoration task [Lv et al., 2023] in terms of the fusion man-
ner. CFIM facilitates interaction through a combination of
long-range cross-frame attention computation and short-range
channel-spatial fusion, ensuring the accurate and comprehen-
sive merging of features from both global and local perspec-
tives. Moreover, CFIM selectively incorporates knowledge
from randomly chosen neighboring frames into the backbone
(i.e., the part without feature propagation) during training. In
this way, CFIM help the backbone in learning how to adap-
tively utilize knowledge from various cross-frame features,
resulting in a more robust backbone.

We performed experiments on various widely recognized
video enhancement datasets. Our results, both quantitative
and qualitative, consistently demonstrate the effectiveness and
state-of-the-art (SOTA) performance of our framework, as
shown in Fig. 1. Furthermore, we conducted a large-scale user
study involving 100 participants, which showcased the superi-
ority of our results in terms of human subjective perceptions.
In summary, our contributions are three-fold.

• We introduce a novel canonical form for LLVE that
predicts spatial-temporal consistent decomposition with
view-independent and view-dependent terms for normal-

light outputs. This decomposition strategy leverages
spatial-temporal correspondences and continuity.

• We design a new LLVE network that facilitates interac-
tion among the features of different frames and fits our
consistent decomposition strategy.

• We conduct extensive experiments on public datasets,
illustrating the effectiveness of our proposed framework.

2 Related Work
Low-Light Image Enhancement. To enhance the quality of
a low-light video, image enhancement methods can be applied
on a frame-by-frame basis. In recent years, learning-based
Low-Light Image Enhancement (LLIE) techniques [Jiang et
al., 2021; Yang et al., 2021] have made significant advance-
ments, with a primary focus on supervised approaches.
Low-Light Video Enhancement. In addition to the need for
LLIE, there is a growing demand for video enhancement, con-
sidering the widespread use of videos as a popular data format
on the internet and in photographic equipment. Various ap-
proaches have been proposed in this context [Chen et al., 2019;
Triantafyllidou et al., 2020; Ye et al., 2023; Lv et al., 2023;
Xu et al., 2023a; Fu et al., 2023a]. Liu et.al. [Liu et al., 2023]
and Liang et.al. [Liang et al., 2023] used prior event informa-
tion to learn enhancement mapping for brightening videos. Xu
et.al. [Xu et al., 2023a] designed a parametric 3D filter tai-
lored for enhancing and sharpening low-light videos. Recently,
Fu et.al. [Fu et al., 2023a] introduced a video enhancement
method called LAN, which iteratively refines illumination
and adaptively adjusts it. However, it’s important to note that
LAN lacks an explicit constraint for maintaining consistent
reflectance and illumination decomposition.

Several datasets for video enhancement, encompassing
both static [Chen et al., 2019; Jiang and Zheng, 2019;
Wang et al., 2019; Triantafyllidou et al., 2020] and dynamic
motions [Wang et al., 2021; Fu et al., 2023a], have been intro-
duced. In this paper, we introduce a novel LLVE method, de-
signed to enhance effects on these datasets. Our decomposition
method explicitly and consistently models view-dependent and
-independent for all frames.

3 Method
3.1 Decomposition Model
Motivation. According to the linear Lambertian model [Nar-
ihira et al., 2015], an observed image I can be formulated
as the element-wise product of its albedo and shading com-
ponent. Here, the albedo part is view-independent, captur-
ing the intrinsic appearance, while the shading component
is view-dependent. Inspired by this, when presented with an
image I (in this paper, we denote the low-light image as Id

and the normal-light image as In, with d and n serving as
subscript abbreviations), we assume its decomposition into
view-dependent part L and view-independent part R, as

I = L⊗R, (1)

where ⊗ denotes the element-wise multiplication, L and R
can be formulated for different channels, i.e., the channel
number is 3 for the sRGB domain. In this context, L mainly
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Figure 2: Our framework offers a comprehensive solution that explicitly and consistently models the view-independent and view-dependent
decomposition of enhanced normal-light outputs across different frames. To achieve this, we enforce consistent features in the view-independent
terms across different frames by leveraging computed correspondences in the temporal dimension of videos (O(Rt)). Simultaneously, we
ensure that the view-dependent terms exhibit a spatially continuous distribution (O(Lt)), aligning with real-world scenarios. Furthermore, our
network incorporates cross-frame interaction and simultaneous supervision of different frames within a video, encouraging consistent features
for these frames derived from one video. For a more detailed visual representation, please refer to Fig. 3.

describes the light intensity of objects, which is expected to
exhibit piece-wise continuity. On the other hand, R primarily
represents the physical properties of the objects, encompassing
textures and details observed in the data I . If we obtain L
and R in the normal-light conditions for a given input low-
light image, the target normal-light image can be acquired
accordingly. The common objective can be summarized as

O = ‖I −L⊗R‖+O(L) +O(R), (2)

where O(L) and O(R) denote the constraints for L and R
(we will introduce our designed new constraints in Sec. 3.2).
When applying this model to sequential video data, the objec-
tive related to the decomposition of video can be written as

Ov = Et=1:T [Orec,t +O(Lt) +O(Rt)],

Orec,t = ‖It −Lt ⊗Rt‖,
(3)

where E is the average operation, T is the number of frame,
and Lt/Rt is the decomposition output at the time index of t.
Compared with Equation (2), we need to simultaneously guar-
antee the decomposition quality and the temporal consistency.
Video Data Guide the Decomposition by Themselves. We
have discovered that video data itself can play a crucial role
in facilitating the achievement of our decomposition predic-
tions for normal-light outputs, thus obviating the need for
external priors typically used in low-light enhancement. By
establishing correspondences among different frames, we can
impose specific constraints: the Rt of each frame should faith-
fully represent the intrinsic texture of objects within the target
scene, remaining consistent regardless of changes in viewpoint.
Likewise, the Lt of each frame should exhibit the desired con-
tinuity consistent with real-world physical properties. For
further elaboration, please refer to Section 3.2.
Problem Formulation. We adopt the supervised setting.
Given a clip of low-light data Id,t, t ∈ [1, T ], there is a paired

normal-light data In,t, t ∈ [1, T ]. We aim to directly obtain
the decomposition of In,t from Id,t using network f , as

L̂n,t, R̂n,t = f(Id,t), În,t = L̂n,t ⊗ R̂n,t, (4)

where L̂n,t and R̂n,t are the estimated targets, and În,t is the
predicted enhancement result. Our framework is shown in
Fig. 2 that will be introduced in the following sections.

3.2 Spatial-Temporal Consistent Decomposition
Motivation. Video can be conceptualized as static/dynamic
3D multi-view data [Wang et al., 2023b; Wang et al., 2023a].
Prior research has demonstrated that the multi-view data it-
self can be harnessed to decompose the view-dependent and
view-independent elements, which respectively encapsulate
the intrinsic texture and view-altering illuminations [Wang et
al., 2023a]. Thus, once we establish correspondence relation-
ships among Id,t for all t, we can apply the view-independent
constraint to derive R̂n,t, as it represents the intrinsic proper-
ties of the target scene. Subsequently, obtaining L̂n,t becomes
achievable through utilizing the inherent reconstruction loss,
in conjunction with adherence to the continuity assumption.
Implementation of Correspondences. Obtaining correspon-
dences for Id,t, t ∈ [1, T ], can be a challenging task due
to the presence of various degradations, including visibility
issues and noise. Fortunately, we have access to correspond-
ing normal-light data, which significantly aids in establishing
these correspondences, as illustrated in Fig. 2, where Id,t and
In,t are pixel-wise aligned.

Given two frames In,t1 and In,t2 , correspondences can
be determined using the prediction network F [Edstedt et
al., 2023]. We assume the detection of M correspondences,
denoted as cm = (x1,m, y1,m, x2,m, y2,m),m ∈ [1,M ]. Each
correspondence, represented by cm, consists of four coordi-
nates: (x1,m, y1,m) represents the pixel coordinate in In,t1 ,
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Figure 3: The lightweight cross-frame interaction mechanism (CFIM)
propagates different frames’ features, along with cross-frame at-
tention and spatial-channel fusion. Cross-frame interaction can be
employed in the deep feature space of arbitrary single-image encoder-
decoder frameworks, and we choose U-Net here.

while (x2,m, y2,m) signifies the coordinate in In,t2 . Further-
more, each correspondence is associated with an uncertainty
value um, determined through a data-driven approach.
Constraints Formulation. To satisfy the constraint that the
corresponding pixels in Rt are matched, we have O(Rt) as

O(Rt1,t2) = E
m∈[1,M ]

um‖R̂n,t1 [x1,m, y1,m]−R̂n,t2 [x2,m, y2,m]‖.

(5)
The reconstruction item in Equation (3) can be denoted as

Orec,t = ‖In,t − L̂n,t ⊗ R̂n,t‖. (6)

Although the view-dependent part can be obtained via the
reconstruction constraint, We further incorporate a continuity
constraint to align with real-world properties. For a pixel in the
video frame, denoted as p, we introduce a spatial continuity
objective on the predicted L̂n,t as the following loss function

O(Lt) = Et[v
p
t × [∂xL̂n,t(p)]

2 + upt × [∂yL̂n,t(p)]
2], (7)

where ∂x and ∂y are partial derivatives in horizontal and ver-
tical directions, respectively. vpt and uqt are spatially-varying
smoothness weights, calculated as

vpt = (‖∂xU t(p)‖+ ∆)−1, up
t = (‖∂yU t(p)‖+ ∆)−1, (8)

where U t represents the logarithmic transformation of Id,t,
and ∆ is a small constant (set to 0.0001) used to avoid division
by zero. The diagram is shown in Fig. 2.

3.3 Dual Network for Consistent Decomposition
Overview and Motivation. To enhance the consistency
of decomposition, it’s crucial for various frames within a
video to mutually share features. By incorporating shared
features and simultaneous supervision, the features used
for synthesizing decomposition parameters across different
frames can exhibit greater consistency. When the video
is enhanced frame by frame without feature propagation,
the decomposition results tend to be suboptimal due to the
inherently challenging nature of maintaining consistency.
This observation is empirically validated in our ablation
study. Current LLVE methods primarily leverage multiple-
frame inputs to facilitate propagation [Wang et al., 2021;
Fu et al., 2023a]. However, these strategies come with a
notable cost in terms of aligning features.

In this paper, we introduce an efficient strategy for propa-
gation using a dual approach. This approach entails loading

two frames, specifically target frame Id,t1 and reference frame
Id,t2 (where Id,t2 can be randomly selected from the tempo-
ral neighbors of Id,t1 during training, and is set as the closest
frame of Id,t1 during inference), propagating features at the
deepest layer of the network through our cross-frame interac-
tion (as depicted in Fig. 3), and concurrently supervising these
dual outputs to guarantee consistency.
Feature Propagation via Spatial-varying Fusion. Suppose
the feature of Id,t1 and Id,t2 are denoted as fd,t1 and fd,t2
which is extracted from the same encoder ME in the network
f . To complete the propagation, we initially employ a long-
range cross-frame attention operation in the feature space. A
traditional attention operation [Vaswani et al., 2017] typically
consists of the query vector Q, the key vector K, and the
value vector V . The attention relationship is established using
A(Q,K,V ) = softmax(Q×K>)×V , where× represents
matrix multiplication. To enable cross-frame attention, we
process the feature via dual paths, as
f ′d,t1 = A(fd,t1

,fd,t1
,fd,t1

),f ′′d,t1 = A(fd,t1
,fd,t2

,fd,t2
),

f ′d,t2 = A(fd,t2
,fd,t2

,fd,t2
),f ′′d,t2 = A(fd,t2

,fd,t1
,fd,t1

).
(9)

Moreover, a short-range fusion operation is set as the refine-
ment operation to the propagation at both spatial and channel
levels. This can be written as

f̂d,t1
, f̂d,t2

= S(C((fd,t1
+ f ′d,t1 + f ′′d,t1)⊕

(fd,t2
+ f ′d,t2 + f ′′d,t2))),

(10)

where⊕ represents channel concatenation, C refers to the con-
volution network, and S signifies channel dimension splitting.
The decomposition results for Id,t1 and Id,t2 are obtained
by processing f̂d,t1 and f̂d,t2 through the decoder MD. We
have confirmed that our dual network with synchronous su-
pervision for the outputs of Id,t1 and Id,t2 can yield superior
decomposition and enhancement results compared to individ-
ual enhancement strategies.
The Role of the Cross-attention in CFIM. The cross-
attention mechanism facilitates information propagation
across different frames, aligning with our training procedure
that requires spatial consistency for R. Moreover, during
training, CFIM brings varying filtered features from randomly
selected reference images (Id,t2) into the backbone (i.e., the
part without feature propagation), where the input is the image
at the current time step Id,t1 . This setup enables CFIM to
guide the backbone in learning how to adaptively leverage
diverse knowledge from reference images, resulting in robust
and effective feature spaces within the backbone, without the
need for expensive temporal alignment. CFIM also leverages
cross-frame information when it complements backbone.

3.4 Overall Objective to Compute Loss Function
During the training, we find it is better to adopt the dual
training strategy, i.e., for each Id,t1 , we sample its neighboring
reference Id,t2 and constrain their outputs simultaneously.
Thus, the loss function can be written as
Ov = Et1,t2 [Orec,t1 +Orec,t2+

λ1(O(Lt1) +O(Lt2)) + λ2O(Rt1,t2)],
(11)

where λ1 and λ2 are the loss weights, and each loss term is
defined in Equation (5), Equation (6) and Equation (7).
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SDSD-indoor SDSD-outdoor SMID DID
Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
SNR 27.30 0.84 23.23 0.82 28.49 0.81 24.85 0.90
SMG 27.82 0.86 25.17 0.81 28.03 0.78 25.14 0.85
PairLLE 23.48 0.71 20.04 0.65 22.70 0.63 22.56 0.82
RetinexFormer 26.56 0.79 22.80 0.77 29.15 0.82 25.40 0.89
MBLLEN 22.17 0.66 21.41 0.63 22.67 0.68 24.22 0.86
SMID 24.84 0.72 23.30 0.67 24.78 0.72 22.28 0.84
SMOID 24.63 0.70 22.25 0.68 23.64 0.71 22.13 0.85
SDSDNet 26.81 0.75 23.08 0.71 26.03 0.75 22.52 0.81
DP3DF 27.63 0.74 23.85 0.73 27.19 0.76 22.39 0.88
StableLLVE 25.32 0.70 22.47 0.65 24.37 0.69 21.64 0.80
LLVE-SEG 26.19 0.77 24.09 0.72 25.31 0.74 23.85 0.82
LLVE-CFA 24.28 0.81 22.64 0.76 24.72 0.70 22.53 0.87
BLLRVE 26.02 0.74 23.50 0.71 26.15 0.73 23.25 0.81
VRGSS 27.81 0.76 24.28 0.75 27.84 0.78 24.51 0.87
ZRLLE-PQP 25.53 0.71 22.42 0.73 26.36 0.77 22.84 0.80
JDAE 26.19 0.74 23.37 0.76 26.45 0.76 23.53 0.82
Ours 28.93 0.88 26.32 0.82 29.60 0.82 30.10 0.93

Table 1: Quantitative comparison on SDSD, SMID, and DID datasets.
Our method performs the best consistently.

4 Experiments
4.1 Datasets
Our evaluation is conducted on four publicly available
datasets, which encompass a wide range of real-world videos
with diverse motion patterns and degradations, including
SMID [Chen et al., 2019], SDSD [Wang et al., 2021], DID [Fu
et al., 2023a], and DAVIS [Pont-Tuset et al., 2017].

4.2 Implementation Details
Experimental Details. We conducted experiments on all
datasets using the same network structure. T is set as
5 in the experiment. All modules were trained end-to-
end, with the learning rate initialized at 4e−4 for all lay-
ers, adapted by a cosine learning scheduler. The batch size
used was 4. Correspondences were computed using the
SOTA method DKM [Edstedt et al., 2023]. We used the
pre-trained weights of DKM during training because it is
designed for general indoor and outdoor scenes. Its gener-
alization ability is supported by its extensive training data and
state-of-the-art training strategy, as demonstrated in the origi-
nal DKM paper and subsequent studies [Zhu and Liu, 2023;
Edstedt et al., 2024] (through evaluations on unseen scenes).

4.3 Comparison and Baselines
We conducted a comprehensive comparison with SOTA LLVE
methods, including MBLLEN [Lv et al., 2018], SMID [Chen
et al., 2019], SMOID [Jiang and Zheng, 2019], SDSD-
Net [Wang et al., 2021], DP3DF [Xu et al., 2023a], Sta-
bleLLVE [Zhang et al., 2021], LLVE-SEG [Liu et al., 2023],
LLVE-CFA [Chhirolya et al., 2022], BLLRVE [Zhang et al.,
2024], VRGSS [Li et al., 2023], ZRLLE-PQP [Wang et al.,
2024], and JDAE [Shi et al., 2024]. We also compared our
method with SOTA LLIE methods for individual frames, in-
cluding SNR [Xu et al., 2022], SMG [Xu et al., 2023b], Pair-
LLE [Fu et al., 2023b], RetinexFormer [Cai et al., 2023]. All
methods were trained on each dataset using their respective
released code and hyper-parameters (e.g., the training epoch
that is set to guarantee convergence). Note that all baselines
are trained on our unified data split for a fair comparison. The

SNR SMG PairLLE RetinexFormer MBLLEN SMID
PSNR 20.69 20.18 19.57 21.79 18.63 20.51
SSIM 0.710 0.672 0.667 0.723 0.619 0.686

SMOID SDSDNet DP3DF StableLLVE LLVE-SEG Ours
PSNR 20.66 21.22 22.04 21.48 21.45 23.38
SSIM 0.697 0.716 0.749 0.732 0.715 0.782

Table 2: Quantitative comparison on the DAVIS dataset.

DAVIS SDSD-Indoor SDSD-Outdoor DID
Methods Short Long Short Long Short Long Short Long
SNR 0.027 0.070 0.017 0.060 0.022 0.046 0.025 0.068
RetinexFormer 0.029 0.072 0.018 0.061 0.024 0.043 0.024 0.065
SDSDNet 0.024 0.068 0.012 0.053 0.011 0.038 0.017 0.059
DP3DF 0.021 0.065 0.011 0.050 0.013 0.036 0.019 0.062
StableLLVE 0.023 0.067 0.016 0.055 0.019 0.042 0.023 0.066
LLVE-SEG 0.025 0.071 0.014 0.057 0.016 0.040 0.021 0.064
Ours-R 0.017 0.058 0.010 0.048 0.007 0.030 0.011 0.049
Ours 0.020 0.063 0.012 0.051 0.010 0.034 0.015 0.054

Table 3: The quantitative comparison in terms of short-term (“Short”)
and long-term (“Long”) temporal loss. “Ours-R” means the view-
independent term produced by ours.

splits slightly differ from those in baselines’ original papers,
so scores of baselines may vary from original papers.
Quantitative Result. In TABLE 1, we present the compar-
ative results with the selected baseline methods across the
SDSD, SMID, and DID datasets. The table reveals that our
approach consistently outperforms all other methods, as indi-
cated by the highest PSNR and SSIM scores on all datasets.
Notably, our scores exhibit a substantial lead over all others,
particularly on DID, which is a large-scale dynamic video
dataset. This superiority underscores the robust capability of
our method in enhancing real-world videos.

Furthermore, TABLE 2 provides a summary of the com-
parative results on DAVIS. In comparison to the degradation
synthesis strategy as presented in [Zhang et al., 2021], we have
extended our approach to include the degradation of a low-
light noise term. As a result, our synthesized data encompasses
dynamic scenes with pronounced invisibility and perturbations,
posing a considerable challenge. As illustrated in TABLE 2,
our method consistently yields the highest PSNR and SSIM
values, reaffirming the effectiveness of our approach.
Evaluation for Temporal Consistency. For video processing,
the performance of temporal consistency and stability should
be evaluated. Thus, we employ the short-term and long-term
temporal loss proposed in [Lai et al., 2018] for such tempo-
ral evaluation on different datasets. The wrapping operations
among frames are computed on the frames with the normal
light. Moreover, the long-term loss is computed every 10
frames. The results are shown in TABLE 3 (we normalize
the frame values into [0, 1]). Obviously, our results have
lower temporal loss than the baselines, e.g., higher temporal
consistency and stability. Specifically, we assess the tempo-
ral consistency of the view-independent term. The results
presented in TABLE 3 further validate the constancy.
Qualitative Result. Besides the quantitative comparison, we
present visual comparisons with the selected baselines. Fig. 4
showcases the visual comparisons of SDSD and SMID, while
Fig. 5 displays visual cases from DID and DAVIS. In gen-
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Input RetinexFormer SDSDNet DP3DF Ours GT

Figure 4: Visual comparisons on SDSD-indoor (top two rows), SDSD-outdoor (middle two rows), and SMID (bottom two rows). The results of
our proposed framework, i.e., “Ours”, demonstrate better visual perception with clearer visibility and more enhanced details.

Input RetinexFormer SDSDNet DP3DF Ours GT

Figure 5: Comparisons on DID (top two rows) and DAVIS (bottom two rows). “Ours” has better visibility and details.

eral, the results enhanced by our approach exhibit a more
natural appearance, including accurate color, well-balanced
brightness, enhanced contrast, and precise details. Our results
show fewer artifacts in regions with complex textures, and
they appear cleaner and sharper compared to results produced
by other methods. This distinction is particularly notable, as
most baselines perform well in simpler areas.

4.4 Ablation Study

We assess the critical components of our framework through
five ablation cases. (1) “w/o LR” that removes the constraint
on learning the view-independent part. (2) “w/o LL” where
the constraint on learning the view-dependent part is removed.
(3) “w/o C.F.”: we eliminate the cross-frame attention and
fusion in the network, resulting in each frame being enhanced
individually. (4) “with M.I.”: This refers to using multiple

SDSD-indoor SDSD-outdoor SMID DID
Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
w/o LR 25.78 0.77 23.49 0.75 26.37 0.76 27.54 0.86
w/o LL 26.89 0.80 24.19 0.78 27.74 0.79 27.72 0.89
w/o C.F. 25.18 0.82 24.22 0.77 26.75 0.77 25.60 0.85
with M.I. 26.21 0.84 25.36 0.80 28.42 0.79 28.33 0.88
w/o Dual 27.53 0.84 24.83 0.79 27.43 0.78 26.91 0.86
Full 28.93 0.88 26.32 0.82 29.60 0.82 30.10 0.93

Table 4: Ablation study on SDSD, SMID, and DID.

neighboring frames as input and employing the temporal align-
ment of deformable convolution. (5) “w/o Dual”: the dual
learning strategy is removed, meaning that the loss is applied
to only one frame in each iteration.

The results are summarized in TABLE 4. By comparing
“w/o LR” with the full setting (“Full”), we can clearly demon-
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Figure 6: The above pie charts summarize the results of our user study, and ours is preferred by participants.

strate the effectiveness of our proposed constraint for the view-
independent part. Similarly, the significant advantage of “Full”
over “w/o LL” highlights the significance of the proposed
continuity constraint. Furthermore, we can validate the im-
portance of mutually propagating features among different
frames to achieve spatial-temporal consistent decomposition
by comparing “w/o C.F.” with “Full”. Our proposed propaga-
tion strategy via the dual network structure proves to be more
effective than the common method of using multi-frame inputs
for propagation in videos, as seen in the comparison between
“w/o M.I.” and “Full”. The dual learning setting, where we
simultaneously supervise the two outputs of the dual network,
also proves to be valuable, as evidenced by the comparison
between “w/o Dual” and “Full”.

4.5 User Study
To prove the effectiveness of our proposed framework in terms
of human subjective evaluation, we conduct a large-scale user
study with 100 participants with varying ages and education
backgrounds, and balanced sex distribution. Following most
of the existing low-light enhancement works [Xu et al., 2023b;
Wang et al., 2023a], we employ the AB-test for the user study.
Participants should indicate their preference or select the same
option. They should make the decision according to the natural
brightness, contrast, and color of each frame; the rich details,
fewer artifacts, and the temporal consistency in the video.

Fig. 6 summarizes the user study’s results, and we can see
that ours gets more selections from participants over all the
baselines. This demonstrates that our method’s results are
more preferred by the human subjective perception.

4.6 The Effects of CFIM Structure
As previously discussed, the use of CFIM yields two key ben-
efits: it enhances the consistency of the image enhancement
process and strengthens the robustness of the backbone by pro-
viding the cross-attention mechanism with information from
random neighboring time steps. In this section, we conduct ex-
periments to show the effects of CFIM. The baseline consists
of a network that processes a single frame, while the compara-
tive setup integrates CFIM, where cross-attention is applied
between randomly selected pairs of frames during training.
The results of this comparison are presented in Table 5, which
show that models incorporating the CFIM structure signifi-
cantly outperform those without it, thereby demonstrating the
effectiveness of the CFIM approach. Besides, the ablation
results of the mentioned “w/o C.F.” (in Sec. 4.4) also support
the effects of CFIM in the decomposition.

4.7 Robustness Towards Correspondences
In this section, we explore the robustness of our framework
with respect to incorrect and insufficient correspondences. In

SDSD-indoor SDSD-outdoor SMID DID
Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
SNR 27.30 0.84 23.23 0.82 28.49 0.81 24.85 0.90
SNR+CFIM 28.15 0.86 24.57 0.83 29.24 0.82 26.03 0.91
R.F. 26.56 0.79 22.80 0.77 29.15 0.82 25.40 0.89
R.F.+CFIM 27.42 0.80 23.75 0.79 29.87 0.83 26.38 0.90

Table 5: The effects of CFIM. “R.F." denotes RetinexFormer.

SDSD-indoor SDSD-outdoor SMID DID
Methods PSNR SSIM PSNR SSIM PSNR SSIM PSNR SSIM
Ours with red. 27.97 0.84 25.73 0.80 29.12 0.79 28.86 0.89
Ours with per. 28.10 0.86 26.04 0.79 29.37 0.81 29.08 0.91
Ours 28.93 0.88 26.32 0.82 29.60 0.82 30.10 0.93

Table 6: The robustness of our framework towards correspondences.

the first experiment, we introduce random noise perturbations
to the computed correspondences, modifying the location val-
ues of the correspondences (the perturbation range is sampled
from −20 ∼ 20 pixels, which falls within the normal error
range of current correspondence estimation methods [Edstedt
et al., 2023]). As shown in Table 6, the results with perturbed
correspondences (denoted as “Ours with per.") show a per-
formance drop compared to the unperturbed case. However,
the performance remains superior to that of most SOTA base-
lines, indicating that our framework is robust to a certain of
erroneous correspondences, which are likely to occur in areas
with complex textures or other challenging scenarios. In the
second experiment, we address the issue of insufficient cor-
respondences, which can arise, for instance, in regions with
occlusions. To simulate this, we randomly reduce the number
of correspondences to 10% of the originally detected ones.
The results (“Ours with red.") are presented in Table 6, where
we observe that our method continues to outperform almost
all baselines in Table 1, albeit with a smaller margin than the
original setting. This suggests that even with fewer correspon-
dences, the remaining ones still provide valuable information
and they are in accord with the other constraints. This further
demonstrates the robustness of our method.

5 Conclusion

We introduce a novel LLVE framework that utilizes spatial-
temporal consistent decomposition and dual networks for mu-
tual feature propagation. It predicts the decomposition of
normal-light outputs without external priors, thanks to cross-
frame correspondences and practical constraint of the conti-
nuity. Extensive experiments on various datasets showcase
the framework’s superiority over SOTA approaches and the
impact of our designed components.
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