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Abstract

Several resource allocation settings involve agents
with unequal entitlements represented by weights.
We analyze weighted fair division from an asymp-
totic perspective: if m items are divided among n
agents whose utilities are independently sampled
from a probability distribution, when is it likely that
a fair allocation exist? We show that if the ratio be-
tween the weights is bounded, a weighted envy-free
allocation exists with high probability provided that
m = Q(nlogn/loglogn), generalizing a prior
unweighted result. For weighted proportionality,
we establish a sharp threshold of m = n/(1 — u)
for the transition from non-existence to existence,
where u € (0, 1) denotes the mean of the distribu-
tion. In addition, we prove that for two agents, a
weighted envy-free (and weighted proportional) al-
location is likely to exist if m = w(+/7), where r
denotes the ratio between the two weights.

1 Introduction

The fair allocation of scarce resources is a fundamental
problem in economics and has received substantial atten-
tion recently in computer science [Brams and Taylor, 1996;
Robertson and Webb, 1998; Moulin, 2019]. Research in fair
division has sought to quantify fairness via precise mathe-
matical definitions, among which two of the most impor-
tant are envy-freeness and proportionality. An allocation is
said to be envy-free if each agent values her own bundle
at least as much as any other agent’s bundle [Foley, 1967,
Varian, 1974]. Tt is called proportional if every agent values
her bundle at least 1/n of her value for the entire set of re-
sources, where n is the number of agents [Steinhaus, 1948].
When allocating indivisible items, like houses, cars, or mu-
sical instruments, an envy-free or proportional allocation may
not exist—this is the case, for example, when all items are
valuable and the number of items m is smaller than n. In
light of this, a line of work has focused on the question of
when a fair allocation is likely to exist if the agents’ utili-
ties for the items are drawn independently from a probabil-
ity distribution.! For instance, Manurangsi and Suksompong

'We survey this and another related line of work in Section 1.2.

[2020, 2021] showed that an envy-free allocation exists with
high probability? provided that m = Q(nlogn/loglogn).
Not only is this bound tight, but it can also be achieved by a
simple round-robin algorithm which lets the agents take turns
picking their favorite item from the remaining items until the
items run out. The same authors also proved that a propor-
tional allocation is likely to exist as long as m > n.

The aforementioned results, like most of the work in fair
division, assume that all agents have the same entitlement
to the resource. In recent years, a number of researchers
have explored a more general framework where agents may
have varying entitlements represented by weights [Farhadi
et al., 2019; Aziz et al., 2023; Chakraborty et al., 2024;
Hoefer et al., 2024; Springer et al., 2024]. This broader
framework allows us to model scenarios such as distribut-
ing resources among communities, where larger communities
naturally deserve a larger portion of the resource, as well as
dividing inheritance, where closer relatives typically receive a
greater share of the bequest. Fortunately, both proportionality
and envy-freeness can be extended to the weighted setting in
an intuitive manner. As an example, if there are three agents
with weights 1, 3, and 6, then weighted proportionality re-
quires the first agent to receive at least 1/10 of her value for
the entire set of items, while weighted envy-freeness stipu-
lates that the second agent should not value the third agent’s
bundle more than twice the value of her own bundle.

In addition to its inherent motivation, interest in weighted
fair division stems from the fact that it exhibits several dif-
ferences and brings a range of new challenges compared
to its unweighted counterpart. For instance, in the absence
of weights, it is trivial to show that the round-robin algo-
rithm guarantees envy-freeness up to one item (EF1), mean-
ing that if an agent envies another agent, then the envy dis-
appears upon removing some item in the latter agent’s bun-
dle. By contrast, while it is possible to extend the round-
robin algorithm to incorporate weights and prove that the
resulting algorithm ensures weighted EF1 (WEFI), doing
so is far less straightforward [Chakraborty et al., 2021a;
Wu et al., 2023]. In this paper, we shall analyze weighted
fair division from an asymptotic perspective. Do the same re-
lations between m and n continue to guarantee the existence
of fair allocations when agents may have different weights?

“That is, the probability that it exists converges to 1 as n — oco.



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

1.1 Our Results

We assume that each agent’s utility for each item is drawn
independently from a non-atomic distribution D over [0, 1].
For most results, we also assume that D is PDF-bounded, that
is, its probability distribution function is bounded between o
and (3 throughout [0, 1] for some constants «, 3 > 0. All of
our existence results come with polynomial-time algorithms.

In Sections 3 and 4, we consider the setting where the ra-
tio between the weights is bounded. In Section 3, we show
that if m = Q(nlogn/loglogn), then the weighted pick-
ing sequence algorithm of Chakraborty et al. [2021a] pro-
duces a weighted envy-free allocation with high probabil-
ity; this generalizes the corresponding unweighted result by
Manurangsi and Suksompong [2021]. Along the way, we
provide an alternative proof that the allocation returned by
this algorithm always satisfies WEF1; this proof is arguably
simpler than existing proofs [Chakraborty et al., 2021a;
Wu et al., 2023]. In Section 4, we turn our attention to
weighted proportionality and prove that, interestingly, the
transition from non-existence to existence depends on the
mean of the distribution D: it occurs at m = n/(1 — p),
where p € (0, 1) denotes the mean of D. This implies that
achieving (weighted) proportionality is more difficult than in
the unweighted setting, for which the threshold is m = n
[Manurangsi and Suksompong, 2021].

In Section 5, we focus on the case of two agents but al-
low the ratio » > 1 between the agents’ weights to grow; in
this case, weighted envy-freeness and weighted proportion-
ality are equivalent. We show that if m = w(y/7), then the
probability that a weighted envy-free (and therefore weighted
proportional) allocation exists approaches 1 as r — co. We
also establish the tightness of this bound.

1.2 Further Related Work

The asymptotic analysis of fair division was initiated by
Dickerson et al. [2014], who showed that an envy-free al-
location is likely to exist if m = Q(nlogn), but unlikely
to exist when m = n + o(n). Manurangsi and Suksom-
pong [2020] strengthened these results by exhibiting that ex-
istence is likely as long as m > 2n if m is divisible by n,
but unlikely even when m = O(nlogn/loglogn) if m is
not “almost divisible” by n. The gap in the non-divisible
case was closed by Manurangsi and Suksompong [2021],
who demonstrated the existence with high probability when
m = Q(nlogn/loglogn) via the round-robin algorithm.
The same authors also proved that a proportional allocation
is likely to exist when m > n, generalizing earlier results
by Suksompong [2016] and Amanatidis er al. [2017]. Manu-
rangsi and Suksompong [2017] studied envy-freeness when
the agents are partitioned into groups, while Yokoyama and
Igarashi [2025] performed an asymptotic analysis of “class
envy-free” matchings. Beyond envy-freeness and propor-
tionality, Kurokawa et al. [2016] and Farhadi er al. [2019]
considered maximin share fairness—a weaker notion than
proportionality—the latter authors also allowing unequal
entitlements. Bai and Golz [2022] considered an exten-
sion where different agents may have different distributions,
whereas Bai et al. [2022] investigated a “smoothed utility
model” in which each agent has a base utility for each item

and this utility is “boosted” with some probability. Benade
et al. [2024] examined a stochastic model where the agents’
utility functions can be non-additive. Manurangsi and Suk-
sompong [2025] conducted an asymptotic analysis of fair di-
vision for chores (i.e., items that yield negative utilities).

While weighted fair allocation has previously been studied
for divisible items [Segal-Halevi, 2019; Crew et al., 2020;
Cseh and Fleiner, 2020], it has been intensively examined
in the context of indivisible items over the last few years.
Several authors have proposed and studied variants of envy-
freeness, proportionality, and maximin share in the setting
with entitlements [Farhadi et al., 2019; Aziz et al., 2020;
Babaioff et al., 2021; Chakraborty et al., 2021b; Wu et al.,
2023; Springer et al., 2024; Montanari et al., 2025]. For an
extensive overview of weighted fair division, we refer to the
survey by Suksompong [2025].

2 Preliminaries

Let [k] :={1,2,..., k} for any positive integer k. We want to
allocate a set M = [m)] of indivisible items among a set N =
[n] of agents. Each agent i € N has a utility u;(g) > 0 for
eachitem g € M, and a positive weight w; € R< . Let wyax,
Wmin, and W denote the maximum, minimum, and sum of
the agents’ weights, respectively. We assume that utilities are
additive, i.e., u;(S) = > cgui(g) for any subset S C M.
We refer to any subset of items as a bundle. An allocation
A = (A1, As, ..., A,) is a partition of M into n bundles,
where A; represents the bundle allocated to agent i € N.

We consider a number of fairness notions. An allocation A
is said to be weighted envy-free (WEF) if for every pair of

agents 7,j € N, it holds that ( D) o> 1(‘4)

laxation of WEEF, an allocation A is wetghted envy-free up
to one item (WEF1) if for all i,j € N with A; # (), there

exists an item g € A; such that “‘(A) > ul(A \{‘7}), An

allocation A is said to be weighted propomonal ( WPROP ) if
ui(A;) > 3 -ui(M)foralli € N. Note that every allocation
that satisﬁes WEF also satisfies WPROP.

For each agent ¢« € N and each item g € M, we assume
that the utility u;(g) is drawn independently from a probabil-
ity distribution D over [0, 1]. A distribution is non-atomic if it
assigns zero probability to any single point. Let fp denote the
probability density function (PDF) of D. For o, 5 > 0, we
say that a distribution D is («, 8)-PDF-bounded if it is non-
atomic and a < fp(z) < B for all z € [0,1] [Manurangsi
and Suksompong, 2021]. A distribution D is PDF-bounded
if it is («, 8)-PDF-bounded for some constants «, 3 > 0.
A random event is said to occur with high probability if its
probability approaches 1 as n — oo. We use log to denote
the natural logarithm (with base e).

We now state two lemmas that will be useful for our pur-
poses. In our analysis of the weighted picking sequence algo-
rithm, we will apply Abel’s summation formula.

. As a re-

Lemma 1 (Abel’s summation formula). For any sequences of
real numbers (a1,as, ..., a,) and (b1,ba, ..., by), we have

n n n—1 7
S b a3 bt S (< S b> |
=1 =1 =1 =1
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Figure 1: An example of the picks by agents 7 and j in the proof of Proposition 1

The following Chernoff bound is a standard concentration
bound which will be used when we analyze the asymptotic
existence of WPROP allocations and the case of two agents.

Lemma 2 (Chernoff bound). Let X1, Xo,..., Xy be inde-
pendent random variables such that X; € [0, 1] foralli € [d),

and let X = 2?21 X;. Then, for any § > 0, we have

1 Pr[X > (1+ O)E[X]] < exp (— 25 E[X]), and

243

2. Pr[X < (1 - 0)E[X]] < exp (-%E[X]).

3 Weighted Envy-Freeness

In this section, we consider weighted envy-freeness. We pro-
vide an alternative proof that the weighted picking sequence
algorithm of Chakraborty er al. [2021a] always outputs a
WEF]1 allocation. Our proof also lends itself to the asymp-
totic analysis of WEF, which we present as Theorem 1.

3.1 Alternative Proof of WEF1

We first describe the weighted picking sequence algorithm
(Algorithm 1). Define a step as an iteration of the while-loop
(lines 3-8). Here, t; represents the number of items that agent
1 has picked so far, and in each step, an agent ¢ who minimizes
t;/w; picks her favorite item from the remaining items.

Algorithm 1 Weighted Picking Sequence Algorithm

Proposition 1 ([Chakraborty et al., 2021al). The allocation
returned by Algorithm 1 is WEF 1.

Proof. Consider any two distinct agents 4, j € M it suffices
to show that ¢ is WEF1 towards j. Observe that each of ¢ and
7 picks her first item before the other agent picks her second
1tem Let 71 + 1 be the number of items that j _picks before

step s*(2), and denote these items by g7, g1 LY P 791,71

Note that g1 may be picked either before or after g.

Foreach k € [t;(m)—1]\{1}, let 7, be the number of items
that agent j picks between steps s°(k) and s°(k + 1), and for
L€ [, let gi , be the /-th item picked by agent j within this
interval. Let 74, (,,) denote the number of items that j picks
after step s*(t;(m)), and for £ € [ry,(m)], let gfi(m)’e be the
{-th item picked by j within this interval. Note that 7, may

be zero for some k. See Figure 1 for an illustration.
We claim that for every k € [t;(m)],

k
L= ok M)

w ’LUi

Indeed, if 7, > 1, then (1) holds since agent j is allowed to

1
Ika:O’fork’leehave%
J

pick item g, _ . =
k—1
k=1 Tk < k=1
W WU wi

Zk’ 17

0 < -, while for & > 2 we have

from the property for k£ — 1, which implies that

k—1

Require: N, M, (u;(g))ien,gens (Wi)ien
1: A; < Dandt; < Oforalli € N
2: MO — M
3: while My # 0 do
4: 0 argminieN;—ii
5. g" ¢+ argmax ¢ g ui-(9)
6: Ajps +— A U {g*}
7. My <+ Mo\ {g*}
9

: return (A1, Ay, ..., Ap)

Denote by t;(s) the number of times agent ¢ has picked
an item up to (and including) step s. For each ¢ € N and
each k € [t;(m)], let s°(k) be the step where agent i picks
her k-th item, and denote this item by g;; for convenience,
let s°(0) = 0. Finally, let A = (A, As,...,A,) be the
allocation returned by Algorithm 1.

Chakraborty er al. [2021a] gave a rather long algebraic
proof that Algorithm 1 always returns a WEF1 allocation. Wu
et al. [2023] provided an alternative proof involving integrals.
We present a relatively succinct algebraic proof of this state-
ment via Abel’s summation formula.

/=1 Tk’ < k—1
w —  w;

< £ Thus, (1) holds for all € [t i(m)}

Foreach k € [t;(m)], letn, =1 — Ze ) ui (g} o) when

ui(g},)
T > 1,and g = 1 when 7, = 0. Slnce ul(gk) > ul(gi 0)
for all £ € [r;], we have g, > 1 — 2 . 73, for all k. Hence,

(1) implies that Zk’:l e >k — ﬁj Zk’:l TR > 0 for all

k € [t;(m)]. This means that
w;
wi( A7) = == - ui( 45\ {g1})
m ti(m) 7y ti(m)
D o 2 Dok = D uilgh)
k=1 7 k=1 t=1 k=1
‘ ti(m)
k=1
ti(m)—1 . k
+ Z (ws(gh) = ws(ghsn)) Y | 20,

k=1
where the last equality follows from Lemma 1 and the in-

equality from the fact that u;(g}) > ui(gp,,) for every k.
Hence, agent ¢ is WEF1 towards agent j, as desired.
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3.2 Asymptotic Result

We now present the main result of this section.

Theorem 1. Suppose that D is PDF-bounded, and let
C > 1 be an arbitrary constant. For any weight vec-
tor (wy,wa, ..., wy,) such that Wyax /Wmin < C, if m =
Q (nlogn/loglogn), then Algorithm I produces a WEF al-
location with high probability.

Before we prove Theorem 1, we introduce some notation.
For any ¢ € (0, 1], denote by D<,. the conditional distribution
of D on [0, ¢]. For any positive integer k, denote by D™2x(%)
the distribution of the maximum of k independent random
variables generated by D.

Fix any two distinct agents 7, 7 € N. We will use the same
notation as in Section 3.1. Let X{ = u;(g?). Foreach k €
[ti(m)] and € € [r], let X, = u;(g},) and X}, , = ui(g]. ,)-
Lemma A.1 of Manurangsi and Suksompong [2021] yields
the following lemma, which gives a convenient description
of the distributions of X}, and X} ,.

Lemma 3 ([Manurangsi and Suksompong, 20211). Let X, =
L Then, (Xi) e, (m)) and (X3 o) ket (m)), ee[ry] can be gen-
erated according to the following process:

o Foreach k € [t;(m)), let X}, ~ D?‘”Z("i Sl(k)+1)
— Foreach l € [1i], let Xk:,z ~ D<x,.

Intuitively, before agent i picks the item g}, corresponding
to X, there are m — s*(k) + 1 items remaining, and 4’s util-
ity for each of them cannot exceed her utility for the item
gi_, corresponding to Xj_1. Moreover, i’s utility for each
item gi,’ ¢ corresponding to X ,;e picked by j cannot exceed
her utility for g%, but otherwise j’s picks are independent of
1’s valuations.

We now proceed to the proof of Theorem 1.

Proof of Theorem 1. Suppose that D is («, 3)-PDF-bounded
and m > 103 - C - nlogn/loglog n, where 3 := 3/a > 1.
Recall that for any k € [t;(m)], we defined

Tk J

X0

w; X
J =k

wi “z(giz) _ w;
wj = Uz‘(gi)
Foreach k, let ), = 1 — %
rithm, X > X,JM holds for all k € [t;(m)] and ¢ € [7%], so
M, > 0y, for all k. From (1), we obtain that for any %,

Zék/—k——sz>0 (2)

k=1 Wi 2y
By Lemma 1 combined with (2) and the fact that X, > X4
for every k, we have

=1

- T.. By description of the algo-

ti(m)
%, 0
k=1

ti(m) ti(m)—1

k
= Xti(m/) Z ek + Z (Xk - Xk+1) Z 91« > 0.
k=1 k=1

k'=1

From this, we get
i wj j
wi(A) = — s (45) = Y KXo -e — = - Xq
- j
t; (m)

w; ;
E Xy -y —— (by X{ <1)
— wj
k=1

Y

>3 Xy (e — 0k) — —

Our goal is to demonstrate that, with high probability,
SO X (e — Ok) — wr > 0 holds. To this end, we show
that w1th high probability, there exists a point in the picking
sequence where agent ¢ receives an item of sufficiently high
value and has accumulated enough advantage over agent j.
This is formalized in the following lemma.

Lemma 4. Suppose that D is («, )-PDF-bounded, and m >
10%3-C -nlog n/loglogn. For any distinct agentsi,j € N,
there exists a positive integer T' such that

(a) ti(m) >T >1;

(b) Pr[Xr>1]=1-0(2s); and

@ Pe| il s (1-3) 22 =1-0 ()

We defer the proof of Lemma 4 to the full version of our
paper [Manurangsi et al., 2025]. Using this lemma, we will
show that with probability at least 1—O (1/m?), agent i does
not envy agent j. We have

ti(m)

ZXk (e — ) —%

ul(Al) ~ 7’&1

w;
X (e — Op) — —
1 wj
0y, for any k, and (a) in Lemma 4)

L\ w;
Z (= Ok) — —

k—1 Wy

(by X1 > X5 >

—mzz(

Wi k21 =

MH

>

I\/Tlr

(by Xx > 0 and ny,

s 2> X)

ws T 7% X]_Z n 0
> v 1— 50 =
2 22\ X ) T
(with probability at least 1 — O (1/m?), by (b) in Lemma 4)
W Wy
> g _ Wi
- 2’U.)j wj

(with probability at least 1 —
=0.
Finally, by the union bound over all pairs of agents ¢, j and
the fact that m > n, we have that the probability that the
allocation A is not WEF is at most n? - O(1/m?) = O(1/n).
This completes the proof of the theorem. O

0] (1/m3), by (¢) in Lemma 4)
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4 Weighted Proportionality

In this section, we turn our attention to weighted proportion-
ality, and establish a sharp threshold for the transition from
non-existence to existence with respect to this notion.

We start with the non-existence.

Theorem 2. Suppose that D is a non-atomic distribution with
mean p € (0, 1), and let € € (0,1/2) be a constant. For any
n, there exists a weight vector (wy, wa, . . . ,wy,) with ﬁf}mdx <

min

% such that for any m < (1 — 5) : ﬁ with high

(1-p
probability, no WPROP allocation exists.

Proof. When n > m, at least one agent receives no item.
Since D is non-atomic, with probability 1, all agents have
positive utilities for all items, in which case no WPROP allo-

cation exists. We thus assume thatn < m < (1 —¢) - -2~

1—p
Let 0 = (1 — p)e < 1/2. For sufficiently large n, we have
[on] > 2. Assume that there are [(1 — §)n] agents with
weight §/[(1 — 0)n| each (called agents of the “first type”),
and the remaining | én | agents have weight (1—¢)/[dn| each
(called agents of the “second type”). Note that the sum of all
weights is §+(1—09) = 1, and the ratio between the maximum
and minimum weights is
Wmax 1 —0 [(1—20)n]
Woin [on] 0
1 on_2 2
“onj2 5§ 62 (1—p)2e?’
Our choice of ¢ implies that (1 — §)(1 — pe) > 1 —§ —
pe =1 —e. Rearranging this yields 1= — 1< > 0. Let

— 1 (lzpe
T=3 1. T 1=

Note that E [u;(M)] = mu for each i € N. Applying

Lemma 2, we get
2
anuw>s<1vwWASema(VgW).

By the union bound, the probability that there exists ¢ € N
with u; (M) < (1 — y)my is at most n - exp (—y*mypu/2).
Since m > n, we have n - exp (—y*mp/2) < n -
exp (—v*ny/2), which approaches 0 as n — oc. Thus, with
high probability, u; (M) > (1—v)mu holds forall: € N. We
assume for the remainder of the proof that this event holds.
For an allocation to satisfy WPROP, each agent of the first
type must receive at least one item. Each agent of the second
type, given her weight of Lla_n 7> must receive a bundle that she

) by the previous sentence, v > 0.

values at least ﬂé_‘j (1—~)mu. Since u;(g) < 1foralli € N
and g € M, for each agent 1 of the second type, her bundle

A; must contain at least W (1 — v)mpu items. Therefore,

for a WPROP allocation to exist, the total number of items
must be at least [(1 — §)n] + [on] - \_1671(] (1 - ry)mﬂ >

(1=6) (n+ (1 —y)mp).

u—&(i:§+u—7m)m

> (1-9) G+u 7)

:(1—6)(7—&—115>m>m,

a contradiction. We therefore conclude that, with high proba-
bility, no WPROP allocation exists. O

Next, we exhibit the asymptotic existence of weighted pro-
portional allocations.

Theorem 3. Suppose that D is a PDF-bounded distribution
with mean p € (0,1), and let C > 1 and ¢ € (0,1) be

arbitrary constants. For any weight vector (w1, ws, . .., wy,)
with mex < C and any m = (1 + ¢€) - i, a WPROP

allocatlon exists with high probability. Moreover, such an
allocation can be found in polynomial time.

As WEF is stronger than WPROP, Theorem 1 already im-
plies that a WPROP allocation exists with high probability
when m = Q(nlogn/loglogn). Hence, to prove The-
orem 3, we may restrict our attention to the case m =
O(nlogn). Let D be («,3)-PDF-bounded, and let 7 =

1_Wand5:(1+m'1_T“)7—1-N0tethat

7 > 0 and 6 > O for sufficiently large n.
Since E[u;(M)] = mpu for all i
apply Lemma 2 to get that Pr[u;(M) >

€ N, we can
(1+0)mu] <
exp ( 622 15 ) By the union bound and the assumption that

n

m > (L +¢€)- %, = n, with high probability, we have
u; (M) < (1+0)mu for all agents i € N. We assume for the
remainder of this discussion that this event holds.

Recall that W = 3.\ w;. Foreach i € N, define s; =

[(1+ 6)% - L] If we can construct an allocation A where
every agent ¢ receives at least s; items that she values at least
7 each, then with high probability, u;(4;) > s; -7 > 3 -
(1 +0)mp > - ui(M) for all i € N, implying that the
allocation A satisfies WPROP.

Lets = ($1,52,...,50). Asm > (14¢) -

Sos<y (4 Er g

ieN ieN
:(1+5).@+n
T
I—p
146
s+ ) T +1+5 "
1- 1-
=1+ R o +7'um m.
1+4+¢ I 1+e

This calculation shows that the total number of required items
does not exceed the number of available items.

To find a desired allocation, we use a matching-based ap-
proach, which extends an algorithm of Manurangsi and Suk-
sompong [2020] to the weighted setting. Before describing
the algorithm, we define a generalized notion of a matching
that allows vertices on one side to be matched multiple times.

Definition 1. Let G = (L U R, E) be a bipartite graph with
|L| = n and |R| = m. For a vector of positive integers
8 =(s1,82,...,8n) with Y | s; < m, an s-matching in G
isaset of edges ' C F such that each vertexi € L is incident
to at most s; edges in F' and each vertex in R is incident to at



Preprint — [JCAI 2025: This is the accepted version made available for conference attendees.
Do not cite. The final version will appear in the IJCAI 2025 proceedings.

most one edge in F. An s-matching is called left-saturating
if every vertex © € L is incident to exactly s; edges in the
matching.

Algorithm 2 Matching-Based Algorithm for WPROP

Require: N, M, (u;(9))ieN,gem> S = (Si)ien., threshold 7
1: fori e N do
b Mxr(i) = {j € M |ui(j) = 7}
3: Let G>, = (N, M, E>;) be the bipartite graph where
(t,j) € E>; if and only if j € M>,(1).
4: if G>, contains a left-saturating s-matching then
5:  return any left-saturating s-matching in G'>, (with
the unmatched items allocated arbitrarily)
6: else
return NULL

~

Our algorithm, described as Algorithm 2, first constructs a
bipartite graph G'>, where an edge exists between an agent
and an item if and only if the agent values the item at least
the threshold 7. The algorithm then determines whether a
left-saturating s-matching exists in this graph. If so, it simply
assigns each matched item to the agent matched with it, and
any unmatched item can be assigned arbitrarily. Note that
determining whether a left-saturating s-matching exists, and
finding one in case it does, can be done in polynomial time by
creating s; copies of each agent ¢ and computing a maximum
matching in the resulting graph.

We now state a lemma that establishes the existence of a
left-saturating s-matching.

Lemma 5. Suppose that D is («, 3)-PDF-bounded, there
exists a constant C' > 1 such that 3= < C, and m =

O(nlogn). Sett =1 — W in Algorithm 2. Then,
with high probability, Algorithm 2 outputs a left-saturating

s-matching.

From our earlier discussion, Lemma 5 implies that a
WPROP allocation exists (and can be found in polynomial
time) with high probability, thereby yielding Theorem 3.

To prove Lemma 5, we first recall basic results from match-
ing theory. For a bipartite graph G = (LUR, E)) and a subset
Y C L, denote by N (Y') the set of vertices in R that are
adjacent to at least one vertex in Y. A matching in a graph
is a set of edges no two of which share a vertex. A matching
is called left-saturating if every vertex in L is incident to ex-
actly one edge in the matching. We now state Hall’s marriage
theorem, a classical result in matching theory.

Lemma 6 (Hall’s marriage theorem). Let G = (L U R, E)
be a bipartite graph with |L| < |R|. If |Ng(Y)| > |Y| for all
subsets Y C L, there exists a left-saturating matching in G.

To extend this result to our setting with s-matchings, we
construct a new bipartite graph G’ from G = (L U R, E) by
replacing each vertex ¢ € L with s; copies, where each copy
is connected to all neighbors of ¢ in G. This immediately
leads to the following proposition.

Proposition 2. Letr G = (L U R, E) be a bipartite graph
with n = |L| < |R| = m. For any vector of positive
integers s = (s1,82,...,8,) such that > s; < m, if

ING(Y)| > > ,cy siforall subsets Y C L, then there exists
a left-saturating s-matching in G.

Next, we recall the Erdds-Rényi random bipartite graph
model [Erd6s and Rényi, 1964]. For any p € [0,1], let
G(|L|,|R|,p) denote the probability distribution over bipar-
tite graphs with vertex sets L and R such that for each pair
of vertices ¢ € L and j € R, the edge (4,;) exists inde-
pendently with probability p. Let spmax = max;en s; and
Smin = Min;ey ;. The probability that no left-saturating
s-matching exists can be upper-bounded by the probability
that there exists a subset violating the condition in Propo-
sition 2. Based on this insight, we establish the following
lemma, whose proof is deferred to the full version of our pa-
per [Manurangsi ef al., 2025].

Lemma 7. Let B > 1 be a constant, and let G be a bi-
partite graph sampled from G(n,m,p) with n < m and
83”% < p < 1. For any vector of positive integers s =
(81,82, .., 8n) such that Z i—1 Si < mand 2= < B, with
high probabzlzty G contains a left-saturating s matchzng

We can now complete the proof of Lemma 5.

Proof of Lemma 5. To apply Lemma 7, we verify two con-
ditions: firstly, that Smx < C' + 1, and secondly, that the
graph G'>, follows the “Erdss- Reny1 random bipartite graph
model. Recall that s; = [(1 + 0)%: - 2. Since Spin > 1

and ¥max < (' we have
Wmin

Smax (1+6)%@+1
Smin Smin
(1 +6)pes . 1
< , w+1<C+1
(1+ 0) B - £
Moreover, since D is («,3)-PDF-bounded, the events

{u;(3) > 7} occur independently for all pairs (i,j) €
N x M, each with probability

8(C +1)logm

an

8(C +1)logm
an n ’

Priu;(j) > 7] =Pr|u;(j) > 1—

8(C'+1)logm

Therefore, by setting B = C' + 1 in Lemma 7, we conclude
that the graph G'> - contains a left-saturating s-matching with
high probability, as desired. O

5 Two Agents

In this section, we focus on the case of n = 2 agents—note
that WEF and WPROP are equivalent in this case. We let
r = wg/w; > 1 and consider the asymptotics as r — oo.
Our main result is that if the number of items grows asymp-
totically faster than /7, a WEF allocation is likely to exist.

Theorem 4. Suppose that there are two agents with weights
(w1, wy) where v := wo/wy; > 1, and that D is PDF-
bounded. If m = w(,\/T), then a WEF allocation exists with
probability approaching 1 as r — 0o, and such an allocation
can be found in polynomial time. The same holds for WPROP.
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Proof. Since WEF and WPROP are equivalent for n = 2, it
suffices to focus on WPROP. Suppose that D is («, 3)-PDF-
bounded with mean p € (0, 1).

We present an allocation algorithm. Set p = 2\2’% €

(0, 1), and define 7 as the threshold such that Pr[X < 7] =p
for X ~ D. The algorithm allocates each item whose value
to agent 2 is less than 7 to agent 1, and the remaining items to
agent 2. Clearly, this algorithm runs in polynomial time. Let
A = (A1, As) denote the resulting allocation. To show that
A is WPROP with probability 1 — o(1), it suffices to prove
that each of the two inequalities (r+1)uq (A1) < w1 (M) and
(r 4+ 1)u2(A1) > ua (M) holds with probability o(1).

First, consider agent 1. For any sufficiently large r, we
have p(r + 1) > 3. When this holds, the union bound yields

PI‘[(T -+ 1)U1(A1) < Ul(M”

<Pr [ul(M) > gm,u} +Pr {ul(Al) < ;mp,u] )
We may bound each term above via Lemma 2. In partic-
ular, uq (M) is a sum of m independent random variables
drawn from D, so E[u; (M)] = mu; Lemma 2 then implies
that Prluy (M) > 2mpu] < exp (—15mpu) = o(1). Mean-
while, since each item is independently allocated to agent 1
with probability p, u1(A1) is a sum of independent random
variables with E[u;(A1)] = mppu, so Lemma 2 implies that
Pr[u (A1) < $mpp] < exp (—gmpp), which is o(1) since
m = w(y/r). Combining these, we get Pr[(r + 1)u;(41) <
uy(M)] = o(1), as desired.
Next, consider agent 2. By the union bound, we have

Pr{(r + Dug(Ay) > ug(M)]

1 mu
<P M) < = P A) > ——|.
o i< i 25
For the first term, we can again use Lemma 2 in a simi-
lar way as above to conclude that Pr [UQ (M) < %m,u] <

exp (—gmpu) = o(1).
We now focus on the second term Pr {uz(Al) > %} .

For every item g € M, define X, to be a random vari-
able such that X, = 1if g € Ay, and X; = 0 other-
wise. Note that each X is an independent random variable
with E[X,] = p. Since D is («, 3)-PDF-bounded, we have

ar < Pr[X < 7] =p,andso 7 < 2\/% By definition of

the allocation, every item g € A; satisfies us(g) < 7. There-
fore, we have uz(A1) = > 4, u2(9) < 73 Xy <

3 3 —
2\/% > gen Xg- Observe that 5E {deM Xg} =smp =
Imap m

T S AT since « < 1 and p¢ < 1. Using this inequality

and the bound on uy(A;), we obtain

pr{u2(141)>m“} < Pr ZX9> il

Q(T + 1) geM VT + 1

<Pr ZX9>21E > X,

geEM geM

1 1
< exp _EE g;/[Xg = exp (—lomp> ,

where we use Lemma 2 for the last inequality. This probabil-
ity is o(1) since m = w(+/T).

Hence, combining our bounds for both agents, we conclude
that A is WPROP with probability 1 — o(1). O

Next, we establish the tightness of the bound in Theorem 4.
In particular, the following theorem implies that the prob-
ability that no WEF allocation exists is at least constant if
m = O(4/r), and approaches 1 if m = o(\/r).

Theorem S. Suppose that there are two agents with weights
(w1, wq) where v := wo/wy; > 1, and that D is PDF-
bounded. With probability at least 1 — O(m?/r), no WEF
allocation exists. The same holds for WPROP.

Proof. Since WEF and WPROP are equivalent for the case of
n = 2, it suffices to focus on WEF. Suppose that D is («, §)-
PDF-bounded, and let Y = minge as u2(g). If 1—Bm/r <0,
then 1 — fm?/r <0 < Pr[Y > m/r]. Else, we have

Pr [Y > %} = H Pr [uz(g) > %}
eM

m 2
>(1-8-2) z1-8-2,
r r

where we use the («, 3)-PDF-boundedness of D for the first
inequality and Bernoulli’s inequality for the second.

When Y > m/r, since any WEF allocation (A, A3) must

give at least one item to agent 1, we have 7-uz(A;) > r-Y >

m > uz(Asg). This means that no WEF allocation exists. [J

6 Conclusion and Future Work

In conclusion, our work analyzes weighted fair division from
an asymptotic perspective and establishes tight or asymptoti-
cally tight bounds on the existence of weighted envy-free and
weighted proportional allocations. Notably, a larger number
of items is required for weighted proportionality than in the
unweighted setting, and this number depends on the mean of
the distribution from which the utilities are drawn. We also
investigated the relationship between the number of items and
the weight ratio in the case of two agents.

Since we have considered settings where the weight ratio
is bounded and where the number of agents is bounded sepa-
rately, a natural next step is to obtain a more complete under-
standing when both parameters are allowed to grow. For ex-
ample, if all but one agents have the same (fixed) weight while
the last agent’s weight grows, what is the required number of
items in terms of the number of agents and the last agent’s
weight? Another interesting direction is to extend our results
to a more general model where the items are allocated among
groups of agents rather than individual agents. While asymp-
totic fair division for groups was previously explored [Ma-
nurangsi and Suksompong, 2017], the study thus far has fo-
cused on groups with equal entitlements. Permitting different
entitlements can help us model applications where the groups
have varying importance, e.g., depending on their sizes.
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