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Abstract

Distinguishing key features in complex visual tasks
is challenging. A novel approach treats image
patches (tokens) as waves. By using both phase and
amplitude, it captures richer semantics and specific
invariances compared to pixel-based methods, and
allows for feature fusion across regions for a holis-
tic image representation. Based on this, we pro-
pose the Wave-wise Discriminative Transformer
Tracker (WDT). During tracking, WDT represents
features via phase-amplitude separation, enhance-
ment, and mixture. First, we designed a Mutual
Exclusive Phase-Amplitude Extractor (MEPAE) to
separate phase and amplitude features with dis-
tinct semantics, representing spatial target info and
background brightness respectively. Then, Wave-
wise Feature Augmentation is carried out with two
submodules: Phase-Amplitude Feature Augmenta-
tion and Mixture. The augmentation module dis-
rupts the separated features in the same batch, and
the mixture module recombines them to generate
positive and negative waves. The original fea-
tures are aggregated into the original wave. Posi-
tive waves have the same phase but different am-
plitudes, and negative waves have different phase
components. Finally, self-supervised and tracking-
supervised losses guide the global and local repre-
sentation learning for original, positive, and neg-
ative waves, enhancing wave-level discrimination.
Experiments on five benchmarks prove the effec-
tiveness of our method.

1 Introduction
Visual Object Tracking (VOT) is pivotal in real - time com-
puter vision, accurately tracking target objects within video
sequences. At its core, tracking hinges on matching and local-
ization, where feature extraction is a critical step determining
a tracker’s capacity to represent and distinguish targets. To

Figure 1: Schematic of the phase and amplitude characteristics of
images, Image1 and Image2 from the GOT-10K test dataset.

ensure tracker robustness and accuracy, learning discrimina-
tive feature representations is essential. Tracking algorithms
have significantly advanced, from handcrafted features to the
current deep extraction methods. Using deep neural net-
works, these techniques learn effective features. However, re-
search on deep discriminative tracking has bottlenecks. Prior
pixel - based extraction limits information, so a new approach
is urgently needed to enhance tracking performance.

Inspired by classical physics and quantum mechanics,
wave-wise feature representation offers a new perspective:
Images or image tokens are seen as a series of propa-
gated wave-wise components, formed by fusing amplitude
and phase via complex wave functions. This representa-
tion holds richer semantics, specific invariances, and strong
information-aggregation capabilities, opening up new possi-
bilities in visual tasks. It has been successfully applied in var-
ious scenarios. Early research relied on the Fourier transform
to separately extract phase and amplitude features for specific
tasks. But integrating this multi-step process into end-to-end
deep learning was difficult. A recent work [Tang et al., 2021]
introduced a plug-and-play method in a Multi-Layer Percep-
tron architecture. Each token was treated as a visual wave-
form, and neural networks were used to model phase and
amplitude extraction and aggregation across all tokens. No-
tably, phase mainly captures object-related spatial details like
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textures, edges, and outlines, while amplitude reflects global
brightness, being more sensitive to background changes. To
better use waveform features in VOT and distinguish targets
from backgrounds, we aim to make the model extract phase
and amplitude features distinctly from target and background
semantic blocks. This ensures clear encoding of target struc-
ture and image brightness, resulting in more discriminative
aggregated waveform features, rather than just repeating pre-
vious methods. In summary, waveform representation im-
proves object tracking in three ways: 1) Capturing Semantic
Details: Waveform representation extracts object shape and
boundaries through phase shifts, and captures broader con-
trast changes through amplitude variations; 2) Global and Lo-
cal Feature Fusion: Waveform features effectively combine
information from various positions, facilitating a more com-
prehensive feature description for both individual images and
image blocks. 3) Enhancing Robustness and Stability: The
stability of waveform representation ensures improved track-
ing performance, particularly in challenging scenes.

Motivated by this, we develop a novel Wave-wise Dis-
criminative Tracking method. For tracking tasks, the target’s
spatial structure and brightness information should be distin-
guished, with more emphasis on the former. For instance, in
certain scenarios, lighting conditions might change, but the
basic target structure remains relatively invariant. As shown
in Figure 1, changes in image phase (phase swapping) lead to
drastic variations, while amplitude swaps can still be distin-
guished by the human eye to identify objects.

Therefore, the core of our innovation lies in how to ma-
nipulate the phase and amplitude features within the frame-
work of waveform representation to highlight the target struc-
ture and mitigate the background influence. First, Phase-
Amplitude Feature Separation: Drawing on the findings of
the literature [Tang et al., 2021], we introduce an attention
module to learn the weights of image tokens. Subsequently,
a pair of mutually exclusive token weights are generated for
phase and amplitude feature modeling respectively. The aim
is to mainly model the phase information in the target re-
gion, while the amplitude information is mainly distributed
in the background area. Integrating the above-mentioned pro-
cesses constitutes the Mutual Exclusive Phase-Amplitude Ex-
tractor (MEPAE) module. Second, Phase-Amplitude Feature
Enhancement: During model training, the separated phase-
amplitude features within the same batch are randomly shuf-
fled. This implies that each sample in the same batch con-
tains both the original phase-amplitude features and the wave
features from other samples. Third, Phase-Amplitude Fea-
ture Mixing: In this stage, the initial phase-amplitude fea-
tures are incorporated into the original wave, and the en-
hanced phase-amplitude features are interwoven to generate
multiple sets of positive and negative waves. Positive waves
have the same phase but different amplitudes, and negative
waves have different phases. Finally, Feature Discriminabil-
ity Enhancement: To better enhance the discriminability of
features, we combine self-supervised and tracking-supervised
losses to constrain all waveform features from both global and
local token perspectives. Specifically, the self-supervised loss
is used to constrain the similarity between feature pairs such
as the original-negative waves and positive-negative waves.

The tracking-supervised loss constrains the token-level fea-
tures of all waves. The above steps lead to the final waveform
tracker, which can effectively extract feature information, im-
prove the object tracking performance, and enhance the accu-
racy and robustness.

In summary, the main contributions of this work are three-
fold: (1) We introduce an innovative waveform-based fea-
ture representation, and conduct feature learning through the
processes of phase-amplitude feature separation, augmenta-
tion, and mixture. (2) By combining self-supervised and su-
pervised losses, we strengthen the overall and local learning
of waveform features. The introduction of feature-level self-
supervised learning into the tracking framework represents
a novel plug-and-play integrated learning paradigm. (3) We
construct a novel waveform discriminative tracking method
based on the Transformer network, named Wave - wise Dis-
criminative Tracker (WDT). This method has demonstrated
excellent performance in multiple benchmark tests, including
LaSOT, LaSOText, TNL2K, UAV123, and GOT-10K.

2 Related Work
Transformer-based tracker. With the popularity of
Transformer [Vaswani et al., 2017] in computer vision,
Transformer-based trackers have become a dominant cate-
gory. SwinTrack [Lin et al., 2022] and OSTrack [Ye et al.,
2022] ditch CNNs and fully embrace the transformer struc-
ture, achieving excellent results in multiple benchmarks. Re-
cent studies have explored various aspects. [Cai et al., 2024]
uses the Transformer encoder to extract interaction features
between the template and search region. [Xie et al., 2024]
employs the Transformer module for spatial image feature
extraction and spatiotemporal video learning. [Zhao et al.,
2024] investigates the impact of different data augmentation
on Transformer tracker performance. [Wei et al., 2023] takes
an autoregressive approach, using Transformer - encoded fea-
tures to model and predict target trajectories. [Chen et al.,
2023] uses a ViT-based encoder for video frame feature ex-
traction and a causal Transformer decoder for tracking re-
sults, simplifying the network and enhancing performance.
[Li et al., 2023] uses a Transformer backbone to extract joint
features of the template and search image, facilitating inter-
action with text features for prediction.

Wave-wise features in Computer Vision. Phase and am-
plitude information are crucial features for images and have
been successfully applied in several visual tasks [Wang et al.,
2025; Wang et al., 2024b; Wang et al., 2024c]. [Zhang et
al., 2023b] uses Semantic Frequency Prompt to interact with
the feature map in the frequency domain, guiding the student
model to learn valuable pixels. [Gu et al., 2023] proposed
AdaFuse, which employs the spatial-frequential fusion mod-
ule on multi-scale features for adaptive multimodal image
feature fusion in both frequency and spatial domains. [Cheng
et al., 2023] proposed the FGFL framework, generating fre-
quency masks via an improved Grad-CAM algorithm in the
frequency domain to filter key category information.

Self-supervised Learning. Self-supervised learning is
one of the main types of machine learning, alongside unsu-
pervised [Wang et al., 2024d] and semi-supervised learning
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Figure 2: The pipeline of the Wave-wise Discriminative Tracker (WDT).

[Wang et al., 2024a]. Self-supervised learning is highly ef-
fective in video tasks. For instance, [Qian et al., 2024] trains
a correlation network via object consistency in videos. [Ding
et al., 2025] improves object segmentation accuracy with spa-
tiotemporal consistency. [Hamilton et al., 2022] mines se-
mantic consistency in feature maps for semantic segmenta-
tion.

3 Method
3.1 Framework of WDT
As the Figure 2 depicted, the framework of our WDT can be
divided into five parts successively:

Backbone. We adopt the backbone of One-Stream One-
Stage pipeline for image feature extraction and relation mod-
eling. In this stage, the input template image z and search
image x are split and flattened into a chain of patches Nz and
Nx. And after a linear projection they will turn into a se-
ries of patch embeddings Ez ∈ RNz×D and Ex ∈ RNx×D,
where D = P 2 is the feature dimension of each token. Each
of token will be added a position embedding and then the
template embeddings Ez and search embeddings Ex will be
concatenated as Ezx = [Ez, Ex]. And the Ezx will be pro-
cessed by sequences of Transformer encoder layers. During
this process, we finished the initial feature extraction, and at
the same time, the relation between the search image and the
exemplar image have been calculated.

Mutually Exclusive Phase-Amplitude Extractor
(MEPAE). After the backbone network has fully learnt the
relationship between the target and the search feature, it will
output the transformed feature Ẽzx ∈ R(Nz+Nx)×P×P . In
the original framework, the corresponding search region
Ẽx ∈ RNx×P×P in Ẽzx is fed into the prediction head
to predict the tracking results. In between, MEPAE is
embedded as a plug-and-play module. Ẽx is taken as inputs
and a new attention network is designed, which will acquire
the labelled attention used to guide the phase and amplitude
feature generation. Details will be presented in Sec. 3.2.

Phase-Amplitude Feature Augmentation (PAFA). To
further enhance the learning of waveform features, we per-
form feature enhancement by shuffling the separated phase

and amplitude features within a batch. This step is referred to
as Phase-Amplitude Feature Augmentation (PAFA). We will
discuss this in Section 3.3.

Phase-Amplitude Feature Mixture (PAFM). We insert
a PAFM unit between the PAFA and the prediction head.
In this process, the free combination of amplitude and phase
terms will form a new set of feature samples, including the
original waveform sample, the positive waveform samples
with constant phase but only varying amplitude, and two
groups of negative waveform samples with varying phase.
Further we will impose supervised and self-supervised con-
straints on them to aid waveform feature learning. We will
discuss this in later sections Sec. 3.3 and Sec. 3.4.

Prediction Head. We use a center prediction head for tar-
get classification and box regression. In addition, we added
self-supervised loss and supervised loss for all waveform fea-
tures. Both the Score map and the predicted box coordinates
will be obtained after this structure.

In particular, features are extracted by MEPAE for both
training and inference, except that for training there is fea-
ture augmentation and mixture, and all wave samples are out-
put, whereas for inference only the predictions of the original
waveform samples are output.

3.2 Mutually Exclusive Phase-Amplitude
Extractor

Before the introduction of the structure of MEPAE, we
present the representation of wave function first.

Wave-based representation. Denote one token feature
output by the backbone as a wave t̃j :

t̃j = |tj | ⊙ eiϕj , j = 1, 2, · · · , n (1)

where i2 = −1 and |·| is to calculate the absolute value and
⊙ represents element-wise multiplication. |tj | and the ϕj are
the amplitude and the phase we are concerned for. And the
amplitude usually carries the content information of the to-
ken while the phase in periodic function eiϕj represents the
current state of the token in its period.

Network for Mutually Exclusive Tokens Attention. In
order to better separate phase and amplitude and reflect dif-
ferent semantic properties, we introduce a simple attention
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Figure 3: The detailed structure of the Mutually Exclusive Phase-
Amplitude Extractor (MEPAE).

module for learning tokens weights. The tokens attention
map Mp and its mutually exclusive attention Ma = 1 −Mp

are directly learned based on the output feature Ẽx, corre-
sponding to phase and amplitude features modelling, respec-
tively. Specifically, in two steps, first the initial features are
pooled into Ẽpx ∈ RNx×1×1. And it is then fed into a to-
ken attention module for transformation learning consisting
of multiple convolutional layers, Batch Normalization, ReLU
and sigmiod functions, ultimately outputting a token attention
map Mp ∈ RNx×1×1.

Network for Phase-Amplitude Extraction. To extract
the waveform features, phase and amplitude features need
to be extracted separately first. In [Tang et al., 2021], the
neural network is innovatively used to express them sep-
arately. First we multiply the above attention maps Mp

with the initial token featuresẼx for phase extraction, and
then go through a classical Conv-BN-ReLU module for fea-
ture transformation to obtain the final phase features P =
{p1, p2, · · · , pNx}. In another branch, we multiply Ẽx by
Ma for amplitude extraction, and then obtain the amplitude
feature A = {a1, a2, · · · , aNx} through a Conv layer.

The above feature extraction process is jointly integrated
into the mutually exclusive phase-amplitude extraction mod-
ule, the structure of which is shown in Figure 3. The specific
extraction process can be expressed as follows:

P = {p1, p2, · · · , pNx
} = f

(
Mp ∗ Ẽx

)
. (2)

A = {a1, a2, · · · , aNx
} = f

(
Ma ∗ Ẽx

)
. (3)

3.3 Wave-wise Feature Augmentation
To increase the diversity of waveform features, we designed a
feature augmentation stage, which includes two steps: phase-
amplitude feature augmentation and phase-amplitude feature
mixture. In summary, in the prior step, we extracted phase
and amplitude features separately using MEPAE. Subse-
quently, we separately expanded these features, before com-

Figure 4: The process of wave-wise feature augmentation.

bining and rearranging them to produce a multitude of distinct
waveform samples. The whole process is shown in Figure 4.

Phase-Amplitude Feature Augmentation. We expand
phase and amplitude features by performing a Swap in Batch
operation, as shown in Figure 4, which randomly disrupt the
order of phase and amplitude features within a batch, result-
ing in new batch-sized groups of phase and amplitude fea-
tures, respectively. Thus after this session, we already have
two pairs of phase-amplitude features.

Phase-Amplitude Feature Mixture. Phase and amplitude
features can be aggregated based on the wave function. By
cross aggregating two pairs of phase-amplitude features two
by two, we can obtain four samples, including the original
wave t̃o, a positive wave t̃p with the same phase as the original
wave but different amplitudes, and two negative waves t̃n1

and t̃n2 with different phases. Note that in this process, each
aggregation with phase and amplitude follows the mechanism
of Eq. 4. According to Euler’s formula, the process of wave
aggregation is

t̃j = |tj | ⊙ cosθj + i |tj | ⊙ sin θj , j = 1, 2, · · · , n (4)

By substituting the extracted phase and amplitude features
separately and drawing on the properties of [Tang et al.,
2021], we can directly obtain the final fusion process:

t̃j =
∑
k

W t
jkak ⊙ cos pk +W i

jkak ⊙ sin pk (5)

where W t, W i are both learnable weights. j and k denote
the j-th row and k-th column of matrix W . ak and pk are
amplitude and phase feature, respectively, and t̃j denotes the
waveform feature of the j-th token.

3.4 Self-supervised Loss and Tracking-supervised
Loss

To ensure the robustness and accuracy of the wive-wise fea-
tures. We design two kinds of constraints for the above
enhanced waves as shown in Figure 5. Note that the self-
supervised loss deals with the overall features after all token
waves are stretched, whereas the tracking supervised loss is
computed with individual token waves as the unit of com-
putation. Combining the two losses from the perspective of
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Figure 5: The process of self-supervised and supervised learning for wave samples.

global and local constraints can be more effective in improv-
ing feature discrimination.

Self-supervised loss. Observing the success of contrastive
learning and relative loss fuctions, we adopt the similar self-
supervised loss as [Radford et al., 2021] for our feature aug-
mentation. Specifically, we construct two new samples for
learning self-supervised loss, i.e. T̃ r and T̃ s, one sample is
concatenated from the original wave t̃o and one negative wave
t̃n1 , and the other sample is concatenated from the positive
wave t̃p and another negative wave t̃n2 . Then we perform
normalization on them, respectively:

T̃ r = N ([t̃o; t̃n1 ]) = N (T̃ r), (6)

T̃ s = N ([t̃p; t̃n2 ]) = N (T̃ s), (7)
where the N (·) means the normalization operation.

We conduct tensor multiplication on the concatenated fea-
ture t̃ and its transposed feature to compute a similarity logits.

sim = T̃s ⊗ T̃r
T

(8)

where T means to calculate the transposed value.
Finally we perform a cross-entropy loss on the logits and

groundtruth label:

Lself = [CE(sim, label) +CE(simT , label)]/2, (9)

where CE(·) represents the CrossEntropy loss function.
Tracking-supervised loss. Following [Ye et al., 2022], the

supervised loss function for the original image features is:

LSori (Oori, gt) = Lcls + λiou Liou + λL1
LL1

. (10)

where Oori represents the output of WDT while it takes the
original feature as input; gt means the ground-truth label
given by the dataset; Lcls is the weighted focal loss [Law and
Deng, 2018], Liou is the generalized IoU loss [Rezatofighi et
al., 2019] and LL1 means the common l1 loss.

Additionally, since in our method we generate a lot of pos-
itive samples with same phase as the original image. Then we
put the same constraints on these features as below:

LSpos (Opos, gt) = Lcls + λiou Liou + λL1
LL1

. (11)

where the Opos means the output of WDT while it takes the
positive features as input.

And thus the complete supervised loss is:

Lsupervised = LSori + λSpos LSpos (12)

where the λSpos = 1 in our method.
To sum up, the total loss for our WDT is:

Ltotal = Lsupervised + λselfLself (13)

where the λself = 0.5 in our method.

4 Experiments
4.1 Implementation
Model. Our tracker WDT is built upon ViT [Dosovitskiy
et al., 2020] and HiViT [Zhang et al., 2023a], which adopts
the template of 192 × 192 pixels and the search of 384 ×
384 pixels, respectively abbreviated as WDT-ViT and WDT-
HiViT. And all of our design modules are inserted after search
tokens recovery and before prediction head.

Training. We implement our model in Python using Py-
Torch and train it with 8 NVIDIA A100 GPUs. And the
test are conducted on a single NVIDIA RTX3070 GPU. For
WDT-ViT, we set the batch size to 24, the weight decay to
10−4, the learning rate for the backbone to 4 × 10−5 and
the rest parameters to 4 × 10−4, respectively. The learn-
ing rate decreases by a factor of 10 after 240 epochs. For
WDT-HiViT, we set the batch size to 4, the initial learning
rate of the backbone network to 2 × 10−5, the learning rate
of other parameters to 2 × 10−4, and the weight decay to
10−4. The total number of training epochs is 150, and the
learning rate decreases by a factor of 10 after 120 epochs.
The training datasets are COCO [Lin et al., 2014], LaSOT
[Fan et al., 2018], GOT-10k [Huang et al., 2018] and Track-
ingNet [Müller et al., 2018]. The entire tracker is trained
using both self-supervised loss and tracking-supervised loss,
and the original waves, both the positive and the negatives,
are tracked for prediction.

Inference. When tracking inference, we only output the
tracking results of the original wave and test on five popular
benchmarks: LaSOT [Fan et al., 2018], LaSOText [Fan et al.,
2020], GOT-10k [Huang et al., 2018] and UAV123 [Mueller
et al., 2016] and TNL2K [Wang et al., 2021b].
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Method Source LaSOT LaSOText TNL2K UAV123 GOT-10k
AUC PNorm P AUC PNorm P AUC AUC AO SR0.5 SR0.75

SiamPRN++ [Li et al., 2018] CVPR19 49.6 56.9 49.1 34.0 41.6 39.6 41.3 61.3 51.7 61.6 32.5
DiMP [Bhat et al., 2019] ICCV19 56.9 65.0 56.7 39.2 47.6 45.1 44.7 65.4 61.1 71.7 49.2

Ocean [Zhang and Peng, 2020] ECCV20 56.0 65.1 56.6 - - - 38.4 - 61.1 72.1 47.3
PACNet [Zhang et al., 2021] AAAI21 55.3 - 54.6 - - - - 62.0 58.2 68.5 44.3
TransT [Chen et al., 2021] CVPR21 64.9 73.8 69.0 - - - - 69.1 67.1 76.8 60.9

MixFormer [Cui et al., 2022] CVPR2022 70.1 79.9 76.3 - - - - 70.4 71.2 80.0 67.8
SwinTrack-B [Lin et al., 2022] NeurIPS22 71.3 - 76.5 49.1 - 55.6 55.9 - 72.4 80.5 67.8

OSTrack [Ye et al., 2022] ECCV22 71.1 81.1 77.6 50.5 61.3 57.6 55.9 70.7 73.7 83.2 70.8
CiteTracker [Li et al., 2023] ICCV23 69.7 78.6 75.7 - - - 57.7 - 74.7 84.3 73.0

SeqTrack [Chen et al., 2023] CVPR23 71.5 81.1 77.8 50.5 61.6 57.5 56.4 68.6 74.5 84.3 71.4
ARTrack [Wei et al., 2023] CVPR23 72.6 81.7 79.1 51.9 62.0 58.5 59.8 70.5 75.5 84.3 74.3
DATr [Zhao et al., 2024] WACV24 71.0 80.7 77.5 51.8 62.7 59.0 - 69.7 74.2 84.1 71.1

STCFormer [Hu et al., 2024] AAAI24 71.5 81.5 78.0 52.0 63.0 59.6 57.7 70.8 74.3 84.2 72.6
AQAT [Xie et al., 2024] CVPR24 72.7 82.9 80.2 52.7 64.2 60.8 59.3 71.2 76.0 85.2 74.9

HIPTrack [Cai et al., 2024] CVPR24 72.7 82.9 79.5 53.0 64.3 60.6 - 70.5 77.4 88.0 74.5
WDT-ViT Ours 71.4 81.3 77.9 52.3 63.2 59.9 57.5 71.1 74.5 83.8 71.8

WDT-HiViT Ours 73.0 83.3 80.7 53.3 64.8 61.2 59.7 71.2 76.1 85.4 75.3

Table 1: Comparison with state-of-the-art trackers on five popular benchmarks. The best two results are shown in red and blue fonts.

4.2 Comparison with State-of-the-Arts
We compare our method with 15 state-of-the-art trackers,
which include most representative methods in recent years.
The comprehensive results are listed in Table 1.

LaSOT. LaSOT is a widely-used benchmark for long-term
tracking. It contains 1,400 videos with more than 3.5M
frames in total. And its evaluation metrics are the normal-
ized precision (PNorm), the precision (P) and the area under
curve (AUC) of the success plot. Our trackers WDT-ViT and
WDT-HiViT rank among the popular comparison methods.
WDT-ViT is 0.3% higher than baseline OSTrack in AUC,
while WDT-HiViT achieves 73.0% in AUC, 83.3% in PNorm
score and 80.7% in P score.

LaSOText. LaSOText is an extension version of LaSOT.
It involves 150 videos of 15 classes. The evaluation metrics
are the same as the LaSOT. As an extended version of La-
SOT, LaSOText contains 150 additional sequences of 15 ob-
ject classes. Since it is released in recent two years, results on
it are relatively fewer but we still conducted new research on
it, with AUCs of 52.3% and 53.3%, which is superior to other
comparison methods.

TNL2K. TNL2K is also a new dataset for natural language
guided tracking. Its testing dataset contains 700 high diversity
sequences. To improve the generality of tracking evaluation
it introduces several adversarial samples and thermal images.
Therefore TNL2K is a challenging benchmark currently. And
we boost the performance in each metric and outperform
other powerful counterparts like SwinTrack-B and CIA by a
substantial margin. WDT-ViT achieves 57.5% in AUC, which
surpass OSTrack by 1.6%. WDT-HiViT achieves 59.7% in
AUC, and outperform other powerful counterparts like AQAT
and STCFormer by a substantial margin.

UAV123. UAV123 is an important dataset from a low-
altitude aerial perspective. We takes the AUC and the pre-
cision (P) to evaluate trackers’ performance on it. On the
UAV123, we are still performing well with 71.1% and 71.2%
in AUC, compared to other trackers and are up significantly.

GOT-10k. GOT-10k is consist of 10k sequences for train-

ViT/HiViT PAE MEPAE WA-T WA-S LaSOT LaSOText GOT-10K
ViT 71.1 50.5 73.7
ViT ✓ 70.9 50.6 73.9
ViT ✓ 71.2 50.9 74.1
ViT ✓ ✓ 71.1 51.2 74.0
ViT ✓ ✓ ✓ 71.2 52.0 74.4
ViT ✓ ✓ 71.3 52.2 74.3
ViT ✓ ✓ ✓ 71.4 52.3 74.5

HiViT 71.8 52.1 74.6
HiViT ✓ 72.0 52.4 74.9
HiViT ✓ 72.1 52.6 75.3
HiViT ✓ ✓ 72.4 52.7 75.1
HiViT ✓ ✓ ✓ 72.8 52.9 75.8
HiViT ✓ ✓ 72.6 53.0 75.6
HiViT ✓ ✓ ✓ 73.0 53.3 76.1

Table 2: Quantitative comparison results of WDT with different
components.

ing and 180 videos for testing. It takes the average over-
lap (AO) and the success rate (SR) at overlap thresholds 0.5
and 0.75 as the evaluation metrics. We evaluated our WDT-
ViT and WDT-HiViT on their official website, and the re-
sults showed that the improvements in AO, SR0.5, and SR0.75

were 0.8%, 0.6%, 1.0%, respectively, compared with OS-
Track. WDT-HiViT obtains 76.1% in AO, 85.4% in SR0.5

score and 75.3% in SR0.75. Our tracker is also better com-
pared to other trackers.

4.3 Ablation Study
The contributions of Each Module. To judge the exact im-
pact of each part, we test the models equipped with the dif-
ferent component on GOT-10K and LaSOT. When extracting
phase and amplitude features, we introduce a mutually ex-
clusive note of semantic separation of phase and amplitude
features. As shown in Table 2, the PAE improves tracking
performance based on the waveform representation, and the
MEPAE improvement is more pronounced with the added
mutually exclusive attention. To evaluate the impact of su-
pervised loss and self-supervised loss, we tested the tracking
performance of PAE and MEPAE separately with different
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Tracking-Supervised Loss Self-Supervised Loss LaSOT LaSOText GOT-10K

0.5 - 71.0 51.5 74.2
1 - 71.3 52.2 74.3
2 - 70.8 51.6 73.9
1 0.1 71.1 52.0 73.9
1 0.5 71.4 52.3 74.5
1 1 71.3 52.0 74.2

Table 3: Effect of different weights for ABS position loss and PN
position loss of WDT-ViT. The best results are shown in bold font.

Tracker Speed(fps) MACs(G) Params (M)

TrDiMP [Wang et al., 2021a] 26 - -
TransT [Chen et al., 2021] 50 - -

STARK-ST101 [Yan et al., 2021] 32 18.5 42
SwinTrack-B [Lin et al., 2022] 45 69.7 91

OSTrack [Ye et al., 2022] 59.7 52.5 87

WDT-ViT 53.1 57.9 92

Table 4: Comparison on running speed and parameters with other
representative Transformer-based trackers.

losses, where WA-T indicates that only tracking supervised
loss is included and WA-S indicates that only self-supervised
loss is included, As shown in Table 2, the supervised loss
is essential for the whole training, and the tracking perfor-
mance can be further improved with the addition of the self-
supervised loss aid.

Parametric Analysis in Self-supervised Loss. We try dif-
ferent weights for λ for each loss we design. The range of
testing weights of each loss is approximately determined by
the scale of their values. According to Table 3, results show
that 1 and 0.5 are best for Self-Supervised Loss and Tracking-
Supervised Loss.

Speed and parameters. Our WDT tracker runs at a re-
duced speed compared to the baseline and its main compu-
tational effort is concentrated in the MEPAE module. The
parameters of our WDT-ViT are 92M. As for multiply-
accumulate computations (MACs), ours are 57.9G, about
5.4G larger than OSTrack. However, experiments show that
there is not too much computational burden of our method.
In the same operating environment, our tracker at 53.5 fps,
which is slightly slower but still meets the real-time standard,
shown in Table 4.

Complex environments. Figure 6 shows the accuracy of
LaSOT in different attributes. We can see that our WDT is
significantly better than AQAT in IV (illumination variation),
FM (fast motion), FOC (full occlusion) , OV (out-of-view),
and POC (partial occlusion) situations, demonstrating that

Figure 6: AUC scores of different attributes on LaSOT.

Figure 7: Visualization of the tracking results and feature maps. The
first column shows the search images and the box results on it. The
green rectangles are groundtruth boxes and the purple rectangles are
predicted by our WDT. The template images are placed in the up-
per left corner. The second column shows the corresponding fea-
ture map. The third column shows attention map for corresponding
search image. The fourth column shows the tracking results on cor-
responding frames.

WDT can maintain its advantages in more complex environ-
ments, especially scenes with significant dynamic changes.

Visualization of tracking. In Figure 7 we display some
representative results of our WDT. Obviously, WDT achieves
quite accurate results in these scenarios. The results show that
WDT can handle the deformation of the target well.

5 Conclusion
In this paper, we propose a novel approach to feature learning
in visual object tracking using wave representation. Treating
each image patch as a wave function, we extract its phase
and amplitude components separately. To enhance feature
robustness, we perform augmentation by randomly recom-
bining these components to form positive and negative pairs.
A self-supervised constraint regulates this augmentation pro-
cess, which is combined with tracking-supervised losses to
guide wave feature learning at both global and local levels.
By embedding these methods into ViT and HiViT, we develop
trackers WDT-ViT and WDT-HiViT. Extensive experiments
on benchmarks like LaSOT, TNL2K, UAV123, LaSOText

and GOT-10K show their superior performance.
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