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Abstract

Estimating long-term causal effects by combining
long-term observational and short-term experimen-
tal data is a crucial but challenging problem in
many real-world scenarios. In existing methods,
several ideal assumptions, e.g. latent unconfound-
edness assumption or additive equi-confounding
bias assumption, are proposed to address the latent
confounder problem raised by the observational
data. However, in real-world applications, these as-
sumptions are typically violated which limits their
practical effectiveness. In this paper, we tackle
the problem of estimating the long-term individual
causal effects without the aforementioned assump-
tions. Specifically, we propose to utilize the natural
heterogeneity of data, such as data from multiple
sources, to identify latent confounders, thereby sig-
nificantly avoiding reliance on idealized assump-
tions. Practically, we devise a latent representa-
tion learning-based estimator of long-term causal
effects. Theoretically, we establish the identifia-
bility of latent confounders, with which we further
achieve long-term effect identification. Extensive
experimental studies, conducted on multiple syn-
thetic and semi-synthetic datasets, demonstrate the
effectiveness of our proposed method.

1 Introduction

Estimating long-term causal effects is of increasing impor-
tance in many domains, such as healthcare, public educa-
tion, marketing, and public policy [Hohnhold er al., 2015;
Chetty et al., 2011; Fleming et al., 1994; Zheng et al., 2025].
In such long-term scenarios, it is usually difficult to conduct
randomized control experiments to estimate the causal ef-
fects. Hence, a lot of researchers resort to the more easily
accessible long-term observations. However, methods based
on observational data still suffer from the latent confound-
ing bias problem. Therefore, combining observational data
and experimental data has emerged as a promising solution

Figure 1: Three causal graphs in long-term scenarios with X be-
ing the pre-treatment variables, Y being the long-term outcome, Z
being the latent confounders, S being short-term outcome, U being
the auxiliary variable, and W being the treatment. White nodes de-
note the observed variables and grey nodes denote the unobserved
variables. The dashed edges exist in the observational data but are
absent in the experimental data. The dashed node Y means Y can be
observed in observational data but not in experimental data. Specifi-
cally, Fig. 1a shows the causal graph satisfying the latent confound-
edness assumption. Fig. 1b shows the causal graph satisfying the
equi-confounding bias assumption, where the blue arrows in Fig. 1b
indicate the equal confounding bias. Fig. 1c shows the causal graph
of our setting.

for estimating long-term causal effects [Imbens et al., 2024;
Ghassami et al., 2022; Hu et al., 2022].

Existing data combination-based methods estimate long-
term effects mainly based on the so-called surrogate. As
shown in Fig. 1, the surrogate S is the short-term outcome,
serving as the supplement or replacement for the long-term
outcome Y in observational data. However, the unconfound-
edness assumption is usually violated in such observational
data due to the existence of latent confounders Z. As a re-
placement for unconfoundedness assumption, [Athey ef al.,
2020] propose an assumption named latent unconfounded-
ness, i.e., Y (w) L W|X, S(w) on observational data, implic-
itly indicating the latent confounders Z cannot affect long-
term outcome Y as illustrated in Fig. la. Alternatively, to
relax the unconfoundedness assumption, [Ghassami ef al.,
2022] introduces the (conditional) additive equi-confounding
bias assumption, i.e., the magnitude of the confounding bias
for the short-term and the long-term potential outcome vari-
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ables are the same, as illustrated in Fig. 1b.

Existing methods, however, encounter a key challenge: the
ideal assumptions are usually violated in real-world appli-
cations, including both the latent unconfoundedness and ad-
ditive equi-confounding bias assumptions, which limit their
practical effectiveness. For example, in studying the ef-
fect of driver income (treatment 1/') on long-term retention
(outcome Y) in a ride-hailing platform, driver characteris-
tics (pre-treatment variable X) act as observed confounders
affecting both income and retention. However, the drivers’
household expenses (latent confounders Z) may also af-
fect drivers’ long-term retention Y, violating the latent un-
confoundedness assumption. Similarly, the additive equi-
confounding bias assumption may be violated since house-
hold expenses can influence short- and long-term retention
differently, i.e., the confounding bias varies over time rather
than remaining constant. Therefore, the strong assumptions
in existing methods still significantly limit their applicability.

To address the above challenge, we aim to develop a
method without the above assumptions to estimate the indi-
vidual long-term causal effects as shown in Fig. 2. Specifi-
cally, instead of assuming latent unconfoundedness or equi-
confounding bias, we explore the identifiability of latent con-
founders Z to estimate long-term causal effects. To identify
latent confounder Z, we resort to an additional auxiliary vari-
able U, which is easily accessible from our readily available
prior knowledge, such as the natural heterogeneity of data in
real-world applications. Recall the aforementioned drivers’
income study example, the data are usually collected from
various cities, and the indicator variable of the city can be di-
rectly taken as the auxiliary variable. Leveraging the identifi-
ability of Z, we establish the causal effect identification result
and propose the corresponding latent representation learning-
based estimator for long-term individual causal effects. Over-
all, our contributions can be summarized as follows:

* We focus on a more general setting for estimating long-term
causal effects, as shown in Fig. 1c. As shown in Fig. lc,
the assumed causal graph in our paper is a complete graph,
and the causal graphs in existing work [Athey et al., 2020;
Ghassami et al., 2022] can be seen as our special cases.

* We theoretically achieve the identifiability of latent con-
founders. Leveraging the identifiability result, we further
establish the identification of long-term individual effects.

* We devise a latent representation learning-based estimator
for effect estimation. The effectiveness of our estimator is
verified on five synthetic and two real-world datasets.'

2 Related Works

Variational Auto-encoders for Causal Inference Varia-
tional Auto-encoder (VAE) [Kingma and Welling, 2014] is a
powerful tool to capture latent structure in different kinds of
applications, e.g., image processing [Gregor et al., 2015] and
time-series [Chung et al., 2015; Cai et al., 2025]. In causal
inference, VAE is used to recover unobserved variables to

!The extended version is available at http://arxiv.org/abs/2505.
05192.

achieve the identification and estimation of the effects. With-
out unconfoundedness assumption, CEVAE [Louizos et al.,
2017] assumes that latent confounders can be recovered by
their proxies and applies VAE to learn confounders. As a
follow-up work, TEDVAE [Zhang et al., 2021] and DMAVAE
[Xu er al., 2023] decouple the learned latent confounders
into several factors to achieve a more accurate estimation of
treatment effects in different settings. With the recent devel-
opment of VAE, nonlinear independent component analysis
theory [Hyvarinen and Morioka, 2016] enables the identi-
fiability of recovered variables, e.g., iVAE [Khemakhem et
al., 2020] and SIG [Li et al., 2023]. CFDiVAE [Xu ef al.,
2024] apply iVAE to recover the front-door adjustment vari-
able, achieving effect identification under the front-door cri-
terion [Pearl, 2009]. S-Intact-VAE [Wu and Fukumizu, 2022]
utilizes iVAE to recover prognostic scores to estimate effects
under a limited overlap setting. Different from them, we
achieve long-term individual effect identification and estima-
tion by applying iVAE to recover the latent confounders.
Long-term Causal Inference For decades, many works
have explored what a valid surrogate is that can reliably
predict long-term causal effects. Different types of crite-
ria are proposed, e.g., prentice criteria [Prentice, 1989] and
so on [Frangakis and Rubin, 2002; Lauritzen ef al., 2004].
Recently, many works have explored estimating long-term
causal effects based on surrogates via data combination. Un-
der the unconfoundedness assumption, LTEE [Cheng er al.,
2021] and Laser [Cai et al., 2024] are based on different de-
signed neural networks for long-term causal inference. EETE
[Kallus and Mao, 2024] studies the data efficiency from the
surrogate and proposes efficient treatment effect estimation.
Some works [Wu er al., 2024; Yang et al., 2024a] also fo-
cus on balancing short- and long-term rewards under the un-
confoundedness assumption. Under surrogacy assumption,
SInd [Athey et al., 2019] constructs the Surrogate Index as
the substitutions for long-term outcomes in the experimental
data to achieve effect identification and [Singh, 2022] propose
a kernel ridge regression-based estimator for long-term effect
under continuous treatment. As follow-up work, [Athey er
al., 2020] assumes latent unconfoundedness assumption, i.e.,
short-term potential outcomes can mediate the long-term po-
tential outcomes, to identify long-term causal effects. Un-
der this assumption, several methods [Yang er al., 2024b;
Chen and Ritzwoller, 2023] are proposed to estimate long-
term effects more accurately. Other feasible assumptions are
proposed to replace the latent unconfoundedness assumption,
e.g., the additive equi-confounding bias assumption [Ghas-
sami et al., 2022; Chen et al., 2025a] and its variant [Chen
et al., 2025b]. Based on proximal methods, the sequential
structure surrogates are studied [Imbens et al., 2024]. Differ-
ent from them, we focus on estimating long-term individual
causal effects in a more general scenario as shown in Fig. 1c.

3 Problem Definition
3.1 Notations

Our notations follow the potential outcome framework [Ru-
bin, 1974]. Let W € {0,1} be a binary treatment variable.
Let d, be the dimension of variable o. Let X € X C Ré=
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(a) Observational data (b) Experimental data

Figure 2: Two causal graphs in our setting. The white nodes denote
observed variables and the grey nodes denote unobserved variables.
Fig. 2a is the causal graph of observational data in our setting. Fig.
2b is the causal graph of experimental data in our setting.

be pre-treatment variable, 7 € Z C R?: be latent con-
founders, S € S C R% be the short-term outcome vari-
able, Y € Y C R be the long-term outcome variable, and
U e U C R% be the auxiliary variable. Further, we de-
note the potential short-term outcomes S(w) € R% and po-
tential long-term outcomes Y (w) € R. Denote G € {o,e}
be the indicator of the data group, where G = o indicates
the observational data, and G = e indicates the experi-
mental data. Let lowercase letters (e.g., x,y) denote the
value of random variables. Let lowercase letters with su-
perscript (i) denote the value of the specified i-th unit. Fol-
lowing existing work [Athey et al., 2020; Hu ef al., 2022;
Ghassami et al., 2022], we consider the data combination
setting. We have two types of data: the experimental data
Dezp = {2@, w® s 4@ g6 e}re, and the ob-

servational data D,ps = {x(i, w®, s y@) @ ¢ =
0}i°1 4, » Where n, n, are the sample sizes of experimental

and observational data respectively. Our setting is described
in Fig. 2.

3.2 Assumptions and Target Estimands
Throughout this paper, we make the following assumptions:

Assumption 1 (Long-term Effect Identification Assump-

tions). [Athey et al., 2020, Ghassami et al., 2022]

Al [Consistency, Positivity] If W = w, then Y = Y (w)
and S = S(w). Yw,z, 0 < PW = w|X = z2) <
1,O<P(G=oW=wX=12)<1.

A2 [Weak internal validity of observational data] for all
w e {0,1}, WIL{Y (w),S(w)} X, Z,G = o.

A3 [Internal validity of experimental data] for all w €
{0,1} WAL{Y (w), S(w)}| X, G =e.

A4 [External validity of experimental data] for all w €
{0, 1}, GU{Y (w), S(w)}X.

The assumptions above are mild and widely used in exist-
ing literature, e.g., [Athey er al., 2020; Ghassami et al., 2022].
Al is a standard assumption. A2 allows the existence of la-
tent confounders Z. A3 guarantees that the experimental data
is unconfounded conditioned on X. A4 allows us to general-
ize the conditional distribution of potential outcomes between
observational and experimental data.

In this paper, our task is to estimate the long-term individ-
ual treatment effects (ITE) given D¢y, Doy, defined as:

m(z) = E[Y(1) = Y(0)|X = ], M

as well as long-term average treatment effects (ATE), defined
as:
7 =E[r(z)]. ()

4 Methodology

In this section, we present our end-to-end long-term causal
effect estimator. Overall, as shown in Fig. 3, our estimator
consists of three modules: short-term potential outcome esti-
mation, latent representation learning, and ITE estimation. In
the short-term potential outcome estimation module, we train
an estimator for p(S(w)|W, X) using experimental data, as
it is identifiable as p(S|W, X). In the latent representation
learning module, we leverage variational inference to learn
the latent representation of confounders Z. The pre-treatment
variable X, treatment W and the short-term potential out-
come S(w), obtained from the short-term potential outcome
estimation module, are jointly treated as proxies for Z, ensur-
ing sufficient information is available to recover Z. Addition-
ally, the auxiliary variable U is used as a prior, guaranteeing
the identifiability of the latent confounder Z, as demonstrated
in the theoretical analysis (see Section 5).

In the ITE estimation module, based on learned Z, we con-
duct an estimator to learn the potential outcomes in treated
and control groups, resulting in the final estimator of 7(x).
Note that the first module is trained on experimental data
to ensure the identification of short-term potential outcomes,
and the others are trained on observational data since the
long-term outcome is only observed in observational data.

4.1 Short-term Potential Outcome Estimation

We employ a multilayer perceptron (MLP) to model the dis-
tribution of p(S(w)|X) as our short-term potential outcome
estimator. Since we can access short-term experimental data,
p(S(w)|X) can be rewritten as p(S|X, W = w) on exper-
imental data. To estimate that, inspired by Tarnet [Johans-
son et al., 2022], we use two heads of MLP for the estima-
tion. Specifically, we can model each dimension of S(w) as
a Gaussian distribution as follows:

ds
p(SW, X) = [[N(n=fs,,0* =6%), ()

=0

where fig, and &g, are the mean and variance of the Gaussian
distribution parametrized by the MLPs. We use the negative
log-likelihood of Eq. (3) as the objective function Lg(,,) for
the short-term potential outcome estimator as follows:

‘CS(w) = Eqmezp [1ng(5(w)|X)]

4
— —E,,, [logp(SIX, W], @

where ¢p,,, is the empirical data distribution given by Dp.

exp

4.2 Latent Representation Learning

In the latent representation learning step, we employ iVAE
to recover latent confounders Z, as shown in Fig. 3. This
module consists of two networks: an inference network and
a generative network. Specifically, for the inference network,
the auxiliary variable U serves as additional information and
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Figure 3: Overall architecture of the generative and inference networks for our model. Grey nodes represent MLP, green nodes correspond to
the distribution trained on experimental data and blue nodes correspond to the distribution trained on observational data.

thus our prior distribution is p(Z|U). We further use the
posterior distribution ¢(Z]5(1),S(0), X, W,U) to approxi-
mate the prior, where the short-term potential outcomes are
obtained by the short-term potential outcome estimator dis-
cussed in the previous section. For the generative network,
we reconstruct the treatment W, the short-term outcome S
and the pre-treatment covariate X .

Following exiting VAE-based works [Louizos et al., 20171,
we choose the prior p(Z|U) as Gaussian distribution:

p(Z|U) = HNZ\uz, &7), ©)

=0

where ji; and &; are the mean and variance of the Gaussian
distribution parametrized by the MLPs.

To approximate the prior, we model the posterior distribu-
tion ¢(Z|S(1), S(0), X, W, U) as Gaussian distribution:

H N (p
zd z(]

q0(215(0)

i=0
q(2|W,5(1),5(0), X, U)
=W-q(Z]5(1), X,U) + (1 = W) - qo(2]5(0), X, U),

(6)
where fiz,jw—o and 6z, |w—o are the mean and variance of
the Gaussian distribution parametrized by MLPs whose in-
puts are X,W,U and estimated S(W), and similarly for
ﬂZi\W:I and 5'Z1\W:1~

In the generative network, for a continuous variable, we
parametrize the distribution as a Gaussian with its mean and
variance both given by MLPs. For a binary variable, we use
a Bernoulli distribution parametrized by an MLP similarly.
Thus, we employ the following distributions for p(X|Z,U):

dx
p(X|Za U) = HN(M = /:LXi’O-Q = (3%(1)
or p(X|Z,U) HBern X:),

- 2 A2
= MKz, \w=0,0 *UZi|W:O)7

= HN(M = ﬂZi|W:1aO2 = &QZ”W:])a

where [ix, and &, are the mean and variance of the Gaus-
sian distribution parametrized by MLPs in the generative net-
work when the variable is continuous, and 7x, is the mean
of Bernoulli distribution parametrized by the generative net-
work when the variable is binary. Similarly, we employ the
following distributions for p(W|X, Z) and p(S|W, X, Z):

p(W|X,Z) = Bern(r = 7w, ),
ds
p(SIW, X, Z) = [N (n = fasy 0® = 6%)
i=0 ®)
ds
or p(S\W,X,Z) = HBern(w =7ts1),
i=0

where [is/, 05/, g and 7y, are all parametrized by the gen-
erative network. We then use the negative variational Evi-
dence Lower Bound (ELBO) as the objective function for the
inference and generative networks (see Appendix E for the
derivations):

ELBO = E,, [Eq(z|5(0).5(1),x,0,w) [log p(Z|U)
+logp(X|Z,U) +log p(W|X, Z) + log p(S|W, X, Z)
©))

where qp_, . is the empirical data distributions given by Ds.

obs

4.3 ITE Estimation

To obtain the outcome Y, we introduce an auxiliary distribu-
tion that helps predict long-term outcome Y. Specifically, we
employ the following distribution for p(Y'|W, S, X, Z):

p(Y|W,S,X,Z) = N(p = fiy,,0° =6..), (10)

where fi,,, and &, are the mean and variance of the Gaussian
distribution parametrized by MLPs. We then use the negative
1og-likelih00d as its objective function:

Ly =—Eqy, , [Eqz|50).50),x.0.w)logp(Y|W. S, X, Z)]].
(11)

Overall, our final objective function L is
L =—ELBO + Lg(,) + Ly (12)

As a result, after training our method on experimental and
observational data, given specific unit (9, u(%), our final esti-
mator yields long-term potential outcomes 4/(1)®, (0)(*) on
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the treated and control group respectively. Thus the estimated
long-term individual effect of (") () is

#2®) = (1)@ — 5(0)®. (13)

5 Theoretical Analysis

In this section, we present the identifiability result of our
model and the identification of long-term individual causal
effects. If we can correctly identify the latent confounders 7,
the long-term individual causal effect can be identified based
on the learned representation of Z. We first prove that Z is
identifiable up to a simple transformation. Leveraging the
identifiability result of Z, we further prove that the long-term
individual causal effect is identifiable.

5.1 Identifiability of Latent Confounders

To clearly introduce the latent confounders identifiability re-
sult, we first denote Z; as the i-th dimension of Z. The iden-
tifiability of latent confounders means that, for each ground-
truth latent confounder Z;, there exist a corresponding esti-
mated latent confounder Zi and an invertible function h; :
R — R, such that Z; = h;(Z;). Please refer to Appendix A
for the formal definition of identifiability.

We show that latent confounders can be identified up to
permutation and invertible component-wise transformations.
Theorem 1. Suppose the data-generation process follows
Fig. 2 and the following conditions hold:

» Smooth and Positive Density: The probability density func-
tion of latent confounders is smooth and positive, i.e., pz|ju
is smooth and pzy > 0 over Z and U.

Conditional Independence: Conditioned on U, each Z;
is independent, ie, Yi,j € {l,..d.}, i # ]
logpz v (Z|U) = Z,‘;z qi(Z;, U) where q; is the log den-
sity of the conditional distribution, i.e., q; :==log pz, .

Linear Independence: For any Z € Z C R%, there exist
2d, 41 values of U, i.e., uj withj = 0,1, ..., 2d, such that
the 2d, vectors w(Z,uj) — w(Z,up) with j = 1, ...,2d.,
are linearly independent, where vector w(Z,U) is defined
as follows:

[ 0q1(Z1,U) 0qa.(Za,,U)
UJ(Z,U)— < 8Z1 A aZdZ )
(14)
?q1(Z1,0) 02q4.(Z4.,U)
oz, T 07,2 '

By modeling the aforementioned data generation process in
Fig. 2, latent confounders Z are identifiable.

Proof is given in Appendix C. The first two conditions
are standard in the identifiability of existing nonlinear ICA
works, e.g., [Kong et al., 2022; Khemakhem et al., 2020].
More importantly, the third condition means that the auxil-
iary variable contains enough information, i.e., at least 2d ,+1
distinct values of U. This assumption is plausible due to the
nature of the heterogeneity of data, e.g., data from 11 cities
can ensure the identifiability of Z with up to 5 dimensions.
Please refer to Appendix B for more implications of these
conditions.

5.2 Identifiability of Long-term ITE

Building on the identifiability of latent confounders, in this
section, we can further achieve the identification of long-
term ITE. As stated in Theorem 1, the latent confounder
Z is identified up to simple invertible transformation, i.e.,
Z = h™'(Z). Note the identifiability provides a fine-grained
theoretical guarantee, ensuring all information of Z is pre-
served. Thus, with the learned 7 , the long-term causal effects
can be identified, as stated in the following theorem.

Theorem 2. Under Assumption 1, suppose Theorem 1 hold,
and then T(x) = E[Y (1) — Y(0)| X = z] is identifiable.

The proof is given in Appendix D. Theorem 2 theoretically
guarantees the correctness of our model, providing a feasible
technology of long-term individual causal effects estimation
via learning latent confounders.

6 Experiments

In this section, we verify the effectiveness of our model and
the correctness of our theory. Specifically, we answer the fol-
lowing questions:

1. Can our model identify latent confounders Z?

2. Does our model perform well on datasets that follow
different existing assumptions?

3. Does our model outperform baselines on the real-
world datasets?

4. Is our method robust to different strengths of latent
confounding?

6.1 Experimental Setup

Datasets Since the ground-truth potential outcome can not
be observed in the real world, following existing literature
[Louizos ef al., 2017; Cheng et al., 2021; Cai et al., 2024;
Yang et al., 2024b], we use synthetic and semi-synthetic data
to evaluate our method and baselines.

For the synthetic data, we simulate five synthetic datasets
in our paper. To validate the generalizability of our method,
we first simulate three datasets corresponding to the causal
graphs in Table 1. The first synthetic dataset allows all the
existence of edges following the assumed causal graph in our
paper. The second synthetic dataset follows the latent uncon-
foundedness assumption [Athey er al., 2020] that rules out the
edges from unobserved confounders Z to long-term outcome
Y. The third dataset follows the additive equi-confounding
bias assumption [Ghassami er al., 2022] that assumes the
short-term confounding bias is equal to the long-term one.
To further analyze the performances in terms of different
strengths of confounding bias, we simulate the fourth syn-
thetic dataset with varying (3, which controls the coefficients
in the data generation function from Z to W and Z to Y. Fi-
nally, we simulate the fifth synthetic dataset to verify that our
method is able to identify Z. All data generation details can
be found in Appendix F.

For the semi-synthetic data, we use IHDP [Hill, 2011] and
TWINS [Almond et al., 2005] to validate our model’s perfor-
mance on complex real-world data. In detail, we reuse their
original features and divide them into pre-treatment variables
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Synthetic 1 Synthetic 2 Synthetic 3
€ATE €EITE €EATE €EITE €EATE €EITE
CEVAE [Louizos et al., 2017] 3.90210.740 4.16210.781 | 0.14610.037 0.27040.056 | 0.877+0.161 0.97510.181
TEDVAE [Zhang et al., 2021] 4.356;{:1078 4.851:&1483 0.260:[:0109 0.397;{:0,111 0-941:I:0A186 1.171:&()‘199
LTEE [Cheng er al., 2021] 4.81541.269 5.7261+1.662 | 0.37340.232 0.59640.288 | 0.9854+0.174 1.21540.176
S-Learner [Kﬁnzel et al., 2019] 2‘916i0A854 4.185i1A027 0.106i0A171 0.500i0,300 0.208i0A159 2-235i1A493
T-Learner [Kiinzel et al., 2019] 5.55449.733  7.687+3.529 | 0.310+0.308 0.746+0.435 | 0.836+0.917 1.832+0.763
Imputaion [Athey er al., 2020] 2.480+2.290 - 0.62810.542 - 0.95641.094 -
Weighting [Athey et al., 2020] 11.57916.775 - 1.896+1.801 - 0.854+0.901 -
Equi-naive [Ghassami et al., 2022] 2.837i1A377 4~297i2.080 0.153i0A145 0~974i0.268 0.185i0,190 1.927i0443
IF-base [Ghassami ef al., 2022] 9.385+7.690 1.600+2.030 4.84643.716 -
ICEVAE 240210436 3.17310.418 | 0.10510.068 0.13710.064 | 0.42710.385 0.69510.364

Table 1: Results of estimation error regarding ATE and ITE on three synthetic datasets. We report mean-tstd results. - means the method is

not applicable. The best is bolded.

X, unobserved confounders Z and the auxiliary variables U
according to their real-world meanings. Then we divide the
samples into experimental and observational data and gener-
ate corresponding treatments, short-term outcomes, and long-
term outcomes. The feature division and data generation de-
tails can be found in Appendix F.

Baselines and Metrics We compare our model ICEVAE?
with the following baselines designed for long-term causal
effect, including the Imputation and the Weighting ap-
proaches [Athey et al., 2020], the naive estimator and the ef-
ficient influence function-based estimator under Conditional
Additive Equi-Confounding Bias assumption [Ghassami et
al.,2022], named Equi-naive and IF-based respectively, and
LTEE [Cheng et al., 2021]. Besides, since there is a lack of
work on estimating heterogeneous long-term causal effects,
we use CEVAE [Louizos et al., 2017] as one of the baselines,
as it is designed for recovered latent confounders in effects
estimation. We also compare our model with the follow-up
work TEDVAE [Zhang er al., 2021]. Finally, we introduce
two simple estimators, the S-Learner and the T-Learner
[Kiinzel et al., 2019] to be baselines, which are implemented
using MLPs. Note that the Imputation method, the Weight-
ing method, and the IF-based method are designed for ATE
and cannot estimate ITE. The implementation details regard-
ing baselines and our method can be found in Appendix F.

For metrics, to measure the error of average causal ef-
fect estimation, we report the mean and the standard devia-
tion(std) of mean square error €47 g on the test set by per-
forming 5 replications, i.e., earg = (7 — 7)2, where T
and 7 are the real and estimated average treatment effects
on the test set respectively. To measure the error of estimat-
ing individual causal effects, we report the mean and std of
Precision in the Estimation of Heterogeneous Effect (PEHE)
erre on the test set by performing 5 replications where

€ITE = —nist St (r(2@) — %(x(i)))Q, where 7., is the
test sample size.

2Code is available at https:/github.com/DMIRLAB/ICEVAE
and https://github.com/learnwjj/ICEVAE.

6.2 Results and Analysis

Can our model identify latent confounders Z?

To validate the correctness of Theorem 1, we apply our
method to the Synthetic 5 dataset. As shown in Fig. 4, the
latent variables are successfully recovered, with a high MCC
metric calculated by the ground-truth Z and estimated Z. Fig.
4 suggests that the latent causal variables are estimated up to
permutation and component-wise invertible transformation,
i.e., the estimated Z; in the figure corresponds to the true Z5,
with an MCC value of 0.8056. The estimated Z5 corresponds
to the true Z1, with an MCC value of 0.8040. This indicates
that our proposed method is able to identify Z, which verifies
the correctness of our Theorem 1.
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(a) Scatterplots of Z; and 7. (b) Scatterplots of Z; and Zs.

(] N
2 MCC 0.8056
E E T E
T 1 4';"35%*,.: ]
N ::.’n,‘g:':f.‘. N
5 0 S Vel -
9 TedNAl 9
w1 e 5
ot e Devee
.§ -2 o ...0: .v ° -g
0 - . W -3
L W
-2 -1 0 1 2

-2 -1 0 1 2

True Z dim 2 True Z dim 2
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Figure 4: Result on the fifth synthetic dataset. Fig. 4a-4d show
the scatterplots between each ground-truth and estimated latent con-
founder.
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3=1 B=15 5=3 =45 5=5
€EATE €ITE €EATE €ITE €EATE €ITE €EATE €ITE €ATE €ITE
CEVAE 0.116£0.083 0.18810.081 | 0.32440.115 0.40140.119 | 3.90210720 4.16210.781 | 14.34843.036 15.40613.493 | 19.40313150  20.444.13 585
TEDVAE | 0.097+0.030 0.20510.041 | 0.351+0.065 0.49810.068 | 4.35611.078 4.85141.183 | 16.54343757  18.58914633 | 22.04613856  24.03614.571
LTEE 0.048.10.034  0.21240.071 | 0.29640.141  0.51010.200 | 4.81511.260 5.72611.662 | 17.67847530  20.31019.404 | 23.98017371  26.74019 062
S-Learner | 0.02110013 0.41440.091 | 009610000 0.61740.008 | 2.91640.854 4.18611.027 | 15.38217.400 19.08018705 | 18.84219137  22.609+10.251
T-Learner 0-190i0.130 04582i0_193 0.20910_211 04867i0.304 5455452_733 7468753_529 17-02616.587 21.598i7_321 20.068i1022 26.478i9_3]4
Imputalion 0.79210.934 & 0.92811 258 - 2.480-2.290 - 13.15647 144 = 19.5184£11 240 o
Weighting 0.861i0_548 - 0.639i0_339 - 11-579i6.775 - 51-634113.346 - 70-1O4i11.687 -
Equi-naive | 0.28510.422 0.82310.353 | 0.24740.072  1.00110.045 | 2.837+1377 429710080 | 10.619414045 1424547583 | 1931413186  22.978+3.406
IF-base 0.619i0_831 = 1-707i1.893 - 9438517_(590 - 30.562i13,993 - 32-723i12.970 -
ICEVAE | 0.03810051 006910052 | 0-18220.086 021720.085 | 24020436 317320418 | 989719685 1139550511 | 1496055355 1646715035

Table 2: Results of estimation error regarding ATE and ITE on the fourth synthetic dataset with different
controlled by 8. We report mean+std results. - means the method is not applicable. The best is bolded.

Does our model perform well on datasets that follow
different existing assumptions?

We conduct experiments by comparing our method with base-
lines on three different synthetic datasets that follow differ-
ent data generation processes. The results are shown in Ta-
ble 1. Overall, on all three datasets, our method achieves
almost the best performance, revealing the generalizability
of our method under different assumptions. In detail, on
the Synthetic 1 dataset, our method achieves the lowest ITE
and ATE estimation error and std, indicating the effective-
ness of our method. As for the results of the Synthetic 2
dataset, compared with baselines, our method achieves com-
parable performance. Note that the Imputation and Weight-
ing methods perform much better on the Synthetic 2 dataset
than the Synthetic 1 dataset since the Synthetic 2 dataset is
designed following the latent unconfoundedness assumption.
Similarly, as for the results of the Synthetic 3 dataset that is
generated following the additive equi-confounding bias as-
sumption, Equi-naive can achieve the lowest error in terms of
ATE estimation. On this dataset, our method also achieves
comparable performance, especially in terms of ITE estima-
tion. Hence, we conclude that our model can perform well on
datasets that follow different existing assumptions.

Does our model outperform baselines on real-world
datasets?

In Table 3, we evaluate the performance of our model on com-
plex real-world data by comparing each method using two
semi-synthetic datasets. The main observations are as fol-
lows. Overall, our method achieves the best performance
regarding ITE estimation and comparable performance re-
garding ATE estimation, indicating the effectiveness of our
method. Specifically, compared with the VAE-based method,
our method performs better, which indicates that the experi-
mental data does help recover latent confounders. Compared
with the Imputation and Weighting methods, our method
strongly outperforms them, since the unsuitable latent uncon-
foundedness assumption is made by their methods. In conclu-
sion, we find that our method ICEVAE can outperform base-
lines on real-world datasets.

Is our method robust to different strengths of latent
confounding?

In table 2, we compare our model with baselines on the fourth
synthetic dataset with different strengths of confounding bias

strengths of confounding bias

IHDP TWINS
€ATE €ITE €ATE €ITE

CEVAE 0.00410.003 0.183+0.054 0.64140.521 16.818+11.867
TEDVAE | 0.01140.019 0.18840.032 0.824+1.108 16.657+11.978
LTEE 0.01540.014 0.66810.132 1.994 15 470 15.667 +14.207
T-Leaner 0.0614+0.051  1.06040.214 4.665+5.505 5.19145 581
S-Leaner 0.020+0.018  0.969+0.354 2.53644.101 12.28814.779
Imputaion | 0.713+0.478 - 46.092443.729 -
Weighting | 0.66440.959 - 6.597+10.859 -
ICEVAE 0.016+0.027  0.178+0.060 0.204+0.229 3.66512 246

Table 3: Results of estimation error regarding ATE and ITE on two
semi-synthetic datasets. We report mean4std results. - means the
method is not applicable. The best is bolded.

controlled by /3. The main observations are as follows. With
the strengths of latent confounding increasing, i.e., 5 from 1
to 5, all methods perform worse, which is reasonable since a
large confounding bias will lead to a significant imbalance of
distribution between treated and control groups. When the la-
tent confounding is small, traditional methods yield a compa-
rable performance, since the unconfoundedness assumption
almost holds. When the latent confounding is large enough,
only our method yields accurate estimations in terms of ATE
and ITE, which indicates that our method is robust to the la-
tent confounding. It is because our method can correctly re-
cover the latent confounders Z, and it also reveals the neces-
sity of recovering latent confounders.

7 Conclusion

In this paper, we provide a practical solution to estimate the
long-term individual causal effects in the presence of latent
confounders via identifiable representation learning. Our pro-
posed method takes advantage of the natural heterogeneity of
data, e.g., data from multiple cities, to identify latent con-
founders and further estimate the long-term individual effect,
which not only helps us avoid the idealized assumptions of
the existing methods, but also renders our approach with the-
oretical guarantees of identifiability. Extensive experimental
results verify the correctness of our theory and the effective-
ness of our estimator.
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